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1. Intreduction

If € is a class of groups, we denote by R% the class of groups which are
residually in €'; i.e. G e R¥ ifand only if 1 # g € G implies that there exists a normal
subgroup N of G such that g¢ N and G/Ne €. A group G is residually a finite
p-group if it belongs to R% ,, where &, denotes the class of finite p-groups.
One also says that the groups in R# , are residually of order equal to a power
of the prime p. Given a group G with one defining relator r, one might ask for
conditions on the “‘form’’ of the relator that would guarantee that G have certain
residual properties. In this context, Baumslag (1971) has proved that if all the ex-
ponents of the generators appearing in r are positive, then G is residually solvable.
In the same paper he also concerned himself with the residual nilpotence of one-
relator groups, and found that the situation there was much more complicated.
If one goes one step further and asks for conditions that will ensure that for a
given prime p the one-relator group be residually a finite p-group, then very little
seems to be known. Of course, if one takes r to be one of the generators:

G = (a,b,-;a)

then G is freely generated by the remaining generators, and hence is in R# , for
all primes p (Malrec (1949), Lazard (1965), 3.1.4). Our main purpose in this paper
is to develop methods of generating examples of one-relator groups that are re-
sidually of order equal to a given prime p.

To every group G one can in a canonical way associate a pro-p-group
G = lim G/N, called its pro-p-completion, and the canonical map G — G is
injecti;e iffl G is in R# ,. (Here N runs through the normal subgroups in G of
index a power of p.) If G has the presentation

G = (X1,X3, ", X3 F)
then G has the “‘same’” presentation as a pro-p-group; i.e.
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386 D. Gildenhuys 2]
é = F(xlr X2, xn)/(r),

where F(x,,x,,-,X,) is the free pro-p-group on the symbols x,x,,--,x, and
(r) denotes the closed normal subgroup of F(xj,x,,::,x,) generated by r
(Recall that F(x,,x,, -, X,) contains the free group F(x, X;,*+,X,) O0 X, **, X,
as a dense subgroup, and ‘is its pro-p-completion (Lazard (1965), 3.1.4)). The
pro-p-completion of a one-relator group is therefore a one-relator pro-p-group,
and such groups have been studied in Labute (1967),(1967a), Gildenhuys-Lim
(1972), Gildenhuys-Ribes (1974), and Gildenhuys (1968), (to appear). Labute’s
theorem 4’ (1967) enables one to describe a large class of one relator groups B with
the property that the completed group algebra Z [[G]] is a valued ring, and hence
has no zero divisors. If, in addition, G is in R# ,, then its integral group ring Z{G]
is embedded in Z,[[G]] and therefore has no zero divisors. We give here some
examples (Proposition 2.2 and Theorem 5.1) based upon this observation, and in
support of the well-known conjecture that the integral group ring of a torsion-free
one-relator group is without zero divisors. The examples consist of the (discrete)
one-relator groups defined by Demuskin relators and groups defined by certain
types of commutators. The (¢, p)-filtrations of Lazard (1965) constitute the main
tool of our investigations. These filtrations share many of the properties of the
derived series and the central descending series of a group, and many of Baumslag’s
results in (1972) carry over when the derived series is replaced by a (1, p)-filtration.
Given a finitely generated group G and fixed prime p, the (1, p)-filtrations all
define the same topological group structure on G, and the topology is seperated
il G is in R# , (see Proposition 1.1 below).

The author thanks the referee for pointing out to him that his Theorem 1.4
may have been derived by the methods contained in Baumslag’s paper: ‘On the
residual finiteness of generalized free products of nilpotent groups, Trans.
AMS 106 pp 193-209 (1963). Also, the absence of zero-divisors in certain group
rings might have been deduced from the groups being locally indicable.

To describe the nature of our remaining results, we recall the basic break-
down of one-relator groups (Magnus, karass and Solitar (1966), section 4.4).
Suppose G = (a, b, -+, c; r), ris cyclically reduced and a occurs in r with exponent
sum zero. Putting

b;=a"'ba' ,--,c; = a ’ca’ (i,~+,j = 0, % 1,---), we can rewrite

r as a shorter word ro in the letters by, =+, Doy **> Cmeys ***» Craqey The sub-
group N, of G generated by these letters has the presentation

No = (Bugsy s Datiry™* s Cmieys ***» Eatier o)

and we call this simpler one-relator group the reduced one-relator group of G.
Given that N, is in R# ,, what conditions do we have to impose upon the form
of r to ensure that G is also in R#,? Theorem 4.1 gives a partial answer to this
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problem. Let N be the normal subgroup of G generated by b, -, ¢, and let M be
the closed normal subgroup of G generated by the images of these letters. One
has a commutative diagram with exact rows:

1> N - G > Fla-1

la By
1-M - G > Fla)-1

The structure of the pro-p-group M can be described as an inverse limit of
push-outs (colimits) of circular diagrams in the category of pro-p-groups
(Gildenhuys (to appear)). The group N is a direct limit of generalized free products
of isomorphic copies of Ngy. The map «, and hence 8, will be injective if a certain
type of embedding problem for circular amajgams can be solved (Lemma 3.2).
This is the basic idea behind the proof of Theorem 3.1.

2. (t, p)-Filtrations and Amalgamations of Groups

We first introduce some terminology. Let H be a subgroup of a finitely
generated group G and let @w: G —» RU {0} be the (1, p)filtration on G,
where ¢ is some positive real number (Lazard (1965), 3.2.1). If the restriction
co]H: H—->RU{xo} of wto H is the (¢, p)-filtration on H, we will call H a
(1, p)-isometric subgroup of G. We write

G, ={geG: wg) 2 v},
and we say that a subgroup H of G is (¢, p)-separable in G if N, H - G, = H.

ProPOSITION 1.1. (a) A finitely generated group G is in R¥ , if and only if
the identity subgroup of G is (1, p)-separable in G for some t > 0, if and only if
the identity subgroup of G is (t, p)-separable in G for all t > 0.

(b) IfGisin R¥ ,and H is a subgroup of G, then H is (1, p)-separable in
G for all t > 0 if and only if H is (t, p)-separable in G for some t > 0, if and
only if G N H = H, where H denotes the closure of H in G.

