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Abstract

We consider the class of level-independent quasi-birth-and-death (QBD) processes that
have countably many phases and generator matrices with tridiagonal blocks that are
themselves tridiagonal and phase independent. We derive simple conditions for possible
decay rates of the stationary distribution of the ‘level’ process. It may be possible to
obtain decay rates satisfying these conditions by varying only the transition structure at
level 0. Our results generalize those of Kroese, Scheinhardt, and Taylor, who studied in
detail a particular example, the tandem Jackson network, from the class of QBD processes
studied here. The conditions derived here are applied to three practical examples.
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1. Introduction

A quasi-birth-and-death (QBD) process is a two-dimensional continuous-time Markov chain
for which the generator has a block tridiagonal structure. The first variable of the QBD process
is called the level, the second variable the phase.

The properties of QBD processes with finitely many possible values of the phase variable
have been studied extensively. A comprehensive discussion can be found in the monographs
of Neuts [17] and Latouche and Ramaswami [9]. It is well known that the level process of
a positive-recurrent QBD process with finitely many possible values of the phase possesses a
stationary distribution which decays geometrically as the level is increased. The decay rate is
given by the spectral radius of Neuts’ R-matrix, which is strictly less than 1.

The situation is more complicated for a QBD process with countably many possible values
of the phase. The R-matrix is infinite-dimensional and its spectral properties are not obvious.
Also, the relationship between various decay rates differs from that in the finite-dimensional
case. It was shown in [8] and [19] that the decay rate of the level process for a countable-phase
QBD process is not necessarily equal to the limiting value of the decay rate for finite-phase
truncations of that process.
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In this paper we make a contribution to the study of the behaviour of countable-phase QBD
processes by considering a specific class of these processes where the phase variable also has the
skip-free property. That is, the tridiagonal blocks in the generator matrix themselves each have
a tridiagonal structure. We assume that the tridiagonal entries in the blocks are homogeneous
(that is, phase independent). These processes are random walks in the quarter-plane. We
restrict ourselves to this class of QBD processes because they allow us to take advantage of
the properties of orthogonal polynomials. By using other methods to analyse (2.12), below,
such as those, for example, in [13] and [14], it is likely that this restriction can be lifted. We
generalize the analysis of [8], to which we will extensively refer.

The asymptotic behaviour of the stationary distribution for random walks in the quarter-plane
has been studied extensively. See, for example, [3, pp. 145–148] and [15]. The results presented
here differ from prior results in that we give the decay rates of the stationary distribution that
may be obtained when the transition intensities along the level-boundary are varied.

Sufficient conditions under which the stationary distribution for the level process of a QBD
process with countably many phases has a geometric tail were obtained in [21]. Similar
conditions were obtained in [5] and [16]. The results obtained, however, did not provide a
method of computation of the decay rate in question. Haque et al. [7] considered the class of
processes studied here. They provided a method for computing the decay rate when certain
restrictive conditions are met.

We show that for the class of QBD processes considered here there exist simple conditions
on z for there to exist a z−1-invariant measure of Neuts’ R-matrix which is positive and in �1

(the space of all complex sequences {xn} such that
∑∞
n=1 |xn| < ∞). These conditions can be

expressed in terms of roots of polynomials in z and are of degree four at most. Depending on
the transition structure at level 0, any of the z satisfying these conditions may give the decay
rate of the stationary distribution of the level process (if it exists).

Haque et al. [7] stated sufficient conditions for the existence of an exact geometric tail
asymptotic for the level process, equivalent to conditions in [21]. One of these conditions is
z−1-positivity of the R-matrix. This is checked by solving a polynomial which is of degree
four for our model. We observe that z−1-positivity holds only for isolated values of z. In
general, the conditions presented in this paper for finding possible decay rates z do not require
z−1-positivity. In this respect they generalise the previous work.

To illustrate our method, we apply the conditions obtained in this paper to find the possible
decay rates for three examples that fall into the class of processes studied here: the two-demand
model, where there are simultaneous arrivals to two independent queues; the two-node Jackson
network; and a system of two queues each with its own server, which receives assistance from
the other server when the latter is idle. The examples show that the set of possible decay rates
may be either a single value, an interval of values, or a disjoint union of the two. Alternatively,
the stationary distribution of the level process may not have a decay rate.

The rest of the paper is organized as follows. In Section 2, we summarise some general results
for QBD processes with both finite and countable phase spaces and formulate the random walk
in the quarter-plane as a QBD process. In Section 3, we present the main result and its proof.
We provide conditions which must be satisfied by the decay rate for the stationary distribution
of the level process. In Section 4, we investigate conditions for z−1-positivity under which the
results of [7] may be applied. In Section 5, we show how we can obtain different decay rates for
the stationary distribution of the level process by controlling the transition structure at level 0.
In Section 6, we apply the results of Section 3 to find a range of possible decay rates for the three
examples mentioned above. In Section 7, we provide a concluding discussion and remarks.
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2. Quasi-birth-and-death processes

A level-independent quasi-birth-and-death process (QBD process) is a continuous-time
Markov chain (Yt , Jt : t ≥ 0) on the state space {0, 1, . . . } × {0, 1, . . . , m} whose generator Q

has a block tridiagonal representation

Q =

⎛
⎜⎜⎜⎝

Q̃1 Q0
Q2 Q1 Q0

Q2 Q1 Q0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ . (2.1)

The matrices Q0, Q1, Q2, and Q̃1 are of dimension (m+ 1)× (m+ 1). The random variable
Yt is called the level of the process at time t and the random variable Jt is called the phase of
the process at time t . Thus, the parameter m gives the number of possible values of the phase
variable, and may be either finite or infinite.

We assume that the QBD process is irreducible, aperiodic, and positive recurrent, and denote
the limiting probabilities by πkj := limt→∞ P(Yt = k, Jt = j). Let πk = (πk0, . . . , πkm),
k = 0, 1, . . . , and π = (π0,π1, . . . ). Then

πk = π0R
k, k ≥ 0, (2.2)

where R is the minimal nonnegative solution to the equation

Q0 + RQ1 + R2Q2 = 0. (2.3)

The following well-known ergodicity condition holds for both m < ∞ and m = ∞.

Theorem 2.1. The QBD process is ergodic, that is, π is positive and has components which
sum to unity, if and only if there exists a probability measure y0 such that

y0(Q̃1 + RQ2) = 0 (2.4)

and

y0

∞∑
k=0

Rk1 < ∞, (2.5)

where 1 is a column vector of 1s. In this case,

π0 = y0

(
y0

∞∑
k=0

Rk1
)−1

.

The matrix Q̃1 + RQ2 in (2.4) is the generator of the process of (Yt , Jt ) filtered so that it is
observed only when it is in level 0. Thus, the condition that there exists a probability measure
satisfying (2.4) states that the filtered process at level 0 must be ergodic.

