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Abstract

Statistics denoting the numbers of success runs of length exactly equal and at least equal
to a fixed length, as well as the sum of the lengths of success runs of length greater
than or equal to a specific length, are considered. They are defined on both linearly and
circularly ordered binary sequences, derived according to the Pólya–Eggenberger urn
model. A waiting time associated with the sum of lengths statistic in linear sequences is
also examined. Exact marginal and joint probability distribution functions are obtained in
terms of binomial coefficients by a simple unified combinatorial approach. Mean values
are also derived in closed form. Computationally tractable formulae for conditional
distributions, given the number of successes in the sequence, useful in nonparametric tests
of randomness, are provided. The distribution of the length of the longest success run and
the reliability of certain consecutive systems are deduced using specific probabilities of
the studied statistics. Numerical examples are given to illustrate the theoretical results.
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1. Introduction

Runs are important in applied probability and statistical inference. As mentioned by Móri
(1991), problems connected with runs and waiting times are popular in applied probability as
they can be formulated without difficult notions or involved technical terms. Their solutions,
however, are far from trivial, but they help us to understand the nature of randomness. Runs
on a line are used in many areas such as meteorology, hypothesis testing, quality control, DNA
sequences, psychology, radar astronomy, and system reliability (Cochran (1938), Mosteller
(1941), Wolfowitz (1943), Schwager (1983), and Philippou (1986)). Runs on a circle are
studied in relevant problems arising from oriented circles, circular arrays, distributions of
balls in a ring, statistical run tests, and reliability theory (Barton and David (1958), Makri and
Philippou (1994), and Koutras et al. (1995)). For a review of the theory and applications of runs
we refer the reader to Balakrishnan and Koutras (2002), who provided excellent information
on past and current developments in the area.
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Consider a sequence of n two-state (success–failure) trials, arranged on a line or on a circle.
A success run is defined as a sequence of consecutive successes (S) preceded and succeeded by
failures (F) or by nothing. The number of successes in a (success) run is referred to as its length.
The study of the number of success runs, the number of runs of a specified length using several
counting schemes, the waiting time for the occurrence of a prespecified number of runs, and
the shortest and the longest success run length have attracted the interest of many authors. Of
statistical importance, among these studies, are the ones which consider the numbers of success
runs of length exactly equal to and greater than or equal to a threshold length; see Mood (1940),
Fu and Koutras (1994), Muselli (1996), Sen et al. (2002), (2003), and Eryilmaz and Demir
(2007). Recently Fu et al. (2002), Antzoulakos et al. (2003a), and Lou (2003) studied a statistic
denoting the sum of the lengths of the success runs (i.e. the total number of successes in all
the success runs) of length greater than or equal to a prespecified length, and the waiting time
for the first time that the abovementioned statistic equals or exceeds a predetermined level
(Antzoulakos et al. (2003b)). These authors studied sequences of trials ordered on a line by
exploiting a Markov chain embedding technique; see Fu and Koutras (1994), and Fu and Lou
(2003).

In this article we adopt a simple unified combinatorial approach, through distributions of
balls into cells (see, for instance, Riordan (1964) and Charalambides (2002)), to investigate
the abovementioned statistics and also the bivariate random variable defined by the sum of
lengths of all success runs of length at least equal to a threshold length paired with the number
of success runs of length at least equal to the same threshold. The statistics are defined for
binary sequences ordered both on a line or on a circle. The sequences considered are the
outcomes of drawing balls from an urn model with stochastic replacements according to the
Pólya–Eggenberger sampling scheme, which can be used as a probabilistic model in applied
probability and statistics; see Johnson and Kotz (1977). In this scheme a ball is drawn at random
from an urn initially containing w white balls and b black balls, its color is observed, and it
is then returned to the urn along with s additional balls of the same color as the ball drawn.
Drawing a white ball is considered a success (S), and drawing a black ball is considered a
failure (F). This sampling scheme is repeated n times and a binary sequence is derived, which
is reduced to a Bernoulli sequence (independent and identically distributed binary trials) for
s = 0. The sequences can be arranged on a line or on a circle. Owing to the generality of
the approach, new simple exact formulae are established and known ones are rediscovered for
special values of the parameter s.

Our article is organized as follows. In Section 2 we state the definitions of the studied
statistics, referring to several types of nonoverlapping enumerating schemes, and we give a
brief outline of a general framework for evaluating their probability distribution functions
(PDFs) and means. In Section 3 we examine the numbers of success runs of length exactly
equal to and greater than or equal to a threshold length. In Section 4 we consider the sum of
the lengths of the success runs of length greater than or equal to a threshold length and the
bivariate statistic defined by it paired with the number of success runs of length at least equal
to the same threshold. We also examine the associated waiting time until the sum of lengths
statistic equals or exceeds a predetermined value for the first time. Specifically, the exact PDF
of all the abovementioned statistics are derived, via combinatorial analysis, as well as the mean
values of the first three of them in closed form, for both linear and circular sequences. An
efficient recursive scheme is also given for the PDF of the sum of lengths statistic defined on
a linear sequence, and connecting relationships of its PDF for linearly and circularly ordered
Bernoulli sequences are provided. New computationally tractable formulae for the conditional
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distributions, given the number of successes in the sequence, are derived for both the number of
success runs of length at least equal to a threshold length and the sum of lengths of the success
runs of length at least equal to the same threshold. The latter distributions defined on linearly
and circularly ordered sequences may be used in certain nonparametric tests of randomness.
See Koutras and Alexandrou (1997), and Antzoulakos et al. (2003a) for a recent use of the
linear distributions. Furthermore, in Section 4 we give the distributions of the length of the
longest success run and of the waiting time until a specified number of consecutive successes
is observed for the first time. They are deduced as a by-product of the study of the statistics
examined in Sections 3 and 4, of which specific probabilities also give the reliability of a linear
or circular consecutive-k-out-of-n:F system. Finally, in Section 5 numerical examples are given
to illustrate our theoretical results.

We end this section by noting that the present paper generalizes, unifies, and/or provides
alternative formulae for the results of Mood (1940), Philippou et al. (1983), Panaretos and
Xekalaki (1986), Ling (1988), Godbole (1990), Goldstein (1990), Hirano and Aki (1993),
Koutras and Alexandrou (1997), Tripsiannis and Philippou (1997), Sen et al. (2002), (2003),
Antzoulakos et al. (2003a), (2003b), and Makri et al. (2007a), (2007b).

2. Notation, definitions, and general results

In Section 2.1 we give the basic definitions and the required notation that will be used
throughout this article. In Section 2.2 we present a general framework for evaluating the
probability distribution function and the mean values of the statistics (random variables (RVs))
that appear in Section 2.1. The details are provided in Sections 3 and 4.