PROOF. (a) Suppose Ge RF , and t > 0. Let w (respectively &) denote the
(t, p)-filtration on G (respectively G) (Lazard (1965), 3.2.1, 3.2.8.1). The identity
subgroup is (t, p)-separable in G if and only if w(g) = o = g = 1. The restriction
0] | G of @ to G is a p-filtration with the property that (® | G)(g) = tforall gegG.
Hence &(g) = w(g) for all g € G. Since @ defines the topology of the separated.
topological group G, it follows that for all g€ G,

w(g) =00 =>d0g) =0=>g=1

and the identity subgroup is (¢, p)-separable in G. Conversely, if N, ,G, = (1)
then the canonical map
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G - lim G/G,

is injective, and it only remains to verify that each quotient G/G, is a finite p-group
Referring to Lazard (1965), 3.3.2, we let

O< i <i < <@

be the set of values of the (t, p)-filtration, and we recall that the mixed Lie algebra
grG= ) GGy
i1

is generated by the images of a finite set of generators for G. It follows that each
homogeneous component G, /G, is finite. The first homogeneous component
is G/G,,, and if we make the induction assumption that G/G,, is finite, then the
exact sequence

1 —‘)G).,-/G) _}G/G)\-i\‘l_)G/G}'i.—) l

i+ 1

shows that G/G,, , , is finite. This proves (a) of the Proposition.

By Lazard (1965), 3.2.8.2 the mixed Lie algebra gr G of G is generated by the
images of a (finite) set of (topological) generators of G, so that, by the same
argument as before, the closed subgroups

G, ={yeG:a(y) = v}

are of finite index in G, and hence constitute a fundamental system of open
neighborhoods of the identity. Since a finite set of generators for G is a set of
(topological) generators for G, the mixed Lie algebras gr G and gr G are isomorphic
and G, = G, N G. (Lazard (1965), 1.1.8, 3.2.8). The equalitics

NH- G, = NH(GNONGO=(NH - GHNG=HANG

v>0 v>0 v>0
now show that H is (1, p)-separable if and only it H = A N G.

We will always use the term p-filtration in the sense of Lazard [14]. This
term should not be confused with the term & -filier, which we will use in the
sense of Gruenberg (1957), section 1; i.e. we will say that {4, }, . , is an F filter of
a group A if:

(1) each A, is a normal subgroup of 4;

(2) each quotient 4/4, is in &, ;

(3) each intersection A, N A, contains a member of the & -filter.

ProrosITION 1.2, Let H (respectively K) be a subgroup of a group 4
(respectively B) and let ¢: H » K be an isomorphism. Suppose that {A,}; c o
and {B,}, < o are equally indexed F ,-filters of A and B respectively such that

() H= M H 4,K=n;_,K: B
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(i) ¢(H M A4,) = K N B,, so that ¢ induces isomorphisms;
¢,: HA,/A, - KB, /B,, (AeA);
(iii) The generalized free product

P, = {(4/4,) * (B/B): H o 4,/4, £ K - B,/B,}

is residually a finite p-group, for each AeA.
Then

P={AxB:H=ZK)

is residually a finite p-group.

PrOOF. Let 6,: P — P, be the map induced by the projections: 4 — A/A4,,
B — B/B,, (A€ A). Let S (respectively T) be a set of right coset representatives for
A mod H (respectively B mod K) containing the identity. Suppose that 1 # ye P.
If y e H, then y has a non-trivial image in some A/A4,, and 6,(y) # 1. Since P, is
in R¥ ,, there then exists a homomorphism from P into some finite p-group such
that the image of y is not the identity. So we may suppose that y¢ H. Then y
can be uniquely presented in the canonical form

y =hcycyoc, (heH, 1 #ceSUT, rz1l)

where ¢; and ¢;;, are not both in 4 and not both in B. (See Magnus, Karass
and Solitar (1966), Theorem 4.4). From (i) and (3) we deduce the existence of an
. element 4, of A such that forall i, j = 1,2,---,r

(@) c;ed=c¢H A, ;c;eB=c;¢K By, ;

(b) cocied, e # ¢;= ¢ ;¢ H A4, ;
¢y ¢;EB, ¢; # ¢; = ;' ¢;¢ K - By,.

One can then find a set S (respectively T) of right coset representatives for
H - A4, [A,, (respectively K - B, /B, ) in A/A,, (respectively B/B, ) such that
0, (c)eSU Tforalli =1, r. It follows that

000() = 0,,(h) - 0,,(c1) Bi(c2) -+ Oy, (c,)
is a canonical presentation and 6, (y) # 1. Since P, € R# ,, the result follows.

PROPOSITION 1.3. Let H (respectively K) be a subgroup of a group A
(respectively B) in R# ,. Suppose that {4,},.y and {B,}, .n are F filters of A
and B respectively, satisfying (i) and (ii) of Praposition 1.2, as well as the
following:

(iii) A,/A,+, and B,/B,,, ure finite abelian groups of exponent p;
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(iv) H N A,/H N A, (respectively K N B,/K N B, ) lies in the center
of AJA, . (respectively B/B, ) for all ne N.

Then
{A*xB;H = K}eRZ,.

ProOOF. We need only verify condition (iii) of Proposition 1.2, and by
Higman’s theorem (1964), we need only prove that each amalgam (A4/4,)\V (B/B,)
with intersection H/H N 4, = K/K N B, is embeddable in a finite p-group.
We do this by induction on ne N. It is clear that the amalgam (4/A4,) U (B/B,)
of F,-vector spaces with intersection H/H N A; = K/K N B, can be embedded
in an F-vector space M,. More generally, the amalgam (4,/4,,) Y (B,/B,+,)
of F,-vector spaces with intersection H N A,/H N A,,; = K N B,/[K N B,
can be embedded in an F,-vector space M,, for each ne N. We now assume that
the amalgam (A4/4,) U (B/B,) with intersection H/H N A, = K/K N B, is embed-
ded in a finite p-group Y,. Let

0, HHH N A,,, - H/H N 4,5,
and consider the exact sequence
1>HNA/HNA,, >HHNMNA,,, Y,

Using Higman’s terminology and his Corollary to Lemma 1 (loc. cit.), we choose
a standard embedding

Anpyt HIH OV Ay &> (H N AH N A4,) Y,

and extend the composite:
Agr1
HIH O Ay 5 (H N AJH O Ayi) 2 Y, (A, A, )2 Y,

. 2 :
(respectively K/K N B,,, —2 (K " B,/JK N B,,,) ! Y,<>(B,/B,;) ! Y,) toa
standard embedding
Porr: AJAyes > (AufAn1) 2 Y,
(respectively Vat1: B/Bn+1 <_)(Bn/Bn+l) ¢ Yn)

Note that we have identified H/H N A4,, , with K/K N B,,; and HNA,/HNA,
with K N B,/K N B,,;. The two embeddings p,,, and v,4; now give rise to
emleddings of 4/4,,, and B/B,,, in Y,,, = M, Y,, which completes the
proof.