For m < ∞, (2.5) is satisfied if and only if

sp(R) < 1,

where sp(R) denotes the spectral radius of R.
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If m < ∞ and there exists a (row) vector x such that x1 = 1,

x(Q0 + Q1 + Q2) = 0,

and
xQ01 < xQ21, (2.6)

then the QBD process is positive recurrent; see [17, pp. 82–83] and [11]. This was proved for
m = ∞ in [22], under the additional assumption that Q̃1 = Q1 + Q2. Equation (2.6) can be
interpreted as the requirement that ‘the average drift of the level process is negative’.

We now consider the decay rate of the stationary distribution, assuming that the QBD process
is ergodic. This decay rate is also known as the caudal characteristic. It is well known that for
m < ∞ the geometric decay rate is given by the spectral radius of R. In [9, pp. 204–205] it
was shown that

lim
k→∞

∑
i πki

sp(R)k
= κ, (2.7)

where κ is a constant. That is, the marginal stationary probability that the QBD process is in
positive level k decays geometrically with rate sp(R).

There is no known ‘infinite-dimensional’ analogue of the limiting result (2.7) for m = ∞.
In particular, the role of the spectral radius of R is not fully understood in this case.

We will require the following definitions.

Definition 2.1. Let A be a nonnegative, aperiodic, and irreducible square matrix of infinite or
finite dimension. The power series

∞∑
k=0

Ak(i, j)ξk,

where Ak(i, j) is the (i, j)th element of Ak , has a convergence radius α, 0 ≤ α ≤ ∞,
independent of i and j . This common convergence radius is called the convergence parameter of
the matrix A. When

∑∞
k=0 A

k(i, j)αk converges, the matrix is calledα-transient; otherwise it is
called α-recurrent. The α-recurrent case can further be split into the α-null and α-positive cases
according to whether limk→∞Ak(i, j)αk is equal to 0 (α-null) or greater than 0 (α-positive).

The quantity 1/α is called the convergence norm of A. It can be shown to satisfy

1/α = lim
k→∞(A

k(i, j))1/k,

independently of i and j . This implies, in particular, that if the dimension of A is finite, then
the convergence norm is exactly the Perron–Frobenius eigenvalue of A [20, pp. 200–201].

Definition 2.2. For β > 0, a nonnegative vector x �= 0 is called a β-subinvariant measure of
A if βxA ≤ x and called a β-invariant measure of A if βxA = x. Similarly, a nonnegative
vector y �= 0 is called a β-subinvariant vector of A if βAy ≤ y and called a β-invariant vector
of A if βAy = y.

Definition 2.3. If
lim
k→∞

πk

zk
= w, (2.8)

elementwise, for some positive scalar z and positive row vector w ∈ �1, then we say that the
decay rate of the stationary distribution π is z. If the limit in (2.8) does not exist for any positive
z and w ∈ �1 then we say there is no decay rate.
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Note that condition (2.8) differs from (2.7). However, if (2.8) holds then, by Fatou’s lemma,

lim inf
k→∞

∑
i

πki

zk
≥

∑
i

wi,

and so, if it exists,

lim
k→∞

∑
i πki

zk

is positive and there will be a positive κ such that (2.7) is satisfied. Also, by using Fatou’s
lemma together with (2.2), we see that if w satisfies (2.8) then w must be a z−1-subinvariant
measure of R. In this paper, we study conditions under which w is a z−1-invariant measure
of R.

The following theorem was presented in [8].

Theorem 2.2. Consider an irreducible QBD process with a finite or countable phase space. If
there exist a nonnegative vector w ∈ �1 and a nonnegative number z < 1, such that

w(Q̃1 + RQ2) = 0 (2.9)

and
wR = zw, (2.10)

then the QBD process is ergodic, with π0 proportional to w. Possibly by multiplying by a
constant, we can choose w to satisfy

πk

zk
= w for all k.

It follows from Theorem 2.2 that if π0 is a z−1-invariant measure of R for some z, then the
stationary distribution of the QBD process possesses the level–phase independence property
(see [10]) and decays at rate z.

From (2.3) we see that if the row vector w and scalar z satisfy wR = zw, then for the general
case, m ≤ ∞, we have

w(Q0 + zQ1 + z2Q2) = 0 (2.11)

whenever the change of order of summation involved in using the associative law of matrix
multiplication is permitted.

Under certain conditions the converse is also true for m ≤ ∞. We will use the following
theorem, Theorem 5.4 of [18], to determine z−1-invariant measures of R. For a more detailed
analysis of the m < ∞ case, see [6].

Theorem 2.3. ([18, Theorem 5.4].) Consider a continuous-time ergodic QBD process with
generator of the form (2.1). Let qk = −Q1(k, k). If the complex variable z and the vector
w = {wk} are such that |z| < 1 and

∑
k |wk|qk < ∞, then (2.11) implies (2.10).

We now turn to a specific class of QBD processes where the number of phases is infinite,
namely the random walks in the quarter-plane. We make the following assumption.

Assumption 2.1. The tridiagonal blocks of the infinitesimal generator Q are themselves tridi-
agonal.

https://doi.org/10.1239/aap/1151337083 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337083


Decay rates for QBD processes 527

Thus, both variables, the level and the phase, possess the skip-free property. The transition
rates are homogeneous if the level and phase are both greater than 0.

The infinite-dimensional matrices Q0, Q1, Q2, and Q̃1 in (2.1) are given by

Q0 =

⎛
⎜⎜⎜⎝
ã1 a0
a2 a1 a0

a2 a1 a0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , Q1 =

⎛
⎜⎜⎜⎝
b̃1 b0
b2 b1 b0

b2 b1 b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Q2 =

⎛
⎜⎜⎜⎝
c̃1 c0
c2 c1 c0

c2 c1 c0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ , Q̃1 =

⎛
⎜⎜⎜⎝
b̄1 b0

b2 b̂1 b0

b2 b̂1 b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

where a0, a1, ã1, a2, b0, b2, c0, c1, c̃1, c2 ≥ 0 and

b1 = −(a0 + a1 + a2 + b0 + b2 + c0 + c1 + c2),

b̃1 = −(a0 + ã1 + b0 + c0 + c̃1),

b̂1 = −(a0 + a1 + a2 + b0 + b2),

b̄1 = −(a0 + ã1 + b0).

We assume that the process is ergodic. To study the decay rate of the QBD process we will
make use of Theorem 2.3. Let

γi(z) = ai + biz+ ciz
2, i = 0, 1, 2,

γ̃1(z) = ã1 + b̃1z+ c̃1z
2.

For each z with 0 < |z| < 1, let Q(z) be the infinite-dimensional tridiagonal matrix Q0 +
zQ1 + z2Q2, that is,

Q(z) =

⎛
⎜⎜⎜⎝
γ̃1(z) γ0(z)

γ2(z) γ1(z) γ0(z)

γ2(z) γ1(z) γ0(z)

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ .

The significance of this matrix follows from Theorem 2.3. The infinite-dimensional row vector
w satisfies wR = zw, with 0 < |z| < 1, if

∑
k |wk|qk < ∞ and w satisfies

wQ(z) = 0. (2.12)

For our process, qk is constant for k ≥ 1 and, so, the condition that
∑
k |wk|qk < ∞ is

equivalent to requiring that w ∈ �1. To avoid the trivial case in which Q(z) is a reducible
matrix, we assume that both γ0(z) > 0 and γ2(z) > 0 for all z > 0.

