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Abstract. The Reynolds Stress Model (RSM) yields the dynamic equations for the second-
order moments (e.g., heat fluxes) needed in the equations for the mean variables (e.g., mean
temperature). The RSM equations are in general time dependent and non-local. We first discuss
the “buoyancy only” case and the tests of the non-local model against a variety of data. We also
“plumenize” the model in order to exhibit the up-down flows that characterize convection so as
to show that a non-local RSM is fully equipped to account for the “plume aspect” of buoyant
flows. Next, we extend the RSM to account for stable and/or unstable stratification and shear, a
formalism that is needed to describe the overshooting region contributed by differentail rotation.
We conclude by discussing the equation for the dissipation of turbulent kinetic energy which
plays a key role in any RSM.
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1. Reynolds stress model for pure buoyancy
At a mathematical conference toward the end of the twenties, the Russian mathemati-

cian A.A. Friedmann (the same of the Friedmann universe) suggested that if the NSE
(Navier-Stokes Equations) yield the dynamical equations for the mean components (see
Eqs. 2.2, 2.3 of Canuto 2007, Part 1), they also yield the dynamic equations for the
fluctuations’ correlations such as the Reynolds stresses, the turbulent heat flux, etc. The
Reynolds Stress Model, RSM, could have been born then, but that was not the case.
One had to wait until 1940 when the Chinese physicist P.Y.Chou published the first
dynamical equations for the momentum Reynolds stresses. He treated primarily shear
flows and the engineering community has since then used the RSM. The successes of the
RSM in that field are well documented and there is no need to dwell on them. Suffices
it to say that closure problems still exist especially concerning the pressure correlations,
but the work of many groups has considerably narrowed the uncertainties.

In Canuto (1992), a detailed derivation of the RSM equations was presented. For the
buoyancy only case, the second order moments of interest to stellar structure studies are
the turbulent kinetic energy K, the heat flux J = wθ, the temperature variance θ2 and
the kinetic energy in the z-direction 1/2w2 whose dynamic equations are (Canuto 1992;
Canuto and Dubovikov 1998; Canuto et al. 2001, 2002):

∂K

∂t
+

∂FKE

∂z︸ ︷︷ ︸
non-locality

= gαJ − ε (1.1)
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∂J

∂t
+

∂w2θ

∂z︸ ︷︷ ︸
non-locality

= −w2Tz + (1 − γ1)gαθ2 − τ−1π−1
4 J (1.2)

∂θ2

∂t
+

∂wθ2

∂z︸ ︷︷ ︸
non-locality

= −2JTz − 2θ2π−1
5 τ−1 (1.3)

∂

∂t
w2 +

∂w3

∂z︸︷︷︸
non-locality

=
2
3
(1 + 2β5)gαJ − 2

3
ε − 5τ−1(w2 − 2K

3
) (1.4)

where τ = 2K/ε is the dynamical time scale. The equation for the dissipation ε is:

∂ε

∂t
+

∂wε

∂z︸︷︷︸
non-locality

= c1gαJτ−1 − c2ετ
−1 (1.5)

where c1=2.88, c2=3.8, wε = 3/2τ−1FKE with FKE = wK (see Sect. 6). The suggested
values of the constants are β5 = 1/2, γ1 = 1/3, π4 = 0.084, π5 = 0.72. The first con-
sideration is that equations (1.1)–(1.5) are linked together. To solve the equation for J ,
one needs to know the temperature variance θ2 and w2 which are given by two other
equations. In the stationary and local limit, Eqs. (1.1)–(1.5) become algebraic and the
solution has the MLT form (Canuto and Dubovikov 1998). To carry out the next step,
consider (1.2) and neglect the temperature variance θ2 since in an unstably stratified
regime, potential energy, which is proportional to θ2, transforms into kinetic energy. We
have:

J = −π4τw2
∂T

∂z
− π4τ

∂

∂z
w2θ = JL + JNL (1.6)

where:

JL = −π4τw2
∂T

∂z
= −Kh

∂T

∂z
, JNL = −π4τ

∂

∂z
w2θ (1.7)

Eqs. (1.1)–(1.5) have been successfully used to study stellar convection by Kupka (1999),
Kukpa and Montgomery (2002) and Montgomery and Kupka (2004). In the stellar case,
the derivative Tz = ∂T/∂z is replaced by the super-adiabatic temperature gradient β
(see also Sect. 2 in Canuto 2007).