2.1. Notation and definitions

The Pólya–Eggenberger sampling scheme, PE(w, b, s), is repeated n times and a binary
sequence is derived. The sequence can be ordered on a line or on a circle. In the circular
case we assume that the first outcome is adjacent to (and follows) the nth outcome. Hence,
depending on the ordering of the outcomes, two kinds of sequences are defined. A linear
sequence is defined if the outcomes are ordered on a line, and a circular sequence is defined
if the outcomes are ordered circularly. In addition, for any linear or circular sequence the
parameter s defines various (discrete) sampling schemes. Of special interest are the following
values of s: s = −1 (sampling without replacement), s = 0 (sampling with replacement),
s = 1, and s = w = b > 0.

Given the sampling scheme PE(w, b, s), the length of the binary sequence n, n > 0, the
success run threshold length k, 0 < k ≤ n, and a predetermined value r, r ≥ k > 0, we define
the following variables.

(a) Let En,k denote the number of success runs with length exactly equal to k in the sequence.

(b) Let Gn,k denote the number of success runs of length at least k, i.e. Gn,k = ∑n
i=k En,i .

(c) Let Sn,k denote the sum of the lengths of the success runs (i.e. the total number of successes
in all the success runs) of length greater than or equal to k, i.e. Sn,k = ∑n

i=k iEn,i .
In a study of a binary sequence it is natural for someone to be interested in Sn,k and

simultaneously in Gn,k . This is because together these two numbers provide a more
refined view of the internal clustering structure of the sequence, compared with the
information derived by each one alone. For instance, a large value of Sn,k paired with
a small value of Gn,k indicates the existence of a large success cluster and therefore
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a trend, whereas the same large value of Sn,k paired with a large value of Gn,k indicates
a ‘uniform’ distribution of success runs of small sizes in the sequence. Therefore, the
usefulness of the following bivariate RV is apparent.

(d) Let Mn,k = (Sn,k, Gn,k).
When the trials are arranged on a circle we denote by Ec

n,k , Gc
n,k , Sc

n,k , and Mc
n,k =

(Sc
n,k, G

c
n,k) the corresponding RVs.

(e) Let Tr,k denote the waiting time until the sum of the lengths of all success runs of length
greater than or equal to k equals or exceeds the value r for the first time, i.e. Tr,k =
min{n ≥ r : Sn,k ≥ r}.

In addition, let Ln and Lc
n denote the lengths of the longest success runs in n trials ordered

linearly and circularly, respectively, and Wk denote the number of draws until a sequence of k

consecutive successes is observed for the first time.
It is clear that, given a sampling scheme PE(w, b, s) for any n and k, the relationships

En,k ≤ Gn,k ≤ Sn,k, En,k = Gn,k − Gn,k+1;
Ec

n,k ≤ Gc
n,k ≤ Sc

n,k, Ec
n,k = Gc

n,k − Gc
n,k+1;

Wk > n if and only if Ln < k if and only if Gn,k = Sn,k = 0;
Lc

n < k if and only if Gc
n,k = Sc

n,k = 0;
Wk = Tk,k; and

Ln = Sn,k = k if Wk = n,

always hold.
The RVs Gn,1 and Gc

n,1 denote the numbers of success runs in the sequence, and Sn,1 and
Sc

n,1, where Sn,1 ≡ Sc
n,1, denote the numbers of successes in n trials ordered linearly and

circularly, respectively. Furthermore, for s = 0, Sn,1 is a binomial B(n, w/(w + b)) RV, and
Tr,1 is a negative binomial NB(r, w/(w + b)) RV.

The foregoing definitions are illustrated using the following example. Let the first 10 binary
trials be SSSFSFSSFS. Then, E10,1 = 2, Ec

10,1 = 1, E10,2 = 1, Ec
10,2 = 1, E10,3 = 1,

Ec
10,3 = 0, E10,4 = 0, Ec

10,4 = 1, E10,i = Ec
10,i = 0, i = 5, 6, . . . , 10; G10,2 = 2, Gc

10,2 = 2;
S10,2 = 5, Sc

10,2 = 6; L10 = 3, Lc
10 = 4; and T2,2 = W2 = L2 = S2,2 = 2, T3,2 = 3,

T4,2 = T5,2 = 8, T6,2 > 10.
Throughout the article, for integers n, m,

(
n
m

)
denotes the extended binomial coefficient; see

Feller (1968, pp. 50, 63). Furthermore, in order to avoid repetitions we note here that (unless
otherwise stated) δi,j denotes the Kronecker delta function of the integer arguments i and j ;

B(α, β) =
∫ 1

0
pα−1(1 − p)β−1 dp for α > 0 and β > 0;

[x] denotes the greatest integer less than or equal to x; and, for m = 0, 1, . . . ,

x(m) = x(x − 1) · · · (x − m + 1) with x(0) = 1,

denoting the mth falling factorial of x. Also, we apply the conventions
∑b

i=a = 0 and
∏b

i=a = 1
for a > b.
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2.2. General results

In this section we provide a brief outline of a simple unified combinatorial approach for
the study of the above-defined statistics. The approach is based on the technique of allocating
indistinguishable balls into distinguishable cells.

Let the sequence of outcomes in n repetitions of the PE(w, b, s) sampling scheme be arranged
on a line or on a circle. The elements ω of the appropriate sample space � are linear or circular
permutations (i1, . . . , in) with ij ∈ {S, F}, j = 1, . . . , n. For convenience we use the RV Xn,k

to represent any of the following RVs: En,k , Ec
n,k , Gn,k , Gc

n,k , Mn,k , Mc
n,k , Sn,k , or Sc

n,k . Let
Yn denote the number of Fs in the sequence. An element of the event

�Xn,k
(x, y) = {ω ∈ � : Xn,k(ω) = x, Yn(ω) = y}

is a sequence of n drawings with y Fs and n − y Ss that has probability pn(y) given by

pn(y) =
∏n−y−1

j=0 (w + js)
∏y−1

j=0 (b + js)∏n−1
j=0 (w + b + js)

, 0 ≤ y ≤ n. (2.1)

For s = 0, pn(y) reduces to pn−yqy with p = w/(w + b) and q = 1 − p = b/(w + b), and it
denotes the probability of the above sequence when the balls are drawn with replacement. This
case corresponds to Bernoulli trials with constant success probability p.

Noting that

P(Yn = y) =
(

n

y

)
pn(y), y = 0, 1, . . . , n,

and that
P(Xn,k = x, Yn = y) = P(�Xn,k

(x, y)) = NXn,k
(x, y)pn(y),

where NXn,k
(x, y) denotes the number of permutations contained in �Xn,k

(x, y), we obtain the
following result.