3. Conditions for the decay rate

The following theorem provides some simple conditions that must be satisfied by any decay
rate z for which there exists a positive z−1-invariant measure of R in �1. The conditions are
stated in terms of quadratic and quartic polynomial inequalities in the decay rate.
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Let

τ(z) = γ1(z)+ 2
√
γ0(z)γ2(z), (3.1)

υ(z) = γ2(z)+ min(γ0(z), γ2(z)), (3.2)

χ(z) = γ̃1(z)+ γ0(z)γ2(z)

γ̃1(z)− γ1(z)
. (3.3)

Theorem 3.1. For the QBD process described in Section 2, the system of equations

wR = zw (3.4)

has positive solutions w ∈ �1 for 0 < z < 1 if and only if z is such that

(i) τ(z) ≤ 0 if (γ̃1(z)− γ1(z))
2 ≤ γ0(z)γ2(z) and χ(z) ≤ 0 otherwise, and either

(ii) τ(z) ≥ 0 and γ0(z) < γ2(z), or

(iii) τ(z) < 0 and
γ2(z) > −γ̃1(z) if χ(z) = 0,

υ(z) > −γ1(z) otherwise.

For 0 < z < 1, condition (i) of Theorem 3.1 is necessary and sufficient for (3.4) to have a
positive solution, while this solution is in �1 if and only if either condition (ii) or (iii) is satisfied.

Theorem 3.1 follows from Theorem 2.3. We will defer its proof until after some preliminary
analysis of the model, and some auxiliary lemmas. Our analysis closely follows that of [8,
Section 4].

Consider the system of equations (2.12) for a fixed z such that 0 < |z| < 1. Writing out the
system, we have

w0γ̃1(z)+ w1γ2(z) = 0, (3.5)

wkγ0(z)+ wk+1γ1(z)+ wk+2γ2(z) = 0, k = 0, 1, . . . . (3.6)

After substituting wk = uk into (3.6), we derive the characteristic equation,

γ2(z)u
2 + γ1(z)u+ γ0(z) = 0. (3.7)

The discriminant of (3.7) isD(z) = γ 2
1 (z)− 4γ0(z)γ2(z) = τ(z)σ (z), where τ(z) is as defined

in (3.1) and
σ(z) = γ1(z)− 2

√
γ0(z)γ2(z). (3.8)

The discriminantD(z) is, in general, a quartic in z and, so, has at most four roots. The solution
to (3.6) takes one of three possible forms depending on whether D(z) is positive, negative, or
equal to 0. Only two of these three forms, however, may provide a positive solution and, thus,
a z−1-invariant measure of R.

If D(z) > 0 then we obtain a solution to (3.6) of the form

wk = c1u
k
1 + c2u

k
2, (3.9)

where

u1 = 1

2γ2(z)
(−γ1(z)+ √

D(z)), u2 = 1

2γ2(z)
(−γ1(z)− √

D(z)).
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The coefficients c1 and c2 can be derived from

c1 + c2 = 1, (3.10)

c1u1 + c2u2 = − γ̃1(z)

γ2(z)
, (3.11)

where (3.10) follows from (arbitrarily) setting w0 = 1 and (3.11) follows from the boundary
condition (3.5). Thus, we find that

c1 = 1

2
+ γ1(z)− 2γ̃1(z)

2
√
D(z)

, c2 = 1

2
− γ1(z)− 2γ̃1(z)

2
√
D(z)

. (3.12)

If D(z) = 0 then we obtain a solution to (3.6) of the form

wk = uk(1 + ck), (3.13)

where if τ(z) = 0 then u = √
γ0(z)/γ2(z) and

c = −1 − γ̃1(z)√
γ0(z)γ2(z)

,

and if σ(z) = 0 then u = −√
γ0(z)/γ2(z) and

c = −1 + γ̃1(z)√
γ0(z)γ2(z)

.

If D(z) < 0 then we obtain a solution to (3.6) of the form

wk = (cos(kφ)+ c sin(kφ))|u|k, (3.14)

where |u| = √
γ0(z)/γ2(z),

φ = arctan

(√−D(z)
−γ1(z)

)
, and c = −γ̃1(z)− √

γ0(z)γ2(z) cosφ√
γ0(z)γ2(z) sin φ

.

It is clear that a solution to (3.6) of the form (3.14) cannot be positive and, thus, cannot be a
z−1-invariant measure of R. However, we will defer the question of whether w is positive, and
consider solutions of all three forms, (3.9), (3.13), and (3.14), in determining whether w is an
element of �1.

Lemma 3.1. The vector w is an element of �1 for z > 0 if and only if

(i) D(z) ≤ 0 and γ0(z) < γ2(z), or

(ii) D(z) > 0 and

(a) γ2(z) > |γ̃1(z)| if χ(z) = 0,

(b) υ(z) > |γ1(z)| otherwise.

Proof. To prove (i), note that if D(z) ≤ 0 then the form of (3.13) and (3.14) shows that
w ∈ �1 if and only if γ0(z) < γ2(z).
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Now consider the D(z) > 0 case. If either of the coefficients, c1 or c2, are 0 (they cannot
both be), then the root of (3.7) with nonzero coefficient is given by −γ̃1(z)/γ2(z). Thus, for w

to be in �1 it is necessary and sufficient that | − γ̃1(z)/γ2(z)| < 1.
From (3.12), we see that the coefficient c1 is 0 if and only if

2γ̃1(z)− γ1(z)− √
D(z) = 0. (3.15)

The coefficient c2 is 0 if and only if

2γ̃1(z)− γ1(z)+ √
D(z) = 0. (3.16)

From (3.15) and (3.16), we find that one of the coefficients, c1 or c2, is 0 if and only if

γ0(z)γ2(z)+ γ̃1(z)(γ̃1(z)− γ1(z)) = 0. (3.17)

Since γ0(z)γ2(z) > 0 for z > 0, (3.17) is equivalent to χ(z) = 0.
Consider the case in which c1 and c2 are both nonzero. For w to be in �1 it is necessary and

sufficient that both u1 and u2 be in (−1, 1). To study when this is the case, denote by f (u)
the left-hand side of (3.7). Since the coefficient of u2 in f (u) is γ2(z) > 0 for z > 0, the
statement that both u1 and u2 are in (−1, 1) is equivalent to saying that f (−1) > 0, f (1) > 0,
f ′(−1) < 0, and f ′(1) > 0.

From f (1) > 0, we obtain

γ0(z)+ γ1(z)+ γ2(z) > 0. (3.18)

From f (−1) > 0, we obtain

γ0(z)− γ1(z)+ γ2(z) > 0. (3.19)

From f ′(1) > 0, we obtain
γ1(z)+ 2γ2(z) > 0. (3.20)

From f ′(−1) < 0, we obtain
γ1(z)− 2γ2(z) < 0. (3.21)

If γ0(z) < γ2(z) then condition (3.20) follows immediately from condition (3.18). Likewise,
condition (3.21) follows immediately from condition (3.19). If γ0(z) ≥ γ2(z) then conditions
(3.18) and (3.19) follow from conditions (3.20) and (3.21), respectively. We can thus rewrite
conditions (3.18)–(3.21) more compactly as

υ(z) > |γ1(z)|,
where υ(z) is as defined by (3.2), proving Lemma 3.1.