The group P of the following theorem is our first example of a one-relator
group belonging to R# .
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THEOREM 1.4. Let F and F’ be free groups and suppose that aeF (res-
pectively be F’) is not of the form z" for + 1 # ne Z\pZ, z c F (respectively
zeF’). Then the generalized free product

P={(F+F:a=b}

is residually a finite p-group.

ProoF. The words a and b involve only finitely many generators. Let G be
the subgroup of P generated by the remaining generators, if any; then G is a free
group and is a free factor of P. Since free groups are in R# ,, and the free product
of two groups in R# , is again in R# , (Gruenberg (1957), Theorem 6.2), we may
assume without loss in generality that F and F” are finitely generated.

Let t,t' e R,t,t" > 1, and let o, (respectively w,) be the (¢, p)-filtration on F
(respectively F’). It follows from Lazard (1965), 3.2.6.1 that the values w!(a) and
w,(b) depend continuously on t. So, we can choose ¢ and ¢ in such a way 'that
w,(a) = w,.(b). Let grF (respectively gr F’) be the Lie algebra with coefficients
in the polynomial ring F,[n], corresponding to w, (respectively w,.) (see
Lazard (1965), Chapter 11, 1.2). Since these Lie algebras are free (Lazard (1965),
3.2.2, 3.2.5), gra (respectively grb) generates a free Lie subalgebra gr H (respec-
pectively gr K) in gr F (respectively gr F’), where H (respectively K) denotes the
cyclic subgroup of F (respectively F’) generated by a (respectively b). So, the
isomorphism @: H — K that maps a onto b induces an isomorphism grH — gr K
of graded Lie algebras. It follows that if we let

t< A <3, <o <
denote the union of the ranges of o, and w/, (see Lazard (1965), 3.2.6.2), and write
A, = {aeA: o) = 4},
B, = {beB: w(b) Z L},

then (ii) of Proposition 1.2 is satisfied. The families {4,},.nx and {B,},.n are
F ,filters. Indeed, the (1, p) -filtration on the finite p-group A/A, N A,, defines
its discrete topology (Lazard (1965), 3.1.5, 3.2.8.1), and this filtration is the quotient
filtration of the (¢, p)-filtration on A (see Lazard (1965), 3.2.3); hence there exists
an A, contained in 4, N A4,,. In order to show that condition (i) is satisfied we,
need only prove that A N F = H and K N F’' = K (see Proposition 1.1(b)).
But, A is a free pro-p-group on one generator; it is isomorphic to the additive
group of the ring of p-adic integers, and the abelian subgroup H N F of F must be
of the form {z*: a € Z} for some z e F. Since H is contained in & N F, we must
haye a = z' for some y € Z2%and, by hypothesis, y = +1 or p* for some keN.
However, gr A = gr H is freely generated as an F,[n]-module by gr z and is also
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freely generated by gra, so that if a = =P keN, we would have gra = n'grz,
which is impossible. Thus a =z and A N F = H. Similarly K N F' = K.
The result now follows from Proposition 1.3.

3. Fxamples based upon Theorem 1.4.

ProposiTioN 2.1. [fa group G has the presentation

. no M1 n,
(X05 X1y 7775 X X0'X1" 200 Xp")

where each n; is of the form p* k; =20, i=0,1,---,m, then G is residually
a finite p-group.

Proor. The result follows from Theorem 1.4 by a simple induction argument.

Our second example in this section consists of the Demuskin relators (see
Labute(1967a),(1),(2),(3),(4) on pages 106, 107). These relators appear as defining
relators for Galois groups (pro-p-groups) of p-algebraic closures of finite extensions
of the field Q, of the p-adic numbers (See Serre (1962/63), (1964)). We will show
that if we view these relators as defining relators for (discrete) groups, then the
groups are in R# ,, and the Demuskin groups are therefoe Hausdorff completions
(See Bourbaki (1951), §3, no. 4, Theorem 1) of these groups. The Demuskin
relators are either of the for

(1) P = X900, X0) (X3, %) (X, X,)
where 2 # ¢q = p* for some prime, and n is even, or it has one of the following
forms:

(2) XX (X)X, 15 X))

(where 2 £ f £ oo, with 27 = 0),

3) XEH X)) (K0 Xa) o (Kzu 1 X2) R SSS )

4) x2(x g, x )X 2 (X3, %4)  (Xam— 15 X20) 2 ZfZ o)

(See Labute (1967a)).

PROPOSITION 2.2. The group G = (xy,Xx,,+++,X,; ¥) is in RF  if r is of the
Jorm (1), (2), (3), or (4) and p = 2. Moreover, the integral group ring Z[G]
has no zero divisors.

PrROOF. By Labute’s Theorem 4’ (1967), there exists a g-filtration of the
completed group algebra zZ L[[G]] with the property that the corresponding

graded algebra ngp[[G]] has no zero divisors. Thus Zp[[G]] is a valued ring
(Lazard (1965),2.2.1, 2.3.6) and has no zero divisors. We need only prove G e R¥,
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since then Z[G] < Z;[[G]]. By virtue of Theorem 1.4, we need only consider
relators r of the form r=x{"(x,,x,) where ke N, or of the form r=x2**'(x,,x,),
2 £ fe N. In the first case, one has a commutative diagram

l— > Ne—> G—Ls F(x))—> 1

ol )
s M——s G5 F(x) —> 1

where N is the group with generators z; = x5 ‘x,x5 (i€ Z) and relators z,7" z,, ,
(ieZ) with y = 1 — p¥ (See Magnus, larass and Solitar (1966), Section 4.4). One
obtains an isomorphism of N onto the additive group of the subring Z[y ~'] of Q,
by mapping z. onto y'. The group F(x,) is the free group on one generator and
the maps u and v are canonical maps of groups into their pro-p-completions.
The pro-p-group M is isomorphic to the additive group of the ring 2p, and if we
identify M and F(x,) with Z »» then we can describe G as the semi-direct product
of Z » with itself according to the action