Proposition 2.1. Let Xn,k and Yn be as defined above. Then,

P(Xn,k = x) =
∑
y

NXn,k
(x, y)pn(y) (2.2)

and

P(Xn,k = x | Yn = y) =
(

n

y

)−1

NXn,k
(x, y). (2.3)

Remark 2.1. According to Proposition 2.1, the problem of establishing the PDF of Xn,k and
the conditional PDF of Xn,k , given Yn, is a combinatorial one; specifically, the computation of
the number NXn,k

(x, y). For this task, we note that the y Fs form y + 1 (Uj , j = 1, . . . , y + 1)
or y (U c

j , j = 1, . . . , y) cells if the outcomes are ordered linearly or circularly, respectively.
Here U1 is the cell formed before the first F, Uy+1 is the cell formed after the last F, and
Uj , j = 2, . . . , y, is the cell formed between the (j − 1)th and the j th Fs. In a circular
sequence, labelling an F as the first one, U c

j , j = 1, . . . , y − 1, is the cell formed between the
j th and the (j + 1)th Fs, and U c

y is the cell formed between the yth and the first Fs. So, the
problem of establishing NXn,k

(x, y) is to enumerate the different allocations of n − y Ss in the
formed cells so that �Xn,k

(x, y) occurs, depending on the internal structure of the RV Xn,k .
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Remark 2.2. The repetition of the Pólya–Eggenberger sampling derives an exchangeable
binary sequence. Proposition 2.1 expresses, in a formal way, an idea that is often used in
the statistical analysis of exchangeable binary sequences; see, for instance, Schuster (1991,
Lemma 2.1) and Eryilmaz and Demir (2007, Lemma 2.2). The exchangeability implies that
all sequences with the same number of failures are equally likely. This elementary property
establishes the truth of (2.3) for any exchangeable binary sequence. Furthermore, (2.2) is also
valid for exchangeable binary sequences, provided that the probability pn(y) is properly given;
see George and Bowman (1995, Theorem 2.1) or Eryilmaz and Demir (2007, Equation (2.2)).

Next we consider the mean value of the RV Xn,k , s ≥ 0, where Xn,k stands for any of the
following RVs: En,k , Ec

n,k , Gn,k , Gc
n,k , Sn,k , or Sc

n,k . Proposition 2.2, below, gives the mean
value E(Xn,k) for s > 0, provided that E(Xn,k) is known for s = 0.

Let X and P be two RVs such that P is distributed as Beta(α, β), α > 0 and β > 0, and
that the conditional PDF of X, given that P = p, is

fX | P (x | p) =
∑
y

NXn,k
(x, y)pn−y(1 − p)y.

Then,

fX(x) = P(X = x) =
∑
y

NXn,k
(x, y)

B(α + n − y, β + y)

B(α, β)
.

For α = w/s and β = b/s, s > 0, we have B(α + n − y, β + y)/B(α, β) = pn(y), so
that fX(x) is the PDF of Xn,k and E(Xn,k) = E(X) = E(E(X | P)). Clearly, for s = 0,
E(Xn,k) = E(X | P = p). Hence, we have the following result.

Proposition 2.2. If, for s = 0,

E(Xn,k) =
∑
m,r

λm,rp
m(1 − p)r ,

with integers m, r and λm,r ∈ R then, for s > 0,

E(Xn,k) = 1

B(α, β)

∑
m,r

λm,rB(α + m, β + r),

where α = w/s, β = b/s, α + m > 0, and β + r > 0.

Before we proceed further we give three preliminary lemmas.

Lemma 2.1. (Sen et al. (2003).) The number of allocations of α indistinguishable balls into r

distinguishable cells, where no cell has exactly k balls, is given by

A(α, r, k) =
[α/k]∑
j=0

(−1)j
(

r

j

)(
α − (k + 1)j + r − 1

α − jk

)
.

Lemma 2.2. The number of allocations of α indistinguishable balls into r distinguishable cells,
where each of the m, 0 ≤ m ≤ r , specified cells is occupied by at most k balls, is given by

Hm(α, r, k) =
[a/(k+1)]∑

j=0

(−1)j
(

m

j

)(
α − (k + 1)j + r − 1

α − (k + 1)j

)
.
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Proof. It is clear that Hm(α, r, k) is equal to the tα coefficient of the generating function
g(t) = (1 − tk+1)m(1 − t)−r , from which the result follows.

We note that Hm(α, r, 0) denotes the number of allocations of α indistinguishable balls into
r −m distinguishable cells. Therefore, setting k = 0 in Lemma 2.2 and employing the identity

n∑
k=0

(−1)n−k

(
r

n − k

)(
s + k

k

)
=

(
s − r + n

n

)
, s ≥ r

(see Charalambides (2002, p. 128)), we obtain, as a corollary, the following well-known result.

Corollary 2.1. Let Hm(α, r, k) be as given in Lemma 2.2. Then,

Hm(α, r, 0) =
(

α + r − m − 1

α

)
.

Also, Hr(α, r, k) denotes the number of allocations of α indistinguishable balls into r

distinguishable cells, where each cell is occupied by at most k balls. Therefore, replacing
m by r in Lemma 2.2 we obtain, as a corollary, the following well-known result; see Riordan
(1964, p. 104).

Corollary 2.2. Let Hm(α, r, k) be as given in Lemma 2.2. Then,

Hr(α, r, k) ≡ C(α, r, k) =
[a/(k+1)]∑

j=0

(−1)j
(

r

j

)(
a − (k + 1)j + r − 1

α − (k + 1)j

)
.

Lemma 2.3. Let J (α, r, k) denote the number of allocations of α indistinguishable balls into
r distinguishable cells, where each cell is occupied by at least k balls. Then,

J (α, r, k) =
(

α − (k − 1)r − 1

r − 1

)
.

3. Statistics referring to the number of success runs

In this section we deal with the numbers of success runs of length exactly equal to and greater
than or equal to a threshold length k. Our study is carried out for both linearly and circularly
ordered trials derived by n repetitions of a PE(w, b, s) sampling scheme. Specifically, in
Section 3.1 we give the PDF and the mean values of En,k and Ec

n,k , whereas in Section 3.2 we
give the PDF , the conditional PDF , given Sn,1, and the mean values of Gn,k and Gc

n,k . All the
results are obtained by means of the method presented in Propositions 2.1 and 2.2.

3.1. The number of success runs of length exactly equal to k

For trials arranged on a line, Theorem 3.1 gives the PDF of the RV En,k and Proposition 3.1
provides its mean value for s ≥ 0. For trials arranged on a circle, Theorem 3.2 gives the PDF
of the RV Ec

n,k and Proposition 3.2 provides its mean value for s ≥ 0. First we consider trials
arranged on a line.