The vector w must be nonnegative in order for us to be able to apply Theorem 2.3. We
investigate this by generalising equations (3.5) and (3.6) to

P0(x; z) = 1, (3.22)

γ2(z)P1(x; z) = x − γ̃1(z), (3.23)

γ2(z)Pn(x; z) = (x − γ1(z))Pn−1(x; z)− γ0(z)Pn−2(x; z), n ≥ 2. (3.24)

Equations (3.22)–(3.24) define a sequence of orthogonal polynomials Pn(x; z) for any given
real and positive value of z. It is clear that wn = Pn(0; z). The Pn(0; z) are positive for all n
if and only if the zeros of all the Pn(x; z) are less than 0. This enables us to study conditions
for the positivity of w via the properties of the polynomials Pn(0; z).
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Lemma 3.2. For z > 0, the sequence {Pn(x; z)} satisfies the orthogonality relationship∫
supp(ψ)

Pn(x; z)Pm(x; z)ψ(dx) =
(
γ0(z)

γ2(z)

)n
δn,m,

where δn,m is the Kronecker delta symbol and

supp(ψ) =
{

[σ(z), τ (z)] if (γ̃1(z)− γ1(z))
2 ≤ γ0(z)γ2(z),

[σ(z), τ (z)] ∪ {χ(z)} otherwise,

and τ(z), σ(z), and χ(z) are as given in (3.1), (3.8), and (3.3), respectively. The measure ψ is
given by

ψ(dx) =
√
γ0(z)γ2(z)

√
4γ0(z)γ2(z)− (x − γ1(z))2

π(γ0(z)γ2(z)+ (γ̃1(z)− γ1(z))(γ̃1(z)− x))
dx, σ ≤ x ≤ τ,

ψ({χ(z)}) = 1 − γ0(z)γ2(z)

(γ̃1(z)− γ1(z))2
if (γ̃1(z)− γ1(z))

2 > γ0(z)γ2(z).

Proof. For a fixed z > 0, let

Tn(x) =
(√

γ2(z)

γ0(z)

)n
Pn(2x

√
γ0(z)γ2(z)+ γ1(z); z). (3.25)

It follows that
T0(x) = 1,

T1(x) = 2x − b,

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2,

where

b = γ̃1(z)− γ1(z)√
γ0(z)γ2(z)

.

The Tn are perturbed Chebyshev polynomials, for which the orthogonalizing relationship is
given (see [2, pp. 204, 205]) by

2

π

∫ 1

−1
Tn(x)Tm(x)

√
1 − x2

1 + b2 − 2bx
dx + 1{|b|>1}Tn

(
b

2
+ 1

2b

)
Tm

(
b

2
+ 1

2b

)
(1 − b−2)

= δn,m,

where 1{|b|>1} = 1 if |b| > 1 and 1{|b|>1} = 0 otherwise. Substituting (3.25) into this identity
yields the result.

We have the following lemma as a consequence.

Lemma 3.3. For each value of z > 0, Pn(x; z) has n distinct real zeros, xn,1, . . . , xn,n, xn,1 <
· · · < xn,n, and these zeros interlace. That is, for all n ≥ 2 and i = 1, . . . , n− 1,

xn,i < xn−1,i < xn,i+1.
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Proof. The lemma follows from a well-known result on orthogonal polynomial sequences;
see Theorem I.5.3 of [2].

The support of the measure ψ and the limiting behaviour of the zeros of the Pn(x; z) are
related. Some useful results are stated in the following lemma.

Lemma 3.4. The sequences of smallest, second-largest, and largest zeros of the Pn(x; z)
possess the following properties.

• {xn,1}∞n=1 is a strictly decreasing sequence with limit σ(z).

• {xn,n−1}∞n=1 is a strictly increasing sequence with limit τ(z).

• {xn,n}∞n=1 is a strictly increasing sequence with limit χ1(z), where

χ1(z) = sup(supp(ψ)) =
{
τ(z) if (γ̃1(z)− γ1(z))

2 ≤ γ0(z)γ2(z),

χ(z) otherwise.

Proof. See Section II.4 of [2].

Lemma 3.5. Let z > 0. Then Pn(x; z) is positive for all n if and only if x ≥ χ1(z).

Proof. The leading coefficient of Pn(x; z) is positive for all n (since γ2(z) > 0 for z > 0).
This implies thatPn(x; z) is positive for x > xn,n. Since xn,n is strictly increasing, we know that
Pn(x; z) is positive for alln ifx ≥ χ1(z). Conversely,Pk(x; z) is negative forx ∈ (xk−1,k, xk,k),
so the interlacing property given in Lemma 3.3 implies that, for every x < xn,n, Pk(x; z) is
less than 0 for at least one k ∈ {1, . . . , n}. Thus, if x < χ1(z) then Pk(x; z) is less than 0 for
at least one k ∈ Z+.

We are now in a position to say when the vector w solving (3.5) and (3.6) is positive.

Lemma 3.6. The vector w is positive if and only if χ1(z) ≤ 0.

Proof. This follows immediately from Lemma 3.5 and the fact that wn = Pn(0; z) for a
given z.

Having established conditions for the vector w to be in �1 and positive, we are in a position
to provide a proof of Theorem 3.1.

Proof of Theorem 3.1. Theorem 3.1 follows from Theorem 2.3 by combining the conditions
of Lemmas 3.1 and 3.6.

We have assumed that γ0(z), γ2(z) > 0 for z > 0. The positivity condition on w then
implies that γ̃1(z), γ1(z) < 0, as follows. If we (arbitrarily) set w0 = 1, then from (3.5) we
have w1 = −γ̃1(z)/γ2(z). Thus, to have w1 > 0 we require γ̃1(z) < 0. From (3.6) we also
have

w2 = 1

γ2(z)

(
γ̃1(z)γ1(z)

γ2(z)
− γ0(z)

)
.

Thus, to have w2 > 0 we require γ1(z) < 0. This means we must have σ(z) < 0, which
implies that D(z) = 0 is equivalent to τ(z) = 0, that D(z) > 0 is equivalent to τ(z) < 0, and
that D(z) < 0 is equivalent to τ(z) > 0. This concludes the proof of Theorem 3.1.

Theorem 3.1, along with Theorem 2.2, indicates that it might be possible for the QBD process
to have level–phase-independent stationary distributions for a range of different values of z.
For this to occur, the vector w that satisfies (2.10) must also satisfy (2.9).
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In Section 5, we show that it is possible to vary Q̃1 and, thus, (2.9), to obtain a vector w that
satisfies both (2.9) and (2.10).

4. Conditions for z−1-positivity

We now investigate conditions for z−1-positivity of the R-matrix for QBD processes studied
in this paper. Our motivation stems from the technique of [7] that tests for z−1-positivity. If
the R-matrix is not z−1-positive then the technique of [7] does not tell us anything about the
geometric decay rate.