2. Non-locality: third-order moments
Clearly, each of (1.1)–(1.5) entails a third-order moment (TOM) and models such as

(2.15) of Canuto (2007) can only be a rough approximation. To obtain a more physical
expression for the TOMs, one begins with the TOMs dynamical equations (Canuto 1992,
Eqs. 55). For example, in the case of buoyancy forces only, the equation for w3 reads:

∂

∂t
w3 = − ∂

∂z
w4︸︷︷︸

FOM

+3w2
∂w2

∂z
+ 3gαw2θ − 2c8τ

−1w3 (2.1)

which shows that to proceed, we need to model the fourth-order moment (FOM), w4.
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2.1. FOMs. Previous models
Most previous FOM models (Tatsumi 1957; O’Brien and Francis 1962; Ogura 1962;
Zeman and Lumley 1976; André et al. 1976, 1978; Bougeault 1981; Chen and Cotton
1983; Moeng and Randall 1984; Canuto 1992; Canuto et al. 1994) employed the quasi-
normal approximation, QNA, whereby abcd = ab cd + ac bd + ad bc. For example:

w4 = 3w2
2
, w3θ = 3w2 wθ, w2θ2 = w2 θ2 + 2wθ

2
(2.2)

In the convectively unstable case, QNA is known to suffer from realizability problems,
that is, the resulting TOMs contain denominators that become zero at some critical
τ2N2 ∼ −20, N2 = gα∂T/∂z, which easily attains in a convective planetary boundary
layer (PBL). To prevent this from happening, Canuto et al. (2001) proposed an ad hoc
procedure to limit the value of τ2N2 in the unstable case; as a result, the eddy sizes are
chopped down and the transport is weakened. In the stable case, Moeng and Randall
(1984) pointed out that Eq. (2.1) under QNA leads to a “wave equation”:

∂2

∂t2
w3 = 3gα|∂T/∂z|w3 + other terms (2.3)

with an oscillation frequency of f = (3gα|∂T/∂z|)1/2. Similar “wave equations” result
from other TOMs equations. These oscillations are not observed in nature and are there-
fore spurious.

2.2. FOMs. New model
Since the QNA (with zero-cumulants) causes singular behaviors of the TOMs, a more
physical FOM model with non-zero cumulants was proposed and tested by Cheng et al.
(2005). In principle, to formulate a new FOM model, one could try to solve the dynamic
equations of the FOMs, but this would require a new set of parameterizations for the pres-
sure and dissipation terms, and most of all, the need to model the fifth-order moments.
A new model was therefore proposed (Cheng et al. 2005) which we briefly sketch here.
First, from the TOMs dynamic equations one subtracts the QNA part leaving behind
the dynamic equations for the cumulants. For example, one has:

∂

∂z
(w4 − w4|QNA) = −2c8τ

−1w3 + 3gαw2θ − 3w2
∂

∂z
w2 (2.4)

Next, it was assumed that the FOMs can be modeled by linear combinations of the
TOMs, an assumption that assures that in the Gaussian limit, the TOMs vanish and the
FOMs acquire the QNA form. For example, it was assumed that:

∂

∂z
(w4 − w4|QNA) = p1τw3 (2.5)

The constants that appear in expressions like (2.5) were chosen so that that (2.4), (2.5)
best match the full expressions (2.1) using as input the large-eddy simulation (LES) data
for the TOMs and SOMs of Mironov et al. (2000). Most importantly, use was made of
new aircraft data on the FOMs by Hartmann et al. (1999), to further determine these
constants. The “best” values are listed in Table 1 of Cheng et al. (2005). The choice of
such constants helps provide adequate damping that was lacking in previous models and
effectively cancels the β ∼ ∂T/∂z terms in the TOM equations, as first suggested to
the author by Kupka (1999) on the basis of DNS data. The cancellation of the β terms
not only greatly simplifies the TOM equations, but also avoids the singularities in the
unstable case and eliminates the source of the spurious oscillations in the stable case.
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Figure 1. In (a-d), the normalized FOMs are plotted versus z/h in a convective PBL, using the
LES data of Mironov et al. (2000) for lower order moments as input. The solid lines represent
results from the present FOM model, the dashed lines represent results from the recent model
of Gryanik and Hartman (2002) and the dotted lines represent the QNA. The filled circles are
the aircraft data of Hartmann et al. (1999). In (e) the kurtosis of w is plotted versus z/h. The
thick solid line represents the result from the new model, the dashed line represents the result
from the model of Gryanik and Hartman (2002) and the dotted line represents the QNA, for
comparison the aircraft data are the filled circles. In (f) the w-kurtosis Kw is plotted versus
w-skewness Sw , using the new model (thick solid line), the model of Gryanik and Hartman
(2002, dashed line) and the QNA (dotted line), for comparison the aircraft data are the filled
circles, and the empirical formula Kw = 2.3 (S2

w + 1) is the thin solid line.