0: Z, - Aut(Z,), 0(x)(B) = y*o B,
(See Gildenhuys (1972), Theorem 3.2). Note that
¥l =14+ pr e p 4
lies in the multiplicative pro-p-group of invertible elements of Z , and if we identify
N with Z[yZ}], then 4 is just the inclusion: Z[yZ{] = Z » (See Serre (1970), Chap-

ter 11, §3, Proposition 8, p. 32). It follow that u is injective and Ge RZ .
If

2+27 1427
r=Xx; (X, x,) =29 %0 2y, 2 feN

we put y = — (1 + 27), and reason in the same way as before.
The above proof also shows that the cyclic subgroup H of

G =(x,y;x"(x,»), (keN),
generated by x, is not (¢, p)-separable. Indeed, H N G contains an isomorphic
copy of Z[y '], so that H N G # H = Z (See Proposition 1.1 (b))).
4. Circular amalgams

In this section we keep the notation of the introduction (Baumslag’s nota-
tion (1971)) for the basic breakdown of a one-relator group G =(a, b, ---,¢; r).
Our purpose is to find conditions under which N, € R# , implies Ge R# ,. We
are assuming that r is cyclically reduced, and a occurs with exponent sum zero
in r. We recall the following notation of Baumslag (1971), Section 2: N is the
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normal subgroup of G generated by b, --+, ¢; for each integer k, N, is the subgroup
of N generated by
bm(b)+k’ s Dby +1s """ Cmey +hs s CM(e) +k 5
H, is the subgroup of N generated by
By +ic+ 15" Pagwy +ho "% Comier 41+ 1575 Caaey 1 5

and for i < j, we let N, ; denote the subgroup of N generated by N;,---,N;.
Let t be some fixed positive real number. For every finitely generated group A,
the range of the (¢, p)-filtration w on A is a discrete subset

i t=Adg< i< <<
of R U {0 }, and we write
0,A={acA:w) = i}, (neN).

The corresponding mixed Lie algebra is denoted by grA, and its m-th homo-
geneous component is denoted here by

grmA = 5mA/5m+1A = AA,,,/AA,,,+1 (’n .Z. 0)

THEOREM 3.1. Suppose that

(1) Hy and H; are (1, p)-isometric subgroups of Ny ;

(ii) Hy and H; are (t, p)-separable in N ;;

(iii) (grHy) N (grH,) = (0) in gr N, ;, for all j = some n,
(iv) NoeR#F,

Then the original one-relator group G is in RF,.

Proor. Let j be some fixed power of p for which (iii) is valid, as well as:
j > sup{M(b) — m(b),---,M(c) — m(c)}.
Define
B, = Nijij+j-1, U€Z)
and let k be a natural number for which p* > 2j. Write
Z/p*Z = {0,1,---,p* — 1}
and let n: Z — Z/p*Z denote the canonical projection. Using functional notation :
r, = ri(bm(b)+i’ ) bM(b)+i, s Comiey+is "% CMey+i)
we now define for each ie Z/p*Z:
ri = ri(bn(m(b)+i)1 ) bn(M(b)-H)’ s Capme) +i)s **"s Cn(Mic) + i)

and we note that in the presentation for B;:
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Bi = (byigy+ijs*"s Dy +ij+5-15 " Cmey+ii> > CM(e) +1j+ =1 5
Fijs* s Fijj—1)
we may replace the relators r;;, -+, 74 ;1 bY 7, -, 7i;4 j—1, and view the indices
of the generators as elements of the cyclic group Z/p*Z. For all i € Z/p*Z one has
BN B,y = Hijijy.
In view of condition (i), we may also write
(Bi/6,,B;) N (Bis1/0mBiv1) = Hyjyj-1/0,H j4 -
for all m € N. We will say that a finite p-group Y,, contains an image of the circular
amalgam {B;[0,,B;}; c 7z if there are homomorphisms
o;: Bi/‘SmBi - Ym’
(not necessarily injective), such that for all ieZ/p*Z the restriction of «; to
Hj ;i 1/0,H;;,;, agrees with the restriction of o1y to Hyjyjo(/0,Hjt -y,
A sequence
Bs/(smBs’ Bs+ 1/5mBs+ 1" B<+t/5mBs+t

contained in the above circular amalgam is said to be properly mapped into Y, if
there are maps «; satisfying the above condition for i,i + 1e{s,s +1,-,5 + t}.
If these maps are all injective, we say that the sequence is properly embedded
inY,.

LEMMA 3.2. Assume the hypotheses of Theorem 3.1; let

n = sup {M(b) — m(b),---, M(c) — m(c)}
and suppose that: v,k,meN, j=p° w=k—v>0,j>n, p>n+j+1,
jZng t=m—1, p*>3t+n+1. One can then find a finite p-group Y,
containing an image of the circular amalgam {B;/6,B;}icz/wz, such taht the
sequence
Bt/élnBl’ Bl+ 1/6n731+1’ ) BpW—ZI— 1/(5me“'—2(— 1

is (properly) embedded in Y,,.

Proor. The proof goes by induction on m. For each meN and ie Z/p"Z
we choose in the F,-vector space gr,B; a complementary subspace C,, ; for the
subspace gr,H;; | + gr,H;;+;_;. We recall that by the Freiheitsatz, H;;_; and
H;;, ;. are free groups, so that for each ie Z/p”Z there is a natural embedding
O ;of gr H;;_; +gr, H;;,;_, into the m-th homogeneous component

grmF(bo’ ceny bp"—l’ e, Cos ""cp"—l)’

of the mixed Lie algebra of the free group on the indicated letters, with «,, ; res-
pecting the indices (mod p*Z) of the generators, so that a,, ; and a,, ,+; agree on
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grH i ;—1. (We use here the hypothesis (iii))). Hence there is a natural embedding
of gr,.B; into