First, we state the following theorem, which is Theorem 6.4 of [20].

Theorem 4.1. ([20, Theorem 6.4].) Suppose that x is a β-invariant measure of A and y a
β-invariant vector of A. Then A is β-positive if

xy :=
∑
i

xiyi < ∞.

Conversely, if A is β-positive and x and y are respectively a β-invariant measure and vector
of A, then xy < ∞.

We will use Theorem 4.1 directly to find conditions for z−1-positivity of the R-matrix.

Theorem 4.2. The R-matrix of the QBD process described in Section 2 is z−1-positive, for
0 < z < 1, if and only if

τ(z) < 0, (4.1)

2γ̃1(z)− γ1(z)−
√
γ 2

1 (z)− 4γ0(z)γ2(z) = 0. (4.2)

If (4.1) and (4.2) hold then the z−1-invariant measure of R is an element of �1 if and only if
γ2(z) > −γ̃1(z).

Proof. The characteristic equations of the z−1-invariant measure w and vector v of R are
given by (3.7) and

γ0(z)u
2 + γ1(z)u+ γ2(z) = 0, (4.3)

respectively. The measure w and vector v also satisfy the boundary equations (3.5) and

v0γ̃1(z)+ v1γ0(z) = 0,

respectively. Clearly, (3.7) and (4.3) have the same discriminantD(z), and the roots of (3.7) are
the reciprocals of the roots of (4.3). As mentioned in Section 3, the solutions for w and v may
take one of three possible forms depending on D(z), two of which may provide a nonnegative
solution. We (arbitrarily) assume that w0 = v0 = 1.

If D(z) < 0 then w and v are both of the form (3.14). Let

wk = (cos(kφ1)+ c1 sin(kφ1))|u1|k,
vk = (cos(kφ2)+ c2 sin(kφ2))|u2|k,

with |u1| = 1/|u2|, φ1 = φ2, and c1 = c2. It is clear that neither w nor v is a nonnegative
vector, so we do not have z−1-positivity. It can also be seen that

wv =
∞∑
k=0

(cos(kφ1)+ c1 sin(kφ1))
2 = ∞.
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Similarly, if D(z) = 0 then w and v are both of the form (3.13). Let

wk = (1 + c1k)u
k
1, vk = (1 + c2k)u

k
2,

with u1 = 1/u2 and c1 = c2. Then

wv =
∞∑
k=0

(1 + c1k)
2 = ∞.

Now, if D(z) > 0 (that is, τ(z) < 0), then w and v are both of the form (3.9). Let

wk = c1u
k
1 + c2u

k
2, vk = c3u

k
3 + c4u

k
4,

with u1 = 1/u4, u2 = 1/u3, c1 = c3, and c2 = c4. Then

wkvk = (c1u
k
1 + c2u

k
2)(c3u

k
3 + c4u

k
4)

= 2c1c2 + c2
1(u1/u2)

k + c2
2(u2/u1)

k,

with u1/u2 > 1, and, thus, wv < ∞ if and only if c1 = 0. From (3.12) it follows that c1 = 0
if and only if (4.2) holds.

Equation (4.2) ensures that χ(z) = 0. Thus, by Lemma 3.6, (4.1) and (4.2) ensure that w

and v are positive. Furthermore, by Lemma 3.1, w ∈ �1 if and only if

γ2(z) > −γ̃1(z).

Remark 4.1. Theorem 4.2 tells us that R is z−1-positive only for isolated values of z. This
also follows from the theory of nonnegative matrices [20, pp. 206–207]. The R-matrix can be
z−1-positive if and only if z is the convergence norm of R.

The authors of [7] considered a model that is essentially the same as the model presented in
Section 3 (although it is in discrete time and the transition rates at the boundary may differ).
They stated conditions for πk to have an exact geometric tail asymptotic. These conditions
are met only if there exists a z−1-invariant measure w and vector v of R with wv < ∞ and
w ∈ �1, for some decay rate z with 0 < z < 1. A polynomial of degree eight must be solved in
order to determine the values of the decay rate for which the conditions of [7] are met. When
the transition rates at the boundary are the same as for our model in Section 3, the polynomial
reduces to a quartic. By uniformizing our model to discrete time, we see that this quartic
equation (Equation (9) of [7]) is

γ0(z)γ2(z)(γ0(z)γ2(z)+ γ̃1(z)[γ̃1(z)− γ1(z)]) = 0. (4.4)

For z > 0, (4.4) is equivalent to χ(z) = 0.
By Theorem 4.2, it is clear that the conditions of [7] are met only if (4.1), (4.2), and

γ2(z) > −γ̃1(z)

are satisfied. The roots of (4.2) are roots of (4.4), but not all roots of (4.4) are roots of (4.2).
This makes sense, since in [7] the decay rate z must not only satisfy (4.4), but also a further
condition (Equation (11) of [7]).
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5. Varying the decay rate

In Section 3, we saw that there may be a range of possible values of z for which (2.10)
has a positive solution, w, in �1. Theorem 2.2 suggests that it may be possible to change the
transition intensities at level 0, that is, change the entries in Q̃1 and, thus, (2.9), to ensure that
the stationary distribution decays at a rate that is given by any of the possible values of z. We
do this by finding the vector w that satisfies (2.10) and then adjusting Q̃1 so that this same
w satisfies (2.9). Below we present two examples of how we may go about changing Q̃1 to
achieve this. The examples below are generalizations of the examples presented in [8] for the
two-node tandem Jackson network. In each of these, the modification to Q̃1 preserves the fact
that it is tridiagonal. Other modifications are of course possible.

Example 5.1. We wish to have a decay rate z satisfying the conditions of Theorem 3.1. We
replace each b0 in Q̃1 by a phase dependent b(k)0 . That is, Q̃1 now has the structure

Q̃1 =

⎛
⎜⎜⎜⎜⎜⎝

b
(0)
1 b

(0)
0

b2 b
(1)
1 b

(1)
0

b2 b
(2)
1 b

(2)
0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

We define the b(k)0 recursively by

b
(0)
0 = zc̃1 − a0 − ã1 + w1

w0
(b2 + zc2), (5.1)

b
(k)
0 = zc1 − a0 − a1 − a2 − b2

+ wk−1(b
(k−1)
0 + zc0)+ wk+1(b2 + zc2)

wk
, k = 1, 2, . . . . (5.2)

Changing Q̃1 in this way is appropriate only if the sequence {b(k)0 }∞k=0 is nonnegative. It can
easily be seen that this is the case if

a0 + a1 + a2 ≤ z(c0 + c1 + c2), a0 + ã1 ≤ z(c0 + c̃1),

and b2 is sufficiently large. It is possible, however, for the sequence {b(k)0 }∞k=0 to be nonnegative
even if these simple conditions are not met, as was shown for the case of the two-node tandem
Jackson network in [8].