To assess their validity, the new FOMs were compared with measured data by plotting
the modeled FOMs with the SOMs and TOMs from the LES data (Mironov et al. 2000)
as input, versus z/h (h is the PBL height). In Fig. 1, the thick solid lines represent the
new model results, the filled circles represent the aircraft data of Hartmann et al. (1999),
the dashed and dotted lines represent the model results of Gryanik and Hartmann (2002)
and QNA, respectively. The kurtosis of w from the models and from the aircraft data is
plotted in Fig. 1e. To help assess the improvement shown in Fig. 1e, we refer the reader
to the measurements of w-kurtosis by Lenschow et al. (1994, 2000) who stated that “The
kurtosis increases with height from around 3 to about 5 near 0.9 z/zi. Above it, the
kurtosis increases sharply”. In Fig. 1f we plot the w-kurtosis Kw versus the skewness Sw

from the new model (thick solid line) and from Gryanik and Hartmann (2002, dashed
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line) to be compared with the aircraft data (filled circles) and with the empirical formula
(Alberghi et al. 2002, thin solid line)

Kw = 2.3 (S2
w + 1). (2.6)

Judging from the comparisons with these data, the new model exhibits significant im-
provements over the QNA and the Gryanik and Hartmann (2002) model.

2.3. New TOM model with new FOMs
Next, one employs the new FOMs into the TOM equations. The resulting equations are
simpler than in previous models and more importantly, they are singularity-free. They
are given by Eqs. (9a-f) of Cheng et al. (2005) which we don’t reproduce here. Suffices
it to say that in the stationary limit, the new model for the TOMs reads as follows:

w3 = −A1
∂

∂z
w2 − A2

∂

∂z
wθ − A3

∂

∂z
θ2 (2.7)

w2θ = −A4
∂

∂z
w2 − A5

∂

∂z
wθ − A6

∂

∂z
θ2 (2.8)

wθ2 = −A7
∂

∂z
wθ − A8

∂

∂z
θ2, θ3 = −A9

∂

∂z
θ2 (2.9)

Eqs. (2.7)–(2.9) exhibit the same structure of a linear combination of the z-derivatives
of the SOMs first discussed in Canuto et al. (1994, 2001). In (2.7)–(2.9), the “diffusivities”
Ai are given by (λ = gα):

A1 = (a1w2 + a2λτwθ)τ, A2 = (a3w2 + a4λτwθ)λτ2, A3 = (a5w2 + a6λτwθ)λ2τ3,

A4 = a7τwθ, A5 = (a8w2 + a9λτwθ)τ, A6 = (a10w2 + a11λτwθ)λτ2,

A7 = a12τwθ, A8 = (a13w2 + a14λτwθ)τ, A9 = a15τwθ (2.10)

The coefficients ai in (2.10) are given in Appendix B of Cheng et al. (2005). In Figs. 2-3
we exhibit the new TOMs and FOMs compared with LES data and aircraft data.

Even though Eqs. (2.7)–(2.9) are relatively simple and have been successfully tested
against LES data (Cheng et al. 2005), more recently we have succeeded in reducing them
even further without deteriorating the comparison with LES data. In fact, we have found
the following simplified version:

w3 = −0.06gατ2w2
∂wθ

∂z
, w2θ = −0.3τw2

∂wθ

∂z
, wθ2 = −τwθ

∂wθ

∂z
(2.11)

which are compared in Figs. 4a-c to the LES data of Mironov et al. (2000) and to
the aircraft data of Hartmann et al. (1999). The data are reproduced quite well. The
first of (2.11) correctly yields a negative skewness below the cooling ocean surface (or
equivalently below the cloud top in the PBL case, see Stevens et al. 2005) where ∂B/∂z >
0 (B is the buoyancy), while it yields a positive skewness near a surface heated from below
where ∂B/∂z < 0. By contrast, a down-gradient approximation which corresponds to
retaining only the first term in (2.7):

w3 ≈ −τw2
∂w2

∂z
(2.12)

yields the wrong sign of the skewness in both the above cases. To further highlight the
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Figure 2. Temperature variance dissipation rate εθ and normalized third-order moments versus
z/h resulting from the numerical model of a convective PBL. The solid lines represent the new
model, the dot-dashed lines represent the LES data of Mironov et al. (2000) and the filled circles
represent the aircraft data of Hartmann et al. (1999).

physical content of (2.11), we can re-write them as follows:

gαw2θ = 5τ−1(w2)3/2Sw, gαw2θ =
50
3

τ−1J(w2)1/2Sw, (2.13)

so as to exhibit the skewness Sw = w3/(w3)3/2, as emphasized by previous authors
(Wyngaard and Weil 1991; Hamba 1995). The development of this new model has also
benefitted from the test of non-local models in stars (Kupka 1999; Kupka and Mont-
gomery 2002; Montgomery and Kupka 2004).