Theorem 3.1. The PDF of En,k is given by

P(En,k = x) =
n−kx∑
y=0

pn(y)

(
y + 1

x

)
A(n − y − kx, y + 1 − x, k), x = 0, 1, . . . ,

[
n + 1

k + 1

]
.

(3.1)
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Proof. Note that x cells can be selected from the y + 1 distinguishable cells in
(
y+1
x

)
ways,

x = 0, 1, . . . , [(n + 1)/(k + 1)]. Next, one success run of length k is placed in each selected
cell in only one way. Furthermore, for each specified selection of x cells {Uj1 , . . . , Ujx } out of
the y + 1 cells {U1, . . . , Uy+1}, the number of ways the remaining n− y − kx Ss can be placed
in the remaining y + 1 − x cells (excluding the x specified cells) with no cell receiving exactly
k Ss equals A(n − y − kx, y + 1 − x, k) by Lemma 2.1. Thus, according to the multiplicative
principle, the total number of allocations of n − y Ss in the y + 1 cells yielding x runs of Ss of
length exactly equal to k is given by

NEn,k
(x, y) =

(
y + 1

x

)
A(n − y − kx, y + 1 − x, k).

The result then follows from Proposition 2.1.

A possible alternative formula, in terms of binomial and multinomial coefficients, for the
PDF of En,k may be obtained using Theorem 3.1 of Sen et al. (2002) and following the approach
used in Corollary 2 of the same article. However, by this approach the PDF of En,k should
contain six consecutive summations involving binomial and multinomial coefficients instead
of the two summations involving binomial coefficients given in (3.1).

Proposition 3.1. Let µEn,k
denote the mean of the RV En,k . Then,

(a) for s = 0,

µEn,k
=

{
qpk(2 + (n − k − 1)q), k = 1, . . . , n − 1,

pn, k = n; (3.2)

(b) for s > 0, α = w/s, and β = b/s,

µEn,k

=

⎧⎪⎪⎨
⎪⎪⎩

2B(α + k, β + 1) + (n − k − 1)B(α + k, β + 2)

B(α, β)
, k = 1, . . . , n − 1,

B(α + n, β)

B(α, β)
, k = n.

Proof. (a) Obviously, µEn,n = pn. Let Zi, 1 ≤ i ≤ n, be independent RVs with PDF

P(Zi = x) = px(1 − p)1−x, x = 0, 1, 0 < p < 1, 1 ≤ i ≤ n.

We define a binary RV Uj , k ≤ j ≤ n, as follows:

Uj =
{

1 if
∏j

i=j−k+1 Zi = 1, Zj−k = Zj+1 = 0,

0 otherwise

(convention: Z0 = Zn+1 = 0). As En,k = ∑n
j=k Uj , we have

µEn,k
=

n∑
j=k

E(Uj ) = 2qpk + (n − k − 1)q2pk, k = 1, . . . , n − 1.

(b) It follows from part (a) and Proposition 2.2.
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For an alternative derivation of (3.2), see Mood (1940). Next we consider trials arranged on
a circle.

Theorem 3.2. The PDF of Ec
n,k is given by

(a) for n = k, P(Ec
n,k = 0) = 1 − pn(0) and P(Ec

n,k = 1) = pn(0);

(b) for n ≥ k + 1 and x = 0, 1, . . . , [n/(k + 1)],

P(Ec
n,k = x) =

n−kx∑
y=1

pn(y)
n

y

(
y

x

)
A(n − y − kx, y − x, k) + pn(0)δx,0. (3.3)

Proof. The proof of part (a) is apparent. To prove part (b) first note that x cells can be
chosen from the y distinguishable cells, U c

1 , . . . , U c
y , in

(
y
x

)
ways, x = 0, 1, . . . , [n/(k + 1)],

y ≥ 1. For each specified selection of x cells, one success run of length k is placed in each
selected cell, while the remaining n−y − kx Ss can be placed in the remaining y −x cells with
no cell receiving exactly k Ss in A(n − y − kx, y − x, k) ways. Therefore, the total number
of allocations of n − y Ss in the y cells yielding x runs of Ss of length exactly equal to k is
given by

(
y
x

)
A(n − y − kx, y − x, k). Furthermore, each of these arrangements gives rise to n

arrangements of the n − y Ss and y Fs by rotation. But the set of n
(
y
x

)
A(n − y − kx, y − x, k)

arrangements is partitioned into sets of y like arrangements. So, the total number of circular
arrangements with n − y Ss and y Fs yielding x runs of Ss of length exactly equal to k is
given by

NEc
n,k

(x, y) = n

y

(
y

x

)
A(n − y − kx, y − x, k).

Furthermore, for x = 0, 1, . . . , [n/(k + 1)], NEc
n,k

(x, 0) = δx,0. The result then follows from
Proposition 2.1.

For an alternative formula for the PDF of Ec
n,k , see Sen et al. (2003, Theorem 3). Their

formula is more complicated than ours as it contains four consecutive summations of binomial
coefficients instead of the two summations given in (3.3).

Proposition 3.2. Let µEc
n,k

denote the mean of Ec
n,k . Then,

(a) for s = 0,

µEc
n,k

=

⎧⎪⎨
⎪⎩

nq2pk, k = 1, . . . , n − 2,

nqpn−1, k = n − 1,

pn, k = n;
(3.4)

(b) for s > 0, α = w/s, and β = b/s,

µEc
n,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nB(α + k, β + 2)

B(α, β)
, k = 1, . . . , n − 2,

nB(α + n − 1, β + 1)

B(α, β)
, k = n − 1,

B(α + n, β)

B(α, β)
, k = n.
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Proof. (a) Obviously, µEc
n,n

= pn and µEc
n,n−1

= nqpn−1. Let Zi, 1 ≤ i ≤ n, be as defined
in the proof of Proposition 3.1. For 1 ≤ k ≤ n − 2, we define a binary RV Uj , 1 ≤ j ≤ n, as
follows. For j = 1, . . . , k,

Uj =
{

1 if
∏j

i=1 Zi

∏n
i=n−k+j+1 Zi = 1, Zj+1 = Zn−k+j = 0,

0 otherwise.

For j = k + 1, . . . , n,

Uj =
{

1 if
∏j

i=j−k+1 Zi = 1, Zj+1 = Zj−k = 0,

0 otherwise

(Zn+1 ≡ Z1). Then, Ec
n,k = ∑n

j=1 Uj , so that

µEc
n,k

=
n∑

j=1

E(Uj ) = nq2pk, k = 1, . . . , n − 2.

(b) It follows directly from part (a) and Proposition 2.2.

3.2. The number of success runs of length at least k

For trials arranged on a line, Theorem 3.3 gives the PDF of the RV Gn,k . For trials arranged
on a circle, Theorem 3.4 gives the PDF of the RV Gc

n,k . In Corollaries 3.1 and 3.2 we obtain the
conditional PDFs of Gn,k and Gc

n,k , respectively, given the number of successes Sn,1. Finally,
Propositions 3.3 and 3.4 provide the means of Gn,k and Gc

n,k for s ≥ 0.