Um = ( @ Cm.i) @ grmF(b()v "':bpk—l’ ""CO,"',cp"—l)

ieZ/pvZ
for each ie Z/p"™Z. So for m = 1, we have embedded the circular amalgam
{Bi/01Bi}i e z/pwz into ¥y = Uy.
Suppose now that p* = 3m + n + 1. Our induction hypothesis is that the
circular amalgam {B;/3,,B;};z/~z is mapped into a finite p-group Y, by the
maps A;: B;/d,B; = Y, say, and 4, is injective for

ie{t,t+1,---,p” =2t =1}, (t=m-—1).
Let U, be the direct sum of the vector space

Cm = @ (‘m N

1eZ/pwvZ

and the m-th homogeneous component of the mixed Lie algebra of the free
group on the letters

bM(b)+mi—_i7 ) [7m(h)+pk—2,n_;+ 212"

CM(C)-Huj—j’ tty Cm(c)+ pF—=2mi+2i-1"
Let #,,: U, — U, be the identity map on C,, and let it coincide on

grmF(bO, e, b,,k_.], ety Coy '“5(.]7"’—1)

with the restriction of the projection ¢ of the free mixed Lie algebra (I.azard
(1965), 3.2.5)

ng(bm ey bpk»l* Cy st Cpi 1)
onto the free mixed Lie algebra
2r F(hygpyamjm oo bm(h) T TE T TR
Erriertmi—jo s Cmicy+ pk—2mj+ 2~ 1)
such that ¢ maps each of the generators
gr bM(b)+mj—i- e Br bm(h)+p"—2mj+2jf17 R
ErCrrey+mj—jo " B Cey + ph—2mj+2j—1

onto itself, and each of the remaining generators onto 0,
In what follows, we will use the terminology and the Corollary to Lemma 1

of Higman (1964). For every

ie{t,t+ 1, p"=2m+1}
the map
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A
0;: Bi/0p+ 1B, = Bi[0,B; —>Y,
gives rise to a commutative diagram with exact rows:
1 - grH—, — Hi; [0y 1Hijoy — )”/m

1 - gr, B,— B0y By ——— > ¥,

! ) |

1 - grH;, ;- Hij+j—1/5m+1H;j+j—1 - Y,
Let
H:j+j—1/5m+1Hrj+j—1C"(grmHuu—x) Y,

be a standard embedding of H,j;— /0,4 H,jsj—1 In the weath product of
gr,H,,;-, and Y,. Since gr,H,;,;_, is in the center of B,/5, B, and in the
center of B,,/d,,+1B,+1, we can find standard embeddings

Sl: B1/5m+ lBt C> (grmBr) 2 Ym
&41: By 1/0ms1Bisy Q’(gmexH) Ly,

such that the following diagram commutes:

< €
/Bt/om+lBt ' (grth) ZYM\
! .

Hiyiq/0meiH T € (grpmHyjyj—1) 0Y,, = Uy, 2

T ! m/

t+1/0ms 1B i1 Q'—“) (& mBisy) 0 Y,

Moreover, the image of &, ,(gr,,Hy41)j+;-1) in U, 1Y, is contained in the
center of U,, 1Y, since ¢, , maps the subgroup gr,.B,; of B,;/0,+1B;+ into
the diagonal of (gr,B,,,)"™. (By the ‘‘diagonal”’ we mean the subgroup of
constant maps). Consider now the commutative diagram with exact rows:

| I i

1 — gr H(t+])}+j i H(:+1);+1 l/bnz+1H(t+A)J+J T &

f o

1 - gr,B,; ——— B, »/0,:1B,1>
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where 7 is obtained by restricting &, ; t0 Hey 1yj4+j—1/0m+ (He+1yj+5-1 - Let
0: Hyyryjaj-1/0metHar1yj4j-1 = @ mHr 1yj4j-1) U

be a standard embedding. By Higman’s Corollary to Lemma 1 (loc. cit.), the
composition of § and the map:

(gr pH s 1)+ j- )Y Uy Y,
can be extended to a standard embedding:
Uy 1Y, > (UX" )y,
and the composition of ¢ and the map:
@ mH+1)j+j-1) 0 Yy = (80 Bri2) 1Y,

can be extended to a standard embedding:

&,
B,y 2[0ms1Brsr 225 (81,Bi2) Y, = U, 1Y, <> (U™ 1Y,,.

The image of gr B, . ,, and hence of gr ,H , ; 5y;+ ;1 is in the center of (U Y,
In the above commutative diagram one can replace the top row by

1L (U™ (U Y, > Y,

and t by t+ 1. We can then again apply Higman’s Corollary of Lemma 1, to
obtain a commutative diagram:

Bx/5m+lBt

\
/

Hijyjo1/OmerHyje 7 Uy,

I

Bt+1/6m+1Br+1 (U:lm) zYm

/
\

H(t+1)j+j—1/5m+ IH(t+1)j+j—1
(Upmy™ 2y,

/\\

By1,/0

3
+
oy

2
t+2 _ Ym
=U,"tY,

\

Hisyj+j-1/0m+ 1H 254 -1

/

Bt+3/(5m+lBr+3
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We proceed in this manner upto the index p* —2m + 1 of B to obtain maps
®,: B0+ B; = UZ Y,
where Z = Yz"-3=+! | that define a proper embedding of the sequence
Bt/5m+ lBt’ Bt+ 1/6m+ 1B1+1’ Tty Bpw—2m+ 1/5m+prW—2m+1
into UZ 1Y, . For
ie{tr+1,--,p¥~2m+1}
define
A:':Bi/am‘ilBl&i) U: ¢ Ym - (-j: l Ym‘
Note that A/ maps gr B, into the diagonal of the subgroup UZ*'™ = (T%)™ of
U%:Y,. For
ie{—2m+2, —2m+3,--.,m =2}
define
/ Ay _z
'li: Bi/5m+lBi - Bi/émBi - Ym - Um z Ym’
where the last map sends y € Y,, to the pair (y,0).