3. Plumes and turbulence
Consider Eq. (2.2) of Canuto (2007) which, in the more general form, reads:

∂T

∂z
+ · · · =

∂

∂xj
(Kij

∂T

∂xi
) (3.1)
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Figure 3. Normalized FOMs versus z/h according to the FOM model, as solid lines, using T ,
SOMs and TOMs resulting from the numerical simulation of a convective PBL as input, QN
FOMs as dotted lines. The filled circles represent the aircraft data of Hartmann et al. (1999).

If we split the heat diffusivity tensor Kij into symmetric and anti-symmetric parts:

Kij = 1/2(Kij + Kji) + 1/2(Kij − Kji) ≡ Ks
ij + Ka

ij (3.2)

and define the divergence-free velocity field:

u�
i = −

∂Ka
ij

∂xj
, ∂iu

�
i = 0 (3.3)

Eq.(3.1) then becomes:

∂T

∂z
+ u�

i

∂T

∂xi
=

∂

∂xj

(
Ks

ij

∂T

∂xi

)
+ · · · (3.4)

Thus, the symmetric part of Kij yields diffusion while the anti-symmetric part yields
advection. As Lappen and Randall (2001) pointed out, in diffusive transport, information
flows both upward and downward; by contrast, in advective transport, the information
is either up or down depending on the time evolution.

If one employs a local turbulence model, one only accounts for the rhs of (3.4) and the
model is purely diffusive. On the other hand, the plume model that has been widely used
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      (a)           (b)

         (c)

Figure 4. (a) The third moment w3 normalized by w3
∗ vs. height normalized by the PBL depth

h. The filled circles represent the aircraft data of Hartmann et al. (1999). The dashed line shows
the LES data of Mironov et al. (2000). The solid line represents the result of the new, simple

model, using the lower order moments from LES data as input. (b) Same as Fig. 4a but for w2θ

normalized by w2
∗θ∗. (c) Same as Fig. 4a but for wθ2 normalized by w∗θ

2
∗.

in the literature (Morton, Taylor and Turner 1956, cited as MTT) is purely advective
since in fact the mean T equation reads:

∂T

∂t
+ w� ∂T

∂z
= 0 (3.5)

Clearly, neither a purely diffusive nor a purely advective model is satisfactory since
both advection and diffusion must be present for they represent different stages of the
dynamical evolution of the system. Since the formal derivation just presented underlines
the fact that advection and diffusion are not separate processes both being described by
the same general diffusivity tensor, one must conclude that provided one includes non-
locality, turbulence models have all the ingredients necessary to account for both diffusion
and advection. The further task is to “plumenize” the model that is, to reformulate a
non-local RSM so as to exhibit the up-down drafts (Canuto et al. 2007).

Plume models are attractive for they provide an intuitive visualization of narrow de-
scending plumes and wide ascending plumes exhibited by LES studies of convection
cooled from above. There are however difficulties, the first of which is that the MTT is
purely advective and its extension to include diffusion is far from obvious.

The second problem is that MTT has equations for momentum and buoyancy but
there are three unknowns, the third being the fraction of space occupied by the plumes
that varies with z (or the plume’s radius). Taylor suggested a phenomenological “entrain-
ment equation” which contains an entrainment parameter α that MTT were unable to
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determine. The parameter α has thus far been treated as an adjustable coefficient but in
reality is a function of the large scale features of the flow. Ellison and Turner (1959) used
laboratory data to determine α = α(Ri), where Ri is the Richardson number, but this
function provides a poor fit to the Mediterranean outflow data (Price and Yang 1998;
Wahlin and Cenedese 2006). A more complete formulation of α that includes non-local
transport and leads to a better representation of the newest data has been recently pro-
posed (Canuto et al. 2005).The third problem is that MTT assumes that σ, the fractional
area occupied by a plume, is much smaller than unity:

σ � 1 σ = Σp(Σp + Σe)−1 (3.6)

where Σp(Σe) is the total cross-section of the plumes (environment) at a given depth.
However, since during their evolution, plumes entrain fluid from the environment, σ
increases with depth to the point where (3.6) becomes invalid. Specifically, entrainment
causes the plume’s mass flux wpΣp ∝ σwp to grow while stable stratification decreases
wp, the net result being an increase of σ to the point where (3.6) breaks down. In addition,
a small σ model cannot satisfy the zero mass flux relation (wu,d are the velocities of the
up-down drafts and z is considered upward):

σwd + (1 − σ)wu = 0 (3.7)

which, in the small σ limit, implies:

|wd| >> wu (3.8)

On the other hand, for the argument given above, when σ=1/2, Eq.(3.7) yields:

|wu| = |wd| (3.9)

which is not allowed under (3.6). Finally, the mass conservation (3.7) is invariant under
the transformation:

wu → wd, σ → 1 − σ (3.10)
and so should be any plume model. The MTT model is not invariant under (3.10) since it
is valid only in the plumes’ early development stages when the fraction of space occupied
by the plumes is still small. In summary, the MTT model has the advantage of simplicity
but: 1) it is restricted by Eq. (3.6), 2) it depends on the undetermined rate of entrainment
α and 3) it is only advective since it leaves out diffusion.

4. New plume model
To correct the limitations of the MTT model, we proceed as follows.
(a) We employ the RSM in which non-locality is represented by the third-order mo-

ments for some of which we employ the new model discussed above.
(b) We write the non-local TOMs in the “plume approximation” which assumes a

top hat profile that consists of two delta functions for the pdf of each state variable,
corresponding to ascending and descending plumes. This implies (Lappen and Randall
2001) that such a profile has 100% probability of having one of just two possible values,
the two allowed states being up-drafts and down-drafts. This introduces a considerable
simplification to the problem since it reduces substantially the number of higher-order
moments that are required, it assures the realizability condition of the higher order
moments and requires fewer prognostic equations.

(c) The new turbulence-based plume model is such that all relations are invariant
under (3.10) and thus the model is valid for the entire plume’s lifetime,
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(d) In the small σ limit, the new model reproduces the MTT model.
To “plumenize” the TOMs using the up-down draft notation, we first employ the

relations (Canuto and Dubovikov 1998):

w2 = σ(1 − σ)(wu − wd)2 = βσw2, βσ = σ(1 − σ)−1 (4.1)

J = σ(1 − σ)(wu − wd)(θu − θd) (4.2)

θ2 = σ(1 − σ)(θu − θd)2 = β−1
σ w−2J2 (4.3)

where w ≡ wd. Analogous relations hold for the salinity field. These relations are invariant
under (3.10). Correspondingly, the plumenized TOMs become:

w3 = −σ(1 − σ)(1 − 2σ)(wu − wd)3 = w2
3/2

Sw

w2θ = −σ(1 − σ)(1 − 2σ)(θu − θd)(wu − wd)2 = w2
1/2

SwJ

wθ2 = −σ(1 − σ)(1 − 2σ)(θu − θd)2(wu − wd) = θ2
1/2

SθJ (4.4)

where the skewness is taken to be:

Sθ,w ≡ (2σ − 1)[σ(1 − σ)]−1/2 (4.5)

With the additional relation:

w3 = −0.06gατ2w2
∂J

∂z
(4.6)

Eqs. (1.1)–(1.5), together with (4.4)–(4.5), constitute a new plume model.

5. Reynolds stress model with buoyancy and shear
In the case of stable stratification (e.g., the OV regimes), one must consider three

fields, velocity, temperature and “salinity”, where the latter is the name borrowed from
oceanography for the third field which in stars is the mean molecular weight. The RSM
prescribes the rules to derive the dynamic equations for the second-order moments. As
discussed in detail in several papers (Canuto 1994; Canuto et al. 2001, 2002), the final
results are:

Reynolds stresses, Rij = uiuj , bij = Rij − 2
3δijK, D/Dt = ∂/∂t + ui∂i :

Dbij

Dt
= −8K

15
Σij − (1 − p1)Ωij + (1 − p2)Zij +

1
2
g(αT Lij − αsMij) − 5 τ−1bij (5.1)

All the terms in the rhs are traceless. They are defined as follows:

Ωij = bikΣjk + bjkΣik − 2/3 δijbkmΣkm, Zij = bikVjk + bjkVik (5.2)

where the mean shear and vorticity were defined in Eqs. (8.5) of Canuto (2007). Further-
more,

Lij = λiJ
h
j + λjJ

h
i − 2/3 δijλkJh

k , Mij = λiJ
s
j + λjJ

s
i − 2/3 δijλkJ s

k (5.3)

Here, λi = −(gρ)−1∂ip, αT,s are the thermal expansion and haline contraction coefficients
defined in Eqs. (3.2) of Part 1. Furthermore, p1 = 0.832 and p2 = 0.545.