Theorem 3.3. The PDF of Gn,k is given by

P(Gn,k = x)

=
n−kx∑
y=0

pn(y)

(
y + 1

x

)
Hy+1−x(n − y − kx, y + 1, k − 1), x = 0, 1, . . . ,

[
n + 1

k + 1

]
.

(3.5)

Proof. First note that the number of ways that x cells, in each one of which a success run
of length k is placed, can be chosen from the y + 1 cells equals

(
y+1
x

)
, x = 0, 1, . . . , [(n + 1)/

(k+1)]. Furthermore, for each specified selection of x cells, the number of ways the remaining
n − y − kx Ss can be placed in the y + 1 cells with each one of the remaining y + 1 − x cells
receiving no more than k − 1 Ss equals Hy+1−x(n − y − kx, y + 1, k − 1) by Lemma 2.2.
Therefore, the total number of allocations of n − y Ss in the y + 1 cells yielding x runs of Ss
of length greater than or equal to k is given by

NGn,k
(x, y) =

(
y + 1

x

)
Hy+1−x(n − y − kx, y + 1, k − 1).

The result then follows from Proposition 2.1.

A possible alternative for the PDF of Gn,k may be obtained using the same guidelines
discussed after the proof of Theorem 3.1. This, however, should contain six consecutive
summations involving binomial and multinomial coefficients instead of the two summations
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involving binomial coefficients given in (3.5). For s = 0, a single summation formula for
P(Gn,k = x) has been given by Muselli (1996). Unfortunately, the use of this expression does
not allow us to generalize to the case in which s �= 0.

Setting k = 1 in (3.5) we derive, by means of Corollary 2.1, the PDF of Gn,1, the number of
success runs in a sequence of n draws according to the PE(w, b, s) sampling scheme ordered
linearly:

P(Gn,1 = x) =
n−x∑
y=0

pn(y)

(
y + 1

x

)(
n − y − 1

n − y − x

)
, x = 0, 1, . . . ,

[
n + 1

2

]
.

Corollary 3.1. The conditional PDF P(Gn,k = x | Sn,1 = n − y) for 0 ≤ y ≤ n and
x = 0, 1, . . . , [(n − y)/k] is given by

P(Gn,k = x | Sn,1 = n − y)

=
(

n

y

)−1(
y + 1

x

) [(n−y−kx)/k]∑
i=0

(−1)i
(

y + 1 − x

i

)(
n − k(x + i)

n − k(x + i) − y

)
. (3.6)

Proof. It follows directly from Proposition 2.1.

Corollary 3.1 immediately yields the following result, by means of Corollary 2.1.
The conditional PDF P(Gn,1 = x | Sn,1 = n − y) for 0 ≤ y ≤ n and 0 ≤ x ≤ n − y is

given by

P(Gn,1 = x | Sn,1 = n − y) =
(

n

y

)−1(
y + 1

x

)(
n − y − 1

n − y − x

)
. (3.7)

Equation (3.6) has been derived by Koutras and Alexandrou (1997) using generating func-
tions, whereas Mood (1940) (see also Gibbons and Chakraborti (2003, p. 79)) has derived (3.7)
using a different method.

Using the representation Gn,k = ∑n
i=k En,i , we have a straightforward derivation of its

mean.

Proposition 3.3. Let µGn,k
denote the mean of the RV Gn,k . Then,

(a) for s = 0,
µGn,k

= pk(1 + (n − k)q), n ≥ k; (3.8)

(b) for s > 0, α = w/s, and β = b/s,

µGn,k
= B(α + k, β) + (n − k)B(α + k, β + 1)

B(α, β)
, n ≥ k.

Proof. (a) We have

µGn,k
=

n∑
i=k

µEn,i
= pn + (2q + (n − 1)q2)

n−1∑
i=k

pi − q2
n−1∑
i=k

ipi = pk(1 + (n − k)q).

(b) It follows from part (a) and Proposition 2.2.

For alternative derivations of (3.8), see Mood (1940), Goldstein (1990), and Hirano and Aki
(1993). Next we consider trials arranged on a circle.
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Theorem 3.4. The PDF of Gc
n,k is given as follows:

(a) for n = k, P(Gc
n,k = 0) = 1 − pn(0) and P(Gc

n,k = 1) = pn(0);

(b) for n ≥ k + 1 and x = 0, 1, . . . , [n/(k + 1)],

P(Gc
n,k = x) =

n−kx∑
y=1

pn(y)
n

y

(
y

x

)
Hy−x(n − y − kx, y, k − 1) + pn(0)δx,1. (3.9)

Proof. The proof of part (a) is apparent. To prove part (b) first note that the number of ways
that x cells, within each one of which a success run of length k is placed, can be chosen from
the y cells equals

(
y
x

)
, x = 0, 1, . . . , [n/(k + 1)], y ≥ 1. Furthermore, the number of ways

the remaining n − y − kx Ss can be placed in the y cells with each of the remaining y − x

cells receiving no more than k − 1 Ss is equal to Hy−x(n − y − kx, y, k − 1). Therefore, the
total number of allocations of n − y Ss in the y cells yielding x runs of Ss of length at least
equal to k is given by

(
y
x

)
Hy−x(n − y − kx, y, k − 1). Continuing along the lines of the proof

of Theorem 3.2 we find that, for x = 0, 1, . . . , [n/(k + 1)] and y ≥ 1, the total number of
circular arrangements with n − y Ss and y Fs yielding x runs of Ss of length at least equal to k

is given by

NGc
n,k

(x, y) = n

y

(
y

x

)
Hy−x(n − y − kx, y, k − 1).

Furthermore, for x = 0, 1, . . . , [n/(k + 1)], NGc
n,k

(x, 0) = δx,1. The result then follows from
Proposition 2.1.

Theorem 4 of Sen et al. (2003) gives an alternate formula for the PDF of Gc
n,k . However, it

contains five consecutive summations of binomial coefficients instead of the two summations
given in (3.9).

Setting k = 1 in Theorem 3.4 we obtain, by means of Corollary 2.1, the PDF of Gc
n,1,

the number of success runs in n draws according to a PE(w, b, s) sampling scheme ordered
circularly:

P(Gc
1,1 = 0) = 1 − p1(0), P(Gc

1,1 = 1) = p1(0),

P(Gc
n,1 = x) =

n−x∑
y=1

pn(y)
n

y

(
y

x

)(
n − y − 1

n − y − x

)
+ pn(0)δx,1, x = 0, 1, . . . ,

[
n

2

]
, n ≥ 2.