The recursion equations (5.1) and (5.2) ensure that

w(Q̃1 + RQ2) = 0,

whence, by (2.4) and Theorem 2.1, it follows that the stationary distribution, π = (π0,π1, . . . ),
of (Yt , Jt ) is given by

πn = cwRn = zncw, n ≥ 0,

for some normalizing constant c. It is clear that the decay rate is now z.

This example shows that by changing the transition intensities at level 0 such that they
become dependent on the phase, it may be possible to produce a different decay rate satisfying
the conditions of Theorem 3.1.
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Example 5.2. Again, we wish to have a decay rate satisfying the conditions in Theorem 3.1.
We now leave the b0 in Q̃1 unchanged, but replace each b2 by a phase dependent b(k)2 . That is,
Q̃1 now has the structure

Q̃1 =

⎛
⎜⎜⎜⎜⎝
b̄1 b0

b
(1)
2 b

(1)
1 b0

b
(2)
2 b

(2)
1 b0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

We define the b(k)2 recursively by

b
(1)
2 = w0

w1
(a0 + ã1 + b0 − zc̃1)− zc2, (5.3)

b
(k+1)
2 = wk(a0 + a1 + a2 + b0 + b

(k)
2 − zc1)− wk−1(b0 + zc0)

wk+1
− zc2, k = 1, 2, . . . .

(5.4)

As before, it is appropriate to change Q̃1 in this way only if the sequence {b(k)2 }∞k=1 is
nonnegative. This is clearly the case if

a0 + a1 + a2 ≥ z(c0 + c1 + c2), a0 + ã1 ≥ z(c0 + c̃1),

and b0 is sufficiently large, but again may also be true if these conditions do not hold, as was
shown for the two-node tandem Jackson network in [8].

The recursion equations (5.3) and (5.4) ensure that w(Q̃1+RQ2) = 0, whence the stationary
distribution of (Yt , Jt ) is given by

πn = cwRn = zncw, n ≥ 0,

for some normalizing constant c. Thus, it is clear that z is the decay rate in this model.

We have again shown how it may be possible to change Q̃1 so as to produce a different
decay rate satisfying the conditions of Theorem 3.1. The forms of the recursion equations in
Examples 5.1 and 5.2 indicate that if changing Q̃1 as in Example 5.1 does not produce proper
(nonnegative) transition intensities, then it may be possible to do so by changing Q̃1 as in
Example 5.2, and vice versa.

6. Examples

We now demonstrate the application of Theorem 3.1 by considering some specific models
which can be formulated as QBD processes with a generator of the form specified in Section 2.
In each case, we investigate possible decay rates, z, given by Theorem 3.1. We also investigate
the z−1-positivity of each of the models by applying Theorem 4.2.

Example 6.1. (Two-demand model.) We consider the two-demand model [4], also considered
in [7]. A double queue arises when customers arriving at the system simultaneously place two
demands on two different servers working independently. The customer arrivals form a Poisson
process with rate 1, and the service times of the two servers are independent and exponential
with rates α and β, respectively. Let X1(t) and X2(t) represent the number of customers
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waiting or in service at time t in queues 1 and 2, respectively. We consider the two-dimensional
Markov chain (X1(t), X2(t)) with state space Z+ × Z+, viewed as a QBD process in which
X1(t) represents the level and X2(t) represents the phase. Thus, the decay rate we are seeking
is that experienced by the number of customers in the first queue. The Markov chain is stable
if and only if α > 1 and β > 1, which we assume to hold.

The tridiagonal blocks of the generator Q are given by the infinite-dimensional matrices

Q0 =

⎛
⎜⎜⎜⎝

0 1
0 1

0 1
. . .

. . .

⎞
⎟⎟⎟⎠ , Q2 =

⎛
⎜⎜⎜⎝
α

α

α

. . .

⎞
⎟⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎜⎝

−(1 + α)

β −(1 + α + β)

β −(1 + α + β)

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Q̃1 =

⎛
⎜⎜⎜⎝

−1
β −(1 + β)

β −(1 + β)

. . .
. . .

⎞
⎟⎟⎟⎠ .

We have

γ0(z) = 1, γ1(z) = αz2 − (1 + α + β)z,

γ2(z) = βz, γ̃1(z)− γ1(z) = βz.

Thus, we obtain

τ(z) = αz2 − (1 + α + β)z+ 2
√
βz,

χ(z) = αz2 − (1 + α)z+ 1, z �= 0,

υ(z) = min(βz+ 1, 2βz).

By applying Theorem 3.1, we obtain the following result for the possible decay rate. The
details of the derivation are presented in Appendix A.

Proposition 6.1. If α < β then the only value of z ∈ (0, 1) for which (2.10) is satisfied by a
positive vector w ∈ �1 is z = 1/α. If α ≥ β then there are no values of z ∈ (0, 1) for which
(2.10) is satisfied by a positive vector w ∈ �1.

By Theorem 4.2, it is possible for the R-matrix to be z−1-positive if and only if z = 1/α
and α > β. Taking into account Proposition 6.1, we see there are no possible decay rates, z,
for which the R-matrix is z−1-positive. This agrees with the results of [7] and [4].

Example 6.2. (Two-node Jackson network.) We consider the two-node Jackson network. The
effect of a finite buffer truncation in the two-node Jackson network was studied in [19]. There
it was found that the decay rate of the stationary distribution of the two-node Jackson network
may not be well approximated by using a finite buffer truncation. These results generalized the
results of [8] for the two-node tandem Jackson network.
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Figure 1: The two-node Jackson network.
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Figure 2: Transition intensities for the two-node Jackson network.

Customers arrive at nodes 1 and 2 according to independent Poisson processes with rates λ1
and λ2, respectively. Customers at each node are served according to a first-come–first-served
discipline. The service times of customers at nodes 1 and 2 are independent and exponentially
distributed with means 1/µ1 and 1/µ2, respectively. After completing service at node 1,
customers enter node 2 with probability p or leave the system with probability 1 − p, where
0 ≤ p ≤ 1. (See Figures 1 and 2.) After completing service at node 2, customers enter node 1
with probability q or leave the system with probability 1 − q, where 0 ≤ q ≤ 1.

The traffic intensities, ρ1 and ρ2, are

ρ1 = λ1 + qλ2

(1 − pq)µ1
, ρ2 = pλ1 + λ2

(1 − pq)µ2
.

It is required for stability that ρ1 < 1 and ρ2 < 1.
Let Yt and Jt denote the numbers of customers in queues 1 and 2 at time t , respectively. We

consider the two-dimensional Markov chain (Jt , Yt ) with state space Z+ × Z+, viewed as a
QBD process in which Jt represents the level and Yt represents the phase.
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The tridiagonal blocks of the generator Q are given by the infinite-dimensional matrices

Q0 =

⎛
⎜⎜⎜⎝
λ2
pµ1 λ2

pµ1 λ2
. . .

. . .