CLAM. The circular amalgam {B;/d,,B}; .7,z is mapped into Y, .,
= UZ% 1 Y, by the maps A}, and the sequence

B,[0+1Bms Bu+1/0m+1Bms -+, BPW—Zm- 1/0m+ 1Bpw—2m—1
is (properly) embedded in Y, .
Proor. Clearly the sequence
Bx/5m+ 1B, B:+1/5m+ 1B+ 15 "':Bpw—zm+ 1/5m+ prW—2m+l
is properly mapped into Y, ., ; and the sequence
B—2m+2/5m+ lB-2m+2 ’ B—2m+3/5m+ lB—2m+3 FIR ] Bm—2/5m+ le—Z

is properly mapped into Y,,, hence into Y, ., by the induction hypothesis. We
must show that the two sequences are properly linked together at the edges.
So suppose that

ZeHpk—zmj+2j—1/5m+1Hpk—2mj+2j-1-
Then
A;W—2m+2(z) = (pr—2m+2(f);0)e Yos1

where Z is the image of z in B,w._sp42/0,Byw—2m+2. On the other hand,
Rpw—2m+1(2) is Of the form (Aw_sms1(2), 7% © ¥), where n % U7~ U,%is induced

https://doi.org/10.1017/51446788700034431 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034431

400 D. Gildenhuys [16]

by n: U, — U,; ¥ is a mapping: Y, —> UZ, and £ is the image of z in
Bow_2m+1/0mBpw~2m+1- By the induction hypothesis,

Apw—2m+1(Z) = Apw_ym2(2).
The map A w_ 2+ factors through a map
BpW—2m+1/5m+ prW—2m+1C'> (grmeW—2m+ 1) t Ym — Um ¢ Ym

that sends gr,,Hpk—omj+2;-1 into the diagonal of UY". Hence the mapping ¥

factors as follows:
A

k z
Ym - grme —2mj+2j—1 g Um nd Um,

where the last map is the diagonal map. The images in U, of the elements of
8t Hpx_ymj+2;-1 are homogeneous mixed Lie polynomials in the symbols

grbm(b)+p"—2mj+2j v’""grbM(b)+pk—2mj+2j—la
s B C(ey+ ph—2mj+ 255 s BI CM(c) + pr—2mj+2j-1+
But, 7 maps these polynomials to 0, and we conclude that %o ¥ = 0. Thus
)“;)W—Zm+l(z) = )';;W—Zm+2(z)'
Finally, if ze H,,;_j_1/0p+1Hj—j—1, then
K 1(2) = G 1(2),0),

where Z is the image of z in B,/),,B,. On the other hand, 4,,_,(z) is of the form
(A 2(8),n%0 ) where ¥: Y,, > UZ factors as follows:

Ym - grmHmj—j—l - Umé’ Uﬁ

The images in U,, of the elements of gr, H,;_;_, are homogeneous mixed Lie
polynomials in the symbols

gr bm(b)+mj—ja e, 8r bM(b)+mj—j—1 >
"',gl'Cm(chj-j, AR grcM(c)-f—mj—j—l .

Since © maps these elements to 0, it follows that n€0 = 0. By the induction
hypothesis, 4, _,(Z) = 4,,-,(£); hence

Am-1(2) = Ay 5(2).
To prove the second statement of the Claim, we recall that for

ie{t+1,t+2,--,p"-2m—13},
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A; is the composite map:

A Bi/5m+13i& UZY, —» U2 Y, = Yuuys
and g, is injective. If g € B;/5,, {B; and 2;(g) = 1, then 1, maps the image of g in
B,/6,,B; to the identity. Hence g belongs to the kernel gr,B; of A;. The restriction
of ¢, to gr . B; factors as follows:

80 uB; — Uy > U2 = (UD™ — (U%) 2 Yo

The images of the elements of gr,B; in U, are uniquely expressible in the form
¢ + d, where c € C; and d is a homogeneous, mixed Lie polynomial in the symbols

8 buyris > B Duoy +ije j-15
sy BU Cmey +ijs s B CM(e) +uj+ j-1
Since for ie {t + 1, + 2, .-+, p* — 2m — 1} the indices
mb) + ij,- -, M) +ij+j—1
belong to {M(b) + mj — j, -+, m(b) + p* — 2mj + 2j — 1},

etc., we have n(d) = d; i.e. the restriction of n to the image of gr,B; in U, is
injective. It follows that A is injective for all

ie{mm+1,---,p* —2m ~ 1},

This proves the Claim and the Lemma.

We can now complete the proof of the Theorem. As explained in the intro-
duction, we need only show that the map o of the following commutative diagram
with exact rows is injective:

1> N->G - Fa -1

b b

1M -G - Fa) -1

The bottom row is an image of the exact sequence
1-FZ, ) - UZ,) - Fa,b,-c) > Fa) > 1
of free pro-p-groups, where
FZ,U-UZ)=1m K@[PZ)U - U (Z]p'2))
&

is the free pro-p-group generated by the coproduct (disjoint union), in the category
of topological spaces, of as many copies of the underlying topological space of
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Z » as there are generators b, ---, c. (See Gildenhuys, Lim (1972), Corollary 2.2 and
Proposition 1.7). It follows that M is the inverse limit of the pro-p-groups

Dk = F(bo’bla "',bpk—b""cO’ cl,cpk—l)/(r(;: ri)""r;)"—l)’
" > 2j > 2n).

Each D, is the colimit in the category of pro-p-groups of the circular diagram
consisting of the pro-p-completions

E F(bm(b)+ij,"' bM(b)+ij+j—1,
s Cmey+ifs s Oy ij+i=(Tigs = i jm1)
and the inclusions
Hijyjy — B, Hijijo1 = Bive, (ieZ/p"Z),

where j = p”, k,w and n are as in Lemma 4.2. (We use the hypothesis (i) of the
theorem.) Let

%8BS Biimey (ieZ/p"Z),
be the isomorphism that sends the sequence of (topological) generators
(bm(b)+ij, bM(b)+ij+j—1 3" " cm(c)+ij y Ty cM(c)+ij+j—1)
for B, onto the sequence
(bm(b)+ij+mj—j 5* %y bM(b)+ij+mj— 19" cm(c)+ij+mj—j,
s CM(e)+ij+mi—1)
of generators for B,,,_;. The group ¥, of the Lemma also depends on k&, and
we write Y,, , = Y,,. Consider the maps
Pimx- Bi - Ei+m—1 = ImB;y;m-1/0sBitm-1 = Bitm—1/OmBitm=1 = Ymis
n
(see Lemma 3.2), and let L, ,, denote the kernel of the canonical map:
E,’ - Bi/amB3 .