Heat flux, Jh
i = uiθ:

DJh
i

Dt
= −RijTj − Jh

j ui,j − (2αT Ψ − αsσθ)∂ip − π−1
4 τ−1Jh

i (5.4)

https://doi.org/10.1017/S1743921307000063 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307000063


Theoretical modeling of convection (II) 29

Salinity flux, J s
i = uiσ:

DJs
i

Dt
= −RijSj − J s

jui,j − (αT σθ − 2αsΦ)∂ip − π−1
1 τ−1J s

i (5.5)

Temperature variance, Ψ = 1
2θ2, Salinity variance, Φ = 1

2σ2:

DΨ
Dt

= −Jh
i Ti − 2π−1

5 τ−1Ψ,
DΦ
Dt

= −J s
i Si − 2π−1

3 τ−1Φ (5.6)

T-S correlation, θσ:
θσ = −π2τ(Jh

i Si + J s
i Ti) (5.7)

where Ti = ∂iT , Si = ∂iS, T and S being the mean temperature and salinity fields. To
Eqs. (5.1)–(5.7) we must add the equation for K given by Eqs. (3.3) of Canuto (2007)
while Eq. (1.5) must be generalized to include both shear and salinity which means that:

∂ε

∂t
+

∂

∂z
wε = (c1Ps + c3Pb)τ−1 − c2ετ

−1 (5.8)

with (see Eqs. (3.1)–(3.2) of Canuto 2007):

Ps = −Rijui,j , Pb = −gρ−1
0 ρw (5.9)

ρ−1
0 ρw = −αT Jh + αµJµ = −ρ−1

0 Kρ
∂ρ

∂z
= g−1KρN

2 (5.10)

The dissipation time scales that appear in Eqs. (5.4)–(5.7) were written in terms of the
dynamical time scale τ = 2K/ε and the proportionality coefficients were denoted by
πk.Without the help of an outside model, the RSM per se is incapable of determining
such coefficients and that may be one of the reasons why in the past the RSM was not
extended to include the salinity field. Without the knowledge of such constants, the above
equations would be quite useless. In Canuto et al. (2001, 2002) it was shown that the
outside model is provided by the RNG, the renormalization group, and we refer the reader
to the lengthy discussion in the original papers. The numerical values are presented in
Eq. (22d) of Canuto et al. (2002):

π1 = π4 = (27Ko3/5)−1/2(1 + σ−1
t )−1, π3 = π5 = σt, π2 = 1/3 (5.11)

with a suggested valued of 0.72 for the turbulent Prandtl number σt.
Of course, it would be quite a task to hook up the above turbulence equations to a

stellar code. Thus, we present the solutions of Eqs. (5.1)–(5.7) in the stationary case. In
that limit, the equations become algebraic and can be solved analytically with the help
of a symbolic algebra code. The results are quite simple:

wθ = −Kh
∂T

∂z
, wσ = −Ks

∂S

∂z
, uw = −Km

∂u

∂z
, vw = −Km

∂v

∂z
(5.12)

where all the diffusivities have the general form:

Kα =
2K2

ε
Sα, Sα = Sα(Ri, Rρ) (5.13)

where Ri was defined in (3.4) of Canuto (2007) and the density ratio is given by:

Rρ =
αsSz

αT Tz
(5.14)

the equivalent of which in the stellar case was introduced after (4.2) of Canuto (2007).
The dimensionless “structure functions” Sα are algebraic expressions given in Canuto
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et al. (2002, see also Figs. 3-5). Relation (5.13) points to a clear division of labor, the
K–ε equations must be solved to determine these two variables but they require (5.12)–
(5.14). As an example of the role played by the dissipation time scale represented by
the πk, we consider the ratio heat/salinity diffusivities which turns out to have a rather
simple form:

Kh

Ks
=

1 − π1π3xRρ + π1π2x(1 + Rρ)
1 + π1π3x − π1π2x(1 + Rρ)

(5.15)

where x = (τN)2(1−Rρ)−1. This expression exhibits the correct symmetry: when Rρ =
−1, heat and salt diffusivity coincide, as they indeed must. Furthermore, in the τ � N−1

limit, Eq. (5.15) becomes independent of x:

Kh

Ks
=

(π2 − π3)Rρ + π2

π3 − π2(1 + Rρ)
(5.16)