⎞
⎟⎟⎟⎠ ,

Q2 =

⎛
⎜⎜⎜⎝
(1 − q)µ2 qµ2

(1 − q)µ2 qµ2
(1 − q)µ2 qµ2

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎜⎝

−(λ1 + λ2 + µ2) λ1
(1 − p)µ1 −(λ1 + λ2 + µ1 + µ2) λ1

(1 − p)µ1 −(λ1 + λ2 + µ1 + µ2) λ1
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Q̃1 =

⎛
⎜⎜⎜⎝

−(λ1 + λ2) λ1
(1 − p)µ1 −(λ1 + λ2 + µ1) λ1

(1 − p)µ1 −(λ1 + λ2 + µ1) λ1
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

The Markov chain (Jt , Yt ) has the well-known stationary distribution π given by

πn1,n2 = (1 − ρ1)(1 − ρ2)ρ
n1
1 ρ

n2
2 , n1, n2 ≥ 0.

That is, the decay rate for the level process is ρ2 with Q̃1 as specified. We will now use Theorem
3.1 to determine the set of possible decay rates that might be obtained by varying Q̃1.

We have
γ0(z) = (λ1 + qµ2z)z,

γ1(z) = λ2 − (λ1 + λ2 + µ1 + µ2)z+ (1 − q)µ2z
2,

γ2(z) = pµ1 + (1 − p)µ1z,

γ̃1(z)− γ1(z) = µ1z.

Thus, we obtain

τ(z) = λ2 − (λ1 + λ2 + µ1 + µ2)z+ (1 − q)µ2z
2 + 2

√
µ1z(λ1 + qµ2z)(p + (1 − p)z),

χ(z) = pλ1 + λ2 − (pλ1 + λ2 + (1 − pq)µ2)z+ (1 − pq)µ2z
2.

The conditions of Theorem 3.1 are polynomial inequalities in z of degree at most four, so it is
possible to obtain the possible decay rates in closed form. The closed-form solution, however,
is complicated. For some fixed parameter values, we obtained the possible decay rates for
which a positive z−1-invariant measure of R exists in �1. The cases considered are presented
in Table 1. The possible decay rates and the values of z for which each of the conditions of
Theorem 3.1 are satisfied are presented in Table 2.

In each of the numerical cases considered, ρ2 is a value of z for which (2.10) is satisfied, as
it must be, since ρ2 is the decay rate of the stationary distribution of the level process for the

https://doi.org/10.1239/aap/1151337083 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337083


540 A. J. MOTYER AND P. G. TAYLOR

Table 1: Parameter values of numerical examples for the two-node Jackson network.

Case λ1 λ2 µ1 µ2 p q ρ1 ρ2

1 1 0 1.5 2 1 0 0.6667 0.5000
2 1 0 2 1.5 1 0 0.5000 0.6667
3 0 1 1.5 2 0 1 0.6667 0.5000
4 0 1 2 1.5 0 1 0.5000 0.6667
5 1 1 2 2 0.1 0.8 0.9783 0.5978
6 1 1 2 2 0.8 0.1 0.5978 0.9783
7 1 1 2 2 0.4 0.4 0.8333 0.8333
8 1 1 10 10 0.5 0.5 0.2000 0.2000
9 1 5 10 15 0.4 0.9 0.8594 0.5625

10 5 1 15 10 0.9 0.4 0.5625 0.8594

Table 2: Intervals and values of decay rate for which the conditions (i), (ii), and (iii) of Theorem 3.1 are
satisfied, for the two-node Jackson network.

Case (i) (ii) (iii) Possible decay rates z−1-positive value

1 [0.4774, 1) (0, 0.4774] (0.4774, 0.7500) [0.4774, 0.7500) —
2 [0.6667, 1) (0, 0.6365] (0.6365, 1) [0.6667, 1) 0.6667
3 [0.5000, 1) (0, 0.4713] (0.4713, 0.5000] {0.5000} 0.5000
4 [0.6667, 1) (0, 0.4713] (0.4713, 0.6667] {0.6667} 0.6667
5 [0.5971, 1) (0, 0.5971] (0.5971, 0.6000) [0.5971, 0.6000) —
6 [0.9783, 1) (0, 0.8239] (0.8239, 1) [0.9783, 1) 0.9783
7 [0.8333, 1) (0, 0.8193] (0.8193, 0.9000) [0.8333, 0.9000) 0.8333
8 [0.2000, 1) (0, 0.1859] (0.1859, 0.6000) [0.2000, 0.6000) 0.2000
9 [0.5578, 1) (0, 0.5578] (0.5578, 0.6000) [0.5578, 0.6000) —

10 [0.8594, 1) (0, 0.7154] (0.7154, 1) [0.8594, 1) 0.8594

two-node Jackson network. There may or may not be values of z other than ρ2 for which (2.10)
is satisfied. If there are other such values, then for the cases considered they form an interval,
rather than isolated values. Also, ρ2 may or may not be on the boundary of the interval, if one
exists. It may be possible to obtain decay rates given by these values of z by modifying Q̃1, as
discussed in Section 5.

We also observe that for each of the numerical cases considered, the right-hand end-point
of the interval satisfying condition (ii) coincides with the left-hand end-point of the interval
satisfying condition (iii). We have found nonnegative parameter values for which this is not the
case. However, these values lead to non-ergodic systems. It is an open question as to whether
this property must hold in the ergodic case.

The case in which λ1 ≡ λ, λ2 = 0, p = 1, and q = 0, known as the two-node tandem
Jackson network, was considered in [8]. Theorem 3.1 was used to verify Proposition 6.2 below,
which is Theorem 4.9 of [8]. The details of the derivation appear in Appendix B.

Proposition 6.2. If µ1 < µ2 then the values of z ∈ (0, 1) for which (2.10) is satisfied by a
positive vector w ∈ �1 for the two-node tandem Jackson network are those in the interval
[η,µ1/µ2), where η is the root of τ(z) in (0, 1). If µ1 ≥ µ2 then the values of z ∈ (0, 1) for
which (2.10) is satisfied by a positive vector w ∈ �1 are those in the interval [ρ2, 1).
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By Theorem 4.2, the only value of z for which the R-matrix may be z−1-positive is ρ2. The
cases in which the R-matrix is z−1-positive for z = ρ2 are listed in the right-most column of
Table 2. We observe that for the fixed parameter value cases considered that are z−1-positive,
ρ2 is on the lower boundary of the range of possible decay rates. These are the cases in which
ρ2 is the convergence norm of R.

Example 6.3. (Assistance from idle server.) Here we consider another specific class of QBD
processes with infinitely many phases. It models a system where two servers each serve queues
containing customers of a certain type. When one of the queues is empty, the server for that
queue assists the other server.

Arrivals to queues 1 and 2 occur as independent Poisson processes with parametersλ1 andλ2,
respectively. The service times of servers 1 and 2 are exponentially distributed with parameters
µ1 and µ2, respectively.

Each server serves its own queue according to a first-come–first-served discipline. If one
of the queues is empty, the server for that queue assists the other server, doubling the latter’s
service rate. If there is an arrival to a queue while its server is assisting the other queue, the
server immediately ceases assisting and serves its own queue.

By applying the ergodicity conditions of [3, p. 3, p. 142], we see that the QBD process is
ergodic if and only if ρ1 + ρ2 < 2, where ρi = λi/µi, i = 1, 2. We assume that this condition
holds.