Corollary 3.2. The conditional PDF P(Gc
n,k = x | Sn,1 = n − y) is given by

P(Gc
n,k = x | Sn,1 = n) = δx,1, x ≥ 0,

P(Gc
n,k = x | Sn,1 = n − y)

=
(

n − 1

y − 1

)−1(
y

x

) [(n−y−kx)/k]∑
i=0

(−1)i
(

y − x

i

)(
n − k(x + i) − 1

n − k(x + i) − y

)
, (3.10)

y = 1, 2, . . . , n, x = 0, 1, . . . , [(n − y)/k].
Proof. It follows directly from Proposition 2.1.

https://doi.org/10.1239/aap/1198177236 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177236


Success run statistics defined on an urn model 1003

Corollary 3.2 yields the following result, by means of Corollary 2.1.
The conditional PDF P(Gc

n,1 = x | Sn,1 = n − y) is given by

P(Gc
n,1 = x | Sn,1 = n) = δx,1, x ≥ 0,

P(Gc
n,1 = x | Sn,1 = n − y) =

(
n − 1

y − 1

)−1(
y

x

)(
n − y − 1

n − y − x

)
,

y = 1, 2, . . . , n, x = 0, 1, . . . , n − y.

Proposition 3.4. Let µGc
n,k

denote the mean of Gc
n,k . Then,

(a) for s = 0,

µGc
n,k

=
{

pn + nqpk, k = 1, 2, . . . , n − 1,

pn, k = n; (3.11)

(b) for s > 0, α = w/s, and β = b/s,

µGc
n,k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(α + n, β) + nB(α + k, β + 1)

B(α, β)
, k = 1, 2, . . . , n − 1,

B(α + n, β)

B(α, β)
, k = n.

Proof. (a) The representation Gc
n,k = ∑n

i=k Ec
n,i and (3.4) imply that

µGc
n,k

=
n∑

i=k

µEc
n,i

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nq2
n−2∑
i=k

pi + nqpn−1 + pn, k = 1, 2 . . . , n − 2,

nqpn−1 + pn, k = n − 1,

pn, k = n,

from which we obtain (3.11).

(b) It follows from part (a) and Proposition 2.2.

4. Statistics referring to the sum of the lengths of success runs

In this section we deal with the statistics related to the sum of the lengths of success runs
of length greater than or equal to a threshold length k and to the associated waiting time until
the sum of lengths equals or exceeds a predetermined value r for the first time. The exact PDF
of the bivariate RVs Mn,k and Mc

n,k are also studied. Besides their own independent merit,
they provide a useful means for obtaining the PDFs of Sn,k and Sc

n,k . The Sn,k , Mn,k and Sc
n,k ,

Mc
n,k statistics are studied in Section 4.1, and the Tr,k statistic is examined in Section 4.2. The

results referring to Sn,k , Mn,k and Sc
n,k , Mc

n,k are derived by means of Propositions 2.1 and 2.2,
whereas the study of Tr,k is carried out following a minor modification of Proposition 2.1.

4.1. The sum of lengths of all success runs of length at least k

The Sn,k , Mn,k = (Sn,k, Gn,k) and Sc
n,k , Mc

n,k = (Sc
n,k, G

c
n,k) statistics are considered for

trials arranged on a line and on a circle in Sections 4.1.1 and 4.1.2, respectively. In addition,
we relate the RVs Gn,k , Sn,k and Gc

n,k , Sc
n,k to the RVs Ln and Lc

n, respectively, and Wk .
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4.1.1. Trials arranged on a line. In this section we initially derive the exact joint PDF of Sn,k

and Gn,k (Theorem 4.1). Then we obtain the marginal PDF of Sn,k (Theorem 4.2). We then
give a computationally tractable formula for the exact conditional PDF of Sn,k , given Sn,1
(Corollary 4.1), followed by an exact formula for the mean of Sn,k for s ≥ 0 (Proposition 4.1).
An efficient scheme for the recursive computation of Sn,k is provided by Theorem 4.3. Finally,
Proposition 4.2 relates the specific probabilities of Gn,k , Sn,k , Ln, and Wk . For s = 0,
Proposition 4.2 gives a formula for the reliability of a linear consecutive system.

Theorem 4.1. The exact joint PDF of Sn,k and Gn,k is given as follows:

(a)

P(Sn,k = 0, Gn,k = 0) =
n∑

y=0

pn(y)C(n − y, y + 1, k − 1);

(b) for x = k, k + 1, . . . , n and m = 1, 2, . . . , [x/k],

P(Sn,k = x, Gn,k = m)

=
(

x − (k − 1)m − 1

m − 1

) n−x∑
y=0

pn(y)

(
y + 1

m

)
C(n − y − x, y + 1 − m, k − 1).

(4.1)

Proof. For 1 ≤ m ≤ [x/k], k ≤ x ≤ n, m cells are chosen from the y + 1 ones in(
y+1
m

)
ways. For each of these combinations, the number of ways x Ss are placed in the m

chosen distinguishable cells so that each cell receives at least k balls is equal to J (x, m, k) by
Lemma 2.3. The number of ways the remaining n − y − x Ss can be placed in the remaining
y+1−m cells with no cell receiving more than k−1 Ss is equal to C(n−y−x, y+1−m, k−1)

by Corollary 2.2. Therefore, the total number of allocations of n−y Ss in the y+1 cells yielding
m success runs of length greater than or equal to k, with total number of successes equal to x,
is given by

N(Sn,k,Gn,k)(x, m, y) =
(

y + 1

m

)
J (x, m, k)C(n − y − x, y + 1 − m, k − 1).

For x = 0 and m = 0, the n − y Ss are placed in the y + 1 distinguishable cells with no cell
receiving more than k − 1 Ss in C(n − y, y + 1, k − 1) ways. Hence, N(Sn,k,Gn,k)(0, 0, y) =
C(n − y, y + 1, k − 1). The result then follows from Proposition 2.1.

The next result is a direct consequence of Theorem 4.1.

Theorem 4.2. The PDF of Sn,k is given as follows:

(a)

P(Sn,k = 0) =
n∑

y=[n/k]
pn(y)C(n − y, y + 1, k − 1);
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(b) for x = k, k + 1, . . . , n,

P(Sn,k = x)

=
n−x∑
y=0

pn(y)

[x/k]∑
m=1

(
y + 1

m

)(
x − (k − 1)m − 1

m − 1

)
C(n − y − x, y + 1 − m, k − 1).

(4.2)

For s = 0 and k = 1, (4.2) reduces to the ordinary binomial distribution with PDF

f (x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n.

For s = 0 and k > 1, (4.2) gives a new exact formula for the PDF of Sn,k . For s �= 0,
Theorem 4.2 provides new distributions.