Note that pg,,; has kernel L, ,. The maps p;,, (i€ Z/p*Z) induce a map
0;: Dy - Y, out of the colimit D, of the circular diagram described above.
Since py ,,  factors through this map:

pOmk B _’Dk_’Ymka

the canonical map 7, has kernel K, contained in L, ,. Note that 1, preserves
the indices of the generators. We now choose an ascending sequence {k,},, cn Of
positive integers, such that p** > 3(m — 1) + n + 1 for all m. The maps
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Tk ‘_: BO - Dk .
now induce an embedding

é: BO = lim BO/K’C,.. - likam = Iile = M.

From Proposition 1.3 and the equality
By = Ng j-1 = {No,j-z * Ny Hj—z},

one deduces by a simple induction argument that B, € RF,, so that the maps

¢
{0j-1:Noj-1 =By > By—> M
are all injective. By shifting the indices, we conclude that the natural maps
(i Noy;j o M

are injective for all i,he N, with j = h + i + 1 = p® sufficiently large. Now, N
is the direct limit of these groups N_; , and «: N - M is induced by the maps
{_ip. S0 a, and hence f: G — G is injective, and we are done.

5. One-relator groups whose reduced one-relator groups
are residually of order equal to a power of p.
THEOREM 4.1. Suppose that
(i) the reduced one-relator group N, is residually a finite p-group;
(i1) ro belongs to V.N\ W, where V (resp. W) is the normal subgroup of
F(bm(b), "ty bM(b)’ R cm((:)a Tty cM(c))
b‘generated by the first elements by, ***s Cpu(ey (resp. last elements bpygy s+ Cpriey)
of each sequence
(bm(b) PR bM(b)): o2y (Cmeys s cM(c))'

Then Hy and Hy are (8, p)-isometric subgroups of N,, and if Lg denotes the
(free) subgroup of N, generated by a proper subset S of the given set of generators
Jor Ny, then gr Lg is embedded in gr N, . Suppose furthermore that

(1ii) grLg NgrLy = grLg o (WithgrLg,rz =) if SNT = ¢).
\Then GeR#F,.

PrOOF. Let j = 1. By (ii) the inclusion maps Hy, — N, ; and H;— N, ; have
left inverses, say a; and f; respectively. If te Hy N;N, ; then t = a;(t)e 5;H,.
Thus Hy N ;N, ; = 6;Ho, and similarly H; N 6;N, ; = 6;H;. Taking j =1 we
see that the first statement of our theorem is verified. We will now assume that
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the hypotheses (i), (i) and (iii) are satisfied and proceed to verify condition (ii)
of Theorem 3.1. One has a commutative diagram:

N1 _‘_x.l__> HO
&y
and
xe N Ho &Ny =»>xeHy=Hy=8,(x) = x > 0,(x) = x.
ieN
Thus

n HO . 6‘~N1 = HO
ieN
imilarl
and, similarly NH, &§N,=H,.
ieN
Since

Niyji1 = {Nu * Ny Hj}

we can argue by induction on j, and deduce the result from Proposition 1.3.
(The separability condition of Proposition 1.3 is verified by replacing the above
diagram by

Ny ;—%> Ho

.

AL Ny

and using the same argument).

The third hypothesis of our theorem guarantees that for j sufficiently large,
condition (iii) of Theorem 3.1 is satisfied, and the result now follows

Unfortunately, properties (i), (ii), (iii) are in general not inherited by the
reduced one-relator group of a given one-relator group. Nevertheless, this theorem
can be used in conjunction with Labute’s Theorem 4’ to generate many examples
of one-relator groups in R ,, whose integral group rings have no zero divisors.
The simplest examples are probably of the type (b, a), (b, (b, a)), (b, (b, (b, a))), .
Denoting the j-th term of this sequence by r;, we see that G; = (a, b;r;) is the
reduced one-relator group of G; ;. One easily proves by induction that G; is in
R# , for every je N and prime p. Moreover, Z[G;] is without zero-divisors.
This result is only a very special case of Theorem 5.1 below.

6. One-relator groups defined by commutators
THEOREM 5.1.
Let r be the commutator (u,v) in the free group F = F(X;, -+, Xp, V15 ***s Vm)»
wherev=0(yy,, Ym) and u is in the normal subgroup of F generated by x, -+, %,.
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Suppose u = u}, v = v},t,s€ Z, where u, and v, are not proper powers
in F. Then the one-relator group

G = (xla"'axmyla 5 Vm> r)

is residually a finite p-group iff t and s are of the form t = + p*, s = + p,
with k,h = 0.

PrOOF. Let Y = F(y,-+, ) and let ¥ (respectivelly G) be the pro-p-
completion of Y (respectivelly G). One has a commutative diagram with exact
rows:

-EY—»I

—éY - 1

e

~
(=Y <_'C)

1-> N

1> Mo

where B(x;) = 1, B(y;) = y;, i = 1,--,n,j = 1,..-,m. Clearly G is residually a
finite p-group iff y is injective. Our proof of the theorem will depend upon an
explicit description of N as a tree product of free groups and of M as an inverse
limit of generalized free products (pushouts) of free pro-p-groups.

In order to obtain presentations for N and M, we first note that the following
sequences are exact:

1 - F(Y X {xli""xn})‘_é) F(xl""’xmyl:"':ym)f’ Y-1

I F(Y X {"‘71,"3)‘7;1})2)> F(xla"meyb"':ym)&’ Y -1

where F(f x {xj,-,x,}) is the free pro-p-group generated by the topological
space ¥ x {x,,--,x,} (see [6], Corollary 2.2), e(x,) = 1,

S(J’j) =DYjs Ax) =1, l()’j) = ypi=LlLeynj=1--m;
ow,x;) = w lxw for weY,i=1,---,n,
@(t,x;) = t~! x;t for every generating pair (t,x,), te¥,i = 1,---,n.
We can write u as a word in the pairs (w,, x; ), *++, (W, X,):
4= U35 W X ) WE Ty iy € {1, oeym)y = 1,00,
and we will now write
#(w) = u((Wwy, x;,), -+, (WWs, X;5)).

Then & maps #(w)~ ' di(ow) to

1 1

w luTww T uow = wT i, v)w = wlrw,
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So we see that N is the group generated by the pairs
w,x)(weY,i=1,--n),
with defining relations
| | itw) = fi(ow) (we Y).