Let Jt and Yt denote the numbers of customers in queues 1 and 2 at time t , respectively.
We investigate the behaviour of the two-dimensional Markov chain (Jt , Yt ), viewed as a QBD
process in which Jt represents the level and Yt represents the phase.

The phase space of this QBD process is infinite. The tridiagonal blocks of the generator Q

are given by the infinite-dimensional matrices

Q0 =

⎛
⎜⎜⎜⎝
λ1

λ1
λ1

. . .

⎞
⎟⎟⎟⎠ , Q2 =

⎛
⎜⎜⎜⎝

2µ1
µ1

µ1
. . .

⎞
⎟⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎜⎝

−(λ1 + λ2 + 2µ1) λ2
µ2 −(λ1 + λ2 + µ1 + µ2) λ2

µ2 −(λ1 + λ2 + µ1 + µ2) λ2
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Q̃1 =

⎛
⎜⎜⎜⎝

−(λ1 + λ2) λ2
2µ2 −(λ1 + λ2 + 2µ2) λ2

2µ2 −(λ1 + λ2 + 2µ2) λ2
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

We thus have
γ0(z) = λ2z, γ1(z) = λ1 − (λ1 + λ2 + µ1 + µ2)z+ µ1z

2,

γ2(z) = µ2z, γ̃1(z) = λ1 − (λ1 + λ2 + 2µ1)z+ 2µ1z
2.

As in the previous examples, it is possible to derive closed-form expressions for the possible
decay rates. However, we do not reproduce them here, due to their length. We determined
possible decay rates numerically for the fixed parameter cases displayed in Table 3.
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Table 3: Numerical examples for Example 6.3.

Case λ1 λ2 µ1 µ2 ρ1 ρ2

1 1 1 2 2 0.5000 0.5000
2 1 1 1 2 1.0000 0.5000
3 1 1 2 1 0.5000 1.0000
4 1 2 1 3 1.0000 0.6667
5 2 1 3 1 0.6667 1.0000
6 3 1 2 4 1.5000 0.2500
7 1 3 4 2 0.2500 1.5000

Table 4: Possible decay rates for which the conditions (i), (ii), and (iii) of Theorem 3.1 are satisfied, for
Example 6.3.

Possible z−1-positive
Case (i) (ii) (iii) decay rates value

1 [0.4342, 1) (0, 0.4342] (0.4342, 0.5000) [0.4342, 0.5000) —
2 [0.7071, 1) (0, 0.6628] (0.6628, 1) [0.7071, 1) 0.7071
3 [0.5000, 1) (0, 0.5000] — {0.5000} —
4 [0.7808, 1) (0, 0.7287] (0.7287, 1) [0.7808, 1) 0.7808
5 [0.2397, 0.3333) (0, 0.6667] — [0.2397, 0.3333) —

∪ [0.6667, 1) ∪ {0.6667}
6 [0.8660, 1) (0, 0.6340] (0.6340, 1) [0.8660, 1) 0.8660
7 [0.2419, 1) — — — —

The possible decay rates and the values of z for which each of the conditions of Theorem 3.1
are satisfied are presented in Table 4. In the cases considered, the possible decay rates may be
either an isolated point, form an interval, or be the union of an isolated point and an interval. We
make a similar observation as in Example 6.2 about the intervals satisfying conditions (ii) and
(iii) sharing a common point. When both these intervals exist and the system is ergodic, this
observation appears to be valid. However, the intervals do not necessarily share a common end-
point when the system is non-ergodic. The values of z for which the R-matrix is z−1-positive
are listed in the right-most column of Table 4.

7. Discussion and remarks

The anonymous referee observed that it is a consequence of our Assumption 2.1 that the
matrix Q(z) is tridiagonal. This enabled us to use orthogonal polynomial techniques to ascertain
whether (2.12) has a positive solution.

The referee further observed that if Assumption 2.1 does not hold, it may be possible to
employ some of the results of the calculation of quasistationary distributions for continuous-
time Markov chains with generator matrices with structures that are not tridiagonal (see, for
example, [1] and [12]) to find a vector w that solves (2.12). This is a very interesting suggestion,
which we plan to investigate in future work.

Appendix A. The two-demand model

The following results (stated without proof) apply to the two-demand model considered in
Example 6.1, and allow the conditions of Theorem 3.1 to be expressed in closed form.
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Proposition A.1. If α < β then condition (i) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and
only if z is in the interval [z1, 1/β] ∪ [1/α, 1).

Proposition A.2. If α ≥ β then condition (i) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and
only if z is in the interval [z1, 1/β] ∪ (1/β, 1).

Proposition A.3. Condition (ii) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and only if 1/β < z1
and z is in the interval (1/β, z1].
Proposition A.4. If α < β then condition (iii) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and
only if z is in the interval (z1, 1) ∩ [1/β, 1/α].
Proposition A.5. If α ≥ β then condition (iii) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and
only if z is in the interval (z1, 1) ∩ ((1 + α − β)/α, 1/β].

From these results we obtain two further propositions.

Proposition A.6. If α < β and z1 ≥ 1/β then the only value of z ∈ (0, 1) for which the
conditions of Theorem 3.1 are satisfied is 1/α. If α ≥ β and z1 ≤ 1/β then there are no values
of z ∈ (0, 1) for which the conditions of Theorem 3.1 are satisfied.

Proposition A.7. If α < β then z1 > 1/β, and if α ≥ β then z1 ≤ 1/β.

Combining Propositions A.6 and A.7 gives Proposition 6.1.

Appendix B. The two-node Jackson network

The following results (stated without proof) apply to the two-node Jackson network consid-
ered in Example 6.2 for the case considered in [8], in which p = 1, q = 0, λ1 ≡ λ, and λ2 = 0.
We now have ρ1 = λ/µ1, ρ2 = λ/µ2, and

γ0(z) = λz,

γ1(z) = −(λ+ µ1 + µ2)z+ µ2z
2,

γ2(z) = µ1,

γ̃1(z)− γ1(z) = µ1z,

τ (z) = −(λ+ µ1 + µ2)z+ µ2z
2 + 2

√
λ1µ1z,

χ(z) = (z− 1)(µ2z− λ),

υ(z) = λz+ µ1.

Proposition B.1. If µ1 < µ2 then condition (i) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and
only if z is in the interval [z1, 1). If µ1 ≥ µ2 then condition (i) of Theorem 3.1 is satisfied for
z ∈ (0, 1) if and only if z is in the interval [ρ2, 1).

This condition is the same as that of [8] for the vector w to be positive.

Proposition B.2. Condition (ii) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and only if z is in
the interval (0, z1].
Proposition B.3. Condition (iii) of Theorem 3.1 is satisfied for z ∈ (0, 1) if and only if z is in
the interval (z1,min(µ1/µ2, 1)).
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We see that either condition (ii) or (iii) is satisfied if and only if z ∈ (0,min(µ1/µ2, 1)).
This is equivalent to the conditions of [8] for the vector w to be in �1.

Combining the above results gives Proposition 6.2.
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