Corollary 4.1. The conditional PDF P(Sn,k = x | Sn,1 = n − y) for 0 ≤ y ≤ n is given as
follows:

(a)

P(Sn,k = 0 | Sn,1 = n − y) =
(

n

y

)−1 [(n−y)/k]∑
j=0

(−1)j
(

y + 1

j

)(
n − kj

n − kj − y

)
;

(b) for x = k, k + 1, . . . , n − y,

P(Sn,k = x | Sn,1 = n − y)

=
(

n

y

)−1 [x/k]∑
m=1

(
y + 1

m

)(
x − (k − 1)m − 1

m − 1

)

×
[(n−y−x)/k]∑

j=0

(−1)j
(

y + 1 − m

j

)(
n − kj − x − m

n − kj − x − y

)
. (4.3)

Proof. It follows directly from Proposition 2.1 and Theorem 4.2.

Antzoulakos et al. (2003a) have also obtained (in their Theorem 4.2) the conditional PDF of
Sn,k , given Sn,1, and they used it in nonparametric tests of randomness. Their expressions, in
comparison to (4.3), involve two additional consecutive summations of binomial coefficients.
Thus, the formulae of Corollary 4.1 may be evaluated faster computationally.

Proposition 4.1. Let µSn,k
denote the mean of Sn,k . Then,

(a) for s = 0,
µSn,k

= pk(k + (n − k)(kq + p)), n ≥ k; (4.4)

(b) for s > 0,

µSn,k
= 1

B(α, β)
(kB(α + k, β) + k(n − k)B(α + k, β + 1)

+ (n − k)B(α + k + 1, β)).
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Proof. (a) Let Zi, 1 ≤ i ≤ n, be as given in the proof of Proposition 3.1. We define the RV
Uj , k ≤ j ≤ n, as follows:

Uj =

⎧⎪⎨
⎪⎩

1 if
∏j

i=j−k Zi = 1,

k if Zj−k = 0,
∏j

i=j−k+1 Zi = 1,

0 otherwise

(convention: Z0 = 0). Then, Sn,k = ∑n
j=k Uj , so that

µSn,k
= E(Uk) +

n∑
j=k+1

E(Uj ) = kpk + (n − k)(pk+1 + kqpk).

(b) It follows from part (a) and Proposition 2.2.

Antzoulakos et al. (2003a) derived (4.4) using a different approach based on recursive
relations.

Theorem 4.3. Let Sn,k,w,b,s denote (explicitly) the statistic Sn,k defined on a PE(w, b, s)

sampling scheme. Then its PDF satisfies the following relations.

(a) For x < 0 or x > n, P(Sn,k,w,b,s = x) = 0.

(b) For 0 ≤ n < k, P(Sn,k,w,b,s = 0) = 1 and P(Sn,k,w,b,s = x) = 0, x ≥ 1.

(c) For n ≥ k,

P(Sn,k,w,b,s = x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
i=0

pi+1,w,b,s(1) P(Sn−1−i,k,w+is,b+s,s = 0) for x = 0,

k−1∑
i=0

pi+1,w,b,s(1) P(Sn−1−i,k,w+is,b+s,s = x)

+
x−k∑
i=k

pi+1,w,b,s(1) P(Sn−1−i,k,w+is,b+s,s = x − i)

+px+1,w,b,s(1) P(Sn−1−x,k,w+xs,b+s,s = 0) for x = k, . . . , n − 1,

pn,w,b,s(0) for x = n,

where pn,w,b,s(y) ≡ pn(y) is given by (2.1).

Proof. Obviously, for x < 0 or x > n and for 0 ≤ n < k, parts (a) and (b) hold. Given
a PE(w, b, s) sampling scheme let Zi, 1 ≤ i ≤ n, be a binary sequence such that Zi = 1 if
the outcome of the ith draw is a success and Zi = 0 otherwise. For n ≥ k, we define the
events A0 = {Z1 = 0}, Ai = {Z1 = · · · = Zi = 1, Zi+1 = 0}, i = 1, . . . , n − 1, and
An = {Z1 = · · · = Zn = 1}. From the definitions of Ai and the Pólya–Eggenberger sampling
scheme, we see that P(Ai) = pi+1,w,b,s(1), i = 0, 1, . . . , n − 1, and P(An) = pn,w,b,s(0).
Then, for x = 0, k, k + 1, . . . , n,

P(Sn,k,w,b,s = x) = P

( n⋃
i=0

[(Sn,k,w,b,s = x) ∩ Ai]
)

=
n∑

i=0

P(Sn,k,w,b,s = x | Ai) P(Ai).
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We first observe that, for i = 0, 1, . . . , k − 1,

P(Sn,k,w,b,s = 0 | Ai) = P(Sn−1−i,k,w+is,b+s,s = 0)

and that, for i = k, k + 1, . . . , n, P(Sn,k,w,b,s = 0 | Ai) = 0. Also, we note that, for x =
k, k + 1, . . . , n − 1,

P(Sn,k,w,b,s = x | Ai) = P(Sn−1−i,k,w+is,b+s,s = x)

for i = 0, 1, . . . , k − 1;

P(Sn,k,w,b,s = x | Ai) = P(Sn−i−1,k,w+is,b+s,s = x − i)

for i = k, k + 1, . . . , x − k; P(Sn,k,w,b,s = x | Ai) = 0 for i = x − k + 1, . . . , x − 1 or
i = x + 1, . . . , n; and

P(Sn,k,w,b,s = x | Ax) = P(Sn−x−1,k,w+xs,b+s,s = 0).

Moreover,
P(Sn,k,w,b,s = n) = P(An) = pn,w,b,s(0).

The result then follows.

Theorem 4.3 gives a new recursive scheme for the PDF of Sn,k . Numerical investigations
indicate that, for s = 0, this scheme may be more efficient than the corresponding one given
by Theorem 3.2 of Antzoulakos et al. (2003a).

Proposition 4.2, below, relates the probability P(Gn,k = 0) = P(Sn,k = 0) to the cumulative
distribution function of Ln, the tail probabilities of Wk , and the reliability of a linear consecutive
system. In Section 4.2 the PDF of Wk is obtained using a different approach.

Proposition 4.2. Let Ln and Wk respectively denote the length of the longest success run and
the number of draws according to a PE(w, b, s) scheme until the occurrence of the first success
run of length k. Then,

P(Ln < k) = P(Wk > n)

= P(Gn,k = 0)

= P(Sn,k = 0)

=
n∑

y=0

pn(y)

[(n−y)/k]∑
i=0

(−1)i
(

y + 1

i

)(
n − ki

n − ki − y

)
. (4.5)

Taking s = 0 we obtain a formula for the reliability R(k, n; 1 − p) ≡ P(Ln < k) of a linear
consecutive-k-out-of n:F system with common component reliability 1 −p = b/(w + b). For
alternative formulae for the distributions of Ln and Wk , see Makri et al. (2007a), (2007b).