In the strong turbulence limit of τ � N−1, we obtain instead:

Kh = Ks (5.17)

as expected. In oceanography, Eq. (5.13) is written in the form:

Kα = Γα
ε

N2
, Γα =

1
2
(τN)2Sα (5.18)

where the Γα are called mixing efficiencies. Lacking a predictive mixing model, in the
past the practice has been to assume a unique Γα for momentum, heat and salinity taken
to be Γα = 0.2. The mixing model presented in Canuto et al. (2002) shows that the Γα

are not universal constants and that they increase strongly near Rρ = 0.6, a prediction
consistent with the recent observations of much larger mixing at Barbados (Rρ = 0.6)
than at the NATRE location (Ledwell et al. 1998) where Rρ = 0.56.

Figure 5. The function wε (in arbitrary units) from the 3D simulation of Kupka and Muthsam
(2007). As one can observe, the down-gradient closure (6.5) fails to reproduce the data while
(6.6) yields better results.
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6. Dissipation: an open problem
The dissipation ε in Eq. (3.1) of Canuto (2007) is defined as follows:

εij = 2ν∂iuk∂juk =
2
3
δijε, ε = 2ν

∫
k2E(k)dk (6.1)

The first consideration is that the largest contribution to the integral comes from the high
wave number region corresponding to the smallest eddies which are difficult to model since
they contain little energy but a large vorticity and have a short lifetime. As an example,
it is easy to verify the inapplicability of the Kolmogorov spectrum E(k) = Ko ε2/3k−5/3:
if (6.1) were to be integrated over all wave numbers, it would diverge and the kinematic
viscosity ν would not disappear while it is known that ε does not depend on ν. This
is because the non-linear interactions enter the dynamic equations under a divergence
and yield zero when one integrates over the whole volume leading to the overall relation:
energy input=energy output which alternatively means that the non-linear interactions
do not use energy, they simply transfer it from large to small eddies. Thus, what “arrives”
to the small eddies is the same energy that was put into the system which is clearly
independent of how viscous the system is, being an arbitrary external input. So, how
should one read Eq. (6.1)? From left to right: given a fixed amount of energy input,
which is identical to ε, the right hand side tells us at which kd the dissipation occurs:
the smaller the viscosity, the larger kd has to be, that is, the smaller are the eddies that
operate the dissipation process. Thus, one can say that Eq. (6.1) determines the upper
limit of integration. For example, if one uses the Kolmogorov spectrum only up to kd,
integration of (6.1) gives kd = (εν−3)1/4 which is just Eq. (1.2) from Canuto (2007).

Since the first of (6.1) entails only the velocity field, in principle one can derive a
dynamic equation for ε. Davidov (1961) was the first to do so but the result was unman-
ageable. Over the years people tried to suggest an equation for ε and the most popular
one has the following form (no shear):

∂ε

∂t
+

∂

∂z
wε = c1gαJτ−1 − c2ετ

−1 (6.2)

with c1 = 2.88 and c2 = 3.8. A discussion of (6.2), the variants that have been suggested
and the attempts to derive it, can be found in Schiestel (1987), Rubinstein and Zhou
(1996) and Kantha (2004). The two coefficients c1,2 have also been the subject of discus-
sion (Baumert and Peters 2000; Kantha 2004; Umlauf and Burchard 2005). Consider the
K–ε equations in the homogeneous and stationary case. The first gives P=ε while the
second gives c1 = c2, which contradicts the values just cited. Thus, the K–ε equations
are inconsistent, at least in this limit. One can ask: are c1,2 really constant or are they
functions? Since we don’t know the answer, we can only highlight how c2 is arrived at.
Consider freely decaying turbulence in which case the K–ε equations become K̇ = −ε
and ε̇ = −c2ετ

−1 where τ = 2Kε−1. Using power law solutions K ∼ t−n, ε ∼ t−m one
obtains m = n + 1 and c2 = 2(1 + n−1). Since numerical simulations (Chasnov 1995,
1997a,b) yield n = 6/5 − 10/7, one obtains the value of c2 cited above. Once that value
is accepted, the coefficient c1 is determined using data that include a non-zero produc-
tion term. The procedure is hardly without fault since there is no reason why the c2

determined in the freely decaying case should also hold in the case when production is
present. For example, one could generalize the last result to:

c2 = 2(1 + n−1)(1 + aP/ε)−1 (6.3)

that reduces to the previous result when there is no production P = 0 while in the P = ε
case considered before, a proper choice of the parameter “a” could yield c1 = c2 and
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make the inconsistency disappear. Since this procedure is hardly satisfactory, Eq. (6.2)
must be viewed as the weakest point in any turbulence model. Often it is not even used
and instead one employs a heuristic approach on the grounds that to fix the problems
just mentioned one must resort to empirical models anyway and thus (6.2) does not seem
to offer great advantages. A common approach is to use a Kolmogorov’s type expression:

ε = K3/2L−1, L = c l(z),
1

l(z)
=

1
κ z

+
1
l0

+
1
ls

(6.4)

with c = 5.87 and ls = 0.2(KN−2)1/2. The expression for l was suggested by Blackadar
(1962) and Deardorff (1980) and is still widely used (André et al. 1978; Galperin et al.
1988). Here z is the distance from the nearest “wall” and κ is the von Karman constant
whose value is around 0.4. One can observe that for small z’s, l(z) = κz which is the so-
called “law of the wall”, while for larger z’s, one obtains l(z) = l0 which, on the basis of
LES data, is taken to be 0.17H, where H is the extent of the mixing zone. Furthermore,
since in the case of stable stratification, turbulent kinetic energy transforms into eddy
potential energy, Deardorff introduced the length scale ls. Needless to say, the universality
of these relations is doubtful, at best. To this, we may add that the non-local term in
(6.2) is a further source of uncertainty. A down-gradient approximation:

wε = −Km ∂zε (6.5)

has been adopted by several authors (Burchard and Bolding 2001; Burchard and Deleer-
snijder 2001; Umlauf and Burchard 2005) while Canuto (1992, eq. 49) suggested:

wε = 3/2τ−1FKE, FKE = wK (6.6)

Eqs. (6.5, 6.6) have been recently assessed by Kupka and Muthsam (2007) using DNS
data for buoyant convection. In Fig. 5 (kindly provided by F. Kupka) one observes quite
clearly that (6.5) is far from being acceptable whereas (6.6) is much closer to the data.
We can only conclude that for the time being we must live with these uncertainties about
the dissipation ε.

7. Conclusions
While atmospheric and oceanic mixing problems have been treated for years with RSM,

astrophysical problems by and large have not. It is the goal and the hope of this review
to suggest that it may be time to forgo heuristic models since the RSM is capable of
including great many physical processes in a unified and manageable way.
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Discussion

Stein: You talk of eddies, but the numerical simulations show that this is a bad picture.
One should instead use a picture in terms of downdrafts and upflows.

Canuto: You are referring to your numerical solutions of a physical situation that is
quite limited in two ways: it deals with 3% of the Sun’s dimension and is driven by
cooling from above. I very much doubt whether such circumstances can be generalized to
for example shear driven turbulence in the overshooting zone, mixing driven by double-
diffusion processes like semi-concevtion, mixing driven by gravity waves etc.

Cooling from above exists not only in the case of your study, but both in the ocean
and in the atmosphere. To show you how rare those events are and so the process that
drives them, let me say that in the ocean such processes occur essentially in three places:
Labrador, Gulf of Lyon and the Weddeell Sea where indeed loss of surface buoyancy drives
mixing. However, the rest of the ocean and the majority of it is not driven by cooling
from above, but from either shear at the surface or mixing from the bottom processes
that are extremely more common. In the atmosphere, cooling from above also occurs in
the case of cloud-capped PBL (planetary boundary layer), but in the vast majority of
cases that is not the main physical process responsible for mixing.

Having said that, let me also recall that the Reynolds Stress Models (RSMs) has a
long and successful pedigree that began some 50 years ago, but only recently has found
its way into astrophysics. The other communities have used it for more than a quarter
of a century. It solves the basic Navier-Stokes equations and scalar equations exactly as
you do numerically. It is the only approach that I know of that gives results that can be
used in a stellar (or oceanic, atmospheric) code, that is resilient enough to accomodate
a variety of driving mechanisms exactly as it is needed in dealing with stellar interiors.
Since LES cannot be hooked up to a stellar code, RSMs are the only alternative there is
and finally let us not forget that we routinely used LES/DNS/lab data to double check
the RSM results before we offer them to stellar structure-evolution people for their use
in their codes.

One last remark. I have recently recast the non-local RSM equations into a form that
in the special cooling-from-above situation, exhibits the plume behavior that you and
others have observed, that being an example of the resiliency of the RSM method.

[editorial remark]: Only the above question was also recorded on paper for the in-
troductory review of the conference, the contents of which is presented in this volume in
two separate contributions by V.M. Canuto. This discussion was continued as the first
main topic in the round table discussion for session A, also published in this volume.
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