Let V be the cyclic subgroup of Y generated by v. Then V acts upon the set Y by
left multiplication. We decompose Y into a disjoint union of orbits and we choose
a set of representatives

{w,:yel},
one from each orbit. For each heZ, we let A(w,,h) denote the free group on
the n pairs
(vhwy’ xl)’ ttty (th-y’ xn)
and for h" > h, we consider the generalized free product
P(W.,, h’ h/) = {A(W'y, h) * A(W'y’h -+ 1) * e ¥ A(w-y’ hl);
a('w,) = a@"tw,) = - = d(0"'w)}.

Let C(w,) = lim P(w,, — h,h), with respect to the obvious (injective) maps.

heN

Then N is easily seen to be the free product * C(w,). It can also be viewed as a
yell
graph-product of free groups on n generators, where a cyclic subgroup is amalga-

mated along each connected path (orbit) of the graph.
In order to describe the structure of M, we first note that for each normal
subgroup U of Y, of index a power of p, one has an obvious map

np: B % {xg, = %,}) = F(Y]U) x {x5,+, X,})
and, by Gildenhugs and Lim (1972) Prop. 1.7,
F¥ x {x;,-,%,}) = im F(Y[U) x {xq, -, %,})

v
Let R denote the closed normal subgroup of F(x,, -, Xu Y15+ V) generated
by r. Then S = ¢ ~*(R) is the closed normal subgroup of F(f x {x;,+*,%,})
generated by #i(w)™ 1 ii(ow), (w e Y). Define

EU = F((Y/U) X {xl""sxn})/nv(s) )

Then M = lim Ey, with respect to the obvious maps. Let v denote the image of
vin Y/U, and let ¥ be the cyclic subgroup of Y/U generated by 5. Then ¥ acts
on the set Y/U by left multiplication. There exists a finite subset A of I, such
that the images , (1€ A) of w, in Y /U form a complete system of representatives
for the orbits. We can now describe Ey as the pro-p-group on the set
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(Y/U) X {xla R xn}’
of generators, with defining relations
ii(w) = a(v="w), (AcA, h =0,1,---,c — 1),

where c is the order of v in Y/U. Le. Ey is just the pro-p-completion of the free
product '
* P(w,,0,c—1)
AeA
Suppose now that u = u?", v = v¥°, and u,, v, are not proper powers in Y.
It follows from a trivial generalization of theorem 1.4, that P(w,,0,c — 1), and

hence * P(w,,0,c—1), is residually a finite p-group (Gildenhuys (1968),
LeA

Theorem 4.1). Thus * P(w,,0,c — 1) is naturally embedded in E,. The struc-

LeA
tures of N and M have now been completely described, and it remains to show

that N —» M is injective. So let
Y
1 #Z=2122--'21€N= * C(WY)
yell
be in reduced form, with z;e C(w,,), i = 1,2, -, 1. Each z; belongs to P(w,,, h;, h})
say (h; > h;e Z). Since we can always replace the orbit representative w,, by

v" w,,, we may assume without loss in generality that h; = 0.

CLAIM 1. Y contains a normal subgroup U of index a power of p, such
that (i) the images w,, and W, are in distinct orbits in Y|U whenever w,, and
w,y, are distinctin Y, (i = 1,2,---,1), and

(ii) the order ¢ of ¥ in Y|U is larger than all the integers hy,---,h;.

Proor. The family ® of normal subgroups of index a power of p in Y is
closed under finite intersections. So we need only to prove that if a,be Y are
such that for all U € ® there exists ny € Z with

ab™! = 1v""mod U,

then there exists an integer k such that ab™! = v* in Y. Since the ring Z  of p-adic
integers is compact, there exists a p-adic integer « and a chain of normal subgroups

UioU;> -
in @ such that
lim ny, = « in Z,,
i~ o

and N2, U; = (1). One easily sees then that ab ~'= v*in . However

(PeP:peZynY
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is an abelian subgroup of the free group ¥, hence is the cyclic subgroup of Y
generated by some element v,. The hypothesis on v now implies that v = v% for
some t = 0. There also exists an integer f such that ab™! = v = o5 - a. It
follows that « lies in Z and this completes the proof of Claim 1.

We now choose U as in the claim, and we let A be a finite subset of I', con-
taining 4, -+, 7, and with the property that

{(weY/U:1eA}
is a set of orbit representatives. We may view z as an element of

* P(w,,0,c—1) = N
LeA

As pointed out before, this group is embedded in its pro-p-completion E;. Hence
the image of z under the map :

* P(w,,0,c - 1) c N—)MlEU
heA

is non trivial. It follows that y is injective.
To prove the converse of the theorem, we need the following

LEMMA. Let a, b be two elements of a pro-p-group K, and let T be the
closed normal subgroup of K generated by the commutators (f,(a, b)), feK.
Then

(i) (a%b) = (a,b)*mod T for all acZ,.
(i) if a¢ pZ, and (a®,b) = 1 in K, then (a,b) = 1.

PRrROOF. (i) Since T is closed, we may assume without loss in generality that
«€Z, and since

(@a™",b) = (b,a")((b,a"),a™ "),
we may assume without loss in generality that n e N. But one has
(a"*,b) = (a,b) - ((a,b),a" - (a",b)

and the result follows immediately by induction on n.

(if) Suppose (a,b) # 1. Let K,, be the central descending series of the pro-
p-group K, and suppose that m is the smallest integer such that (a,b)¢ K,,.
Then T < K,,. Let § = o "'in 2p. Then

(a,b) = (@*®,b) = (a° b)* = 1mod K,,, the desired
contradiction.

Suppose now that u = u,*, 1 # ke Z — pZ. It follows from the Lemma
that the image of (u;,v) in G is the identity. So we need only show that the image
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of (u,v) in G is not the identity. Clearly the image e of (1, v) in G liesin N, and
from the description given of N as a generalized free product, we see that e can
be identified with the element

(1) i (0) = uy((w,, X;,)s 000 (W, X3,)) Teouy((owg, X)), 0, (0w, X;,))
of the generalized free product

P(1,0,1) = {A(1,0) = A(1, 1); &(l) = di(v)}

contained in N, where it has been assumed that 1 is the chosen representative of
the orbit {v"e Y: ne Z}. Clearly e # 1 in P(1,0,1), and the proof is complete.
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