Next, by conditioning on Sn,1 we obtain

P(Ln < k | Sn,1 = n − y) =
(

n

y

)−1 [(n−y)/k]∑
i=0

(−1)i
(

y + 1

i

)(
n − ki

n − ki − y

)
. (4.6)

Equation (4.6) is equivalent to Equation (2.59) of Balakrishnan and Koutras (2002), which was
derived by Burr and Cane (1961).
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4.1.2. Trials arranged on a circle. In the following we assume that the outcomes of the n

draws, according to a PE(w, b, s) sampling scheme, are arranged on a circle. First we derive
the exact joint PDF of the RVs Sc

n,k and Gc
n,k (Theorem 4.4), and then we obtain the PDF and

the conditional PDF, given Sn,1, of Sc
n,k (Theorem 4.5 and Corollary 4.2). Next, we consider

the mean of Sc
n,k for s ≥ 0 (Proposition 4.3) and, for s = 0, we relate the PDF of Sc

n,k to the
PDF of Sn,k (Theorem 4.6). Finally, Proposition 4.4 relates the specific probabilities of Gc

n,k ,
Sc

n,k , and Lc
n. For s = 0, we obtain a formula for the reliability of a circular consecutive system.

Theorem 4.4. The exact joint PDF of the RVs Sc
n,k and Gc

n,k is given as follows:

(a)

P(Sc
n,k = 0, Gc

n,k = 0) =
n∑

y=[n/k]
pn(y)

n

y
C(n − y, y, k − 1);

(b) for x = k, k + 1, . . . , n − 1 and m = 1, 2, . . . , [x/k],

P(Sc
n,k = x, Gc

n,k = m)

=
(

x − (k − 1)m − 1

m − 1

) n−x∑
y=1

pn(y)
n

y

(
y

m

)
C(n − y − x, y − m, k − 1); (4.7)

(c) P(Sc
n,k = n, Gc

n,k = 1) = pn(0).

Proof. For 1 ≤ m ≤ [x/k], x = k, k + 1, . . . , n, m cells can be chosen from the y ones in(
y
m

)
ways. For each of these combinations, the number of ways x Ss are placed in the m cells so

that each cell receives at least k Ss is equal to J (x, m, k) by Lemma 2.3. The number of ways
the remaining n − y − x Ss can be placed in the remaining y − m cells with no cell receiving
more than k − 1 Ss is equal to C(n − y − x, y − m, k − 1) by Corollary 2.2. Continuing along
the lines of the proof of Theorem 3.2, we obtain

N(Sc
n,k,G

c
n,k)

(x, m, y) = n

y

(
y

m

)
J (x, m, k)C(n − y − x, y − m, k − 1).

For x = 0 and m = 0, the n − y Ss are placed in the y distinguishable cells so that each cell
receives no more than k − 1 Ss in C(n − y; y; k − 1) ways. Hence,

N(Sn,k,Gn,k)(0, 0, y) = n

y
C(n − y; y; k − 1).

Finally, observing that N(Sn,k,Gn,k)(n, 1, 0) = 1, the proof is completed by means of Proposi-
tion 2.1.

We next note the following direct consequence of Theorem 4.4.

Theorem 4.5. The PDF of the RV Sc
n,k is given as follows:

(a)

P(Sc
n,k = 0) =

n∑
y=[n/k]

pn(y)
n

y
C(n − y, y, k − 1);
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(b) for x = k, k + 1, . . . , n − 1,

P(Sc
n,k = x)

=
n−x∑
y=1

pn(y)
n

y

[x/k]∑
m=1

(
y

m

)(
x − (k − 1)m − 1

m − 1

)
C(n − y − x, y − m, k − 1);

(4.8)

(c) P(Sc
n,k = n) = pn(0).

For s = 0 and k = 1, (4.8) reduces to the ordinary binomial distribution. Under a PE(w, b, s)

sampling scheme, for (s, k) �= (0, 1), Theorem 4.5 provides new distributions.

Corollary 4.2. The conditional PDF P(Sc
n,k = x | Sc

n,1 = n − y) for n ≥ k is given as
follows:

(a)
P(Sc

n,k = x | Sc
n,1 = n) = δx,n, x ≥ 0;

(b) for y = 1, 2, . . . , n,

P(Sc
n,k = x | Sc

n,1 = n − y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n − 1

y − 1

)−1 [(n−y)/k]∑
j=0

(−1)j
(

y

j

)(
n − kj − 1

n − kj − y

)
, x = 0,

(
n − 1

y − 1

)−1 [x/k]∑
m=1

(
y

m

)(
x − (k − 1)m − 1

m − 1

)

×
[(n−y−x)/k]∑

j=0

(−1)j
(

y − m

j

)(
n − x − kj − m − 1

n − x − kj − y

)
,

x = k, k + 1, . . . , n − y.

(4.9)

Proof. It follows directly from Proposition 2.1 and Theorem 4.5.

Proposition 4.3. Let µSc
n,k

denote the mean of Sc
n,k . Then,

(a) for s = 0,
µSc

n,k
= npk(kq + p), n ≥ k;

(b) for s > 0, α = w/s, and β = b/s,

µSc
n,k

= nkB(α + k, β + 1) + nB(α + k + 1, β)

B(α, β)
, n ≥ k.

Proof. (a) Let Zi, 1 ≤ i ≤ n, be as given in Proposition 3.1. We define an RV Uj , 1 ≤
j ≤ n, as follows. For j = 1, . . . , k,

Uj =

⎧⎪⎨
⎪⎩

1 if
∏j

i=1 Zi

∏n
i=n−k+j Zi = 1,

k if
∏j

i=1 Zi

∏n
i=n−k+j+1 Zi = 1, Zn−k+j = 0,

0 otherwise.
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For j = k + 1, . . . , n,

Uj =

⎧⎪⎨
⎪⎩

1 if
∏j

i=j−k Zi = 1,

k if
∏j

i=j−k+1 Zi = 1, Zj−k = 0,

0 otherwise.

Then, Sc
n,k = ∑n

j=1 Uj , so that

µSc
n,k

=
n∑

j=1

E(Uj ) = nkqpk + npk+1.

(b) It follows from part (a) and Proposition 2.2.

For s = 0, the RV Sc
n,k is related to the RV Sn,k by the following theorem.

Theorem 4.6. For s = 0, n ≥ k, and 0 < p < 1,

(a)

P(Sc
n,k = 0) = q2

k−1∑
i=0

(i + 1)pi P(Sn−2−i,k = 0);

(b) for x = k, k + 1, . . . , n − 2,

P(Sc
n,k = x) = q2

k−1∑
i=0

(i +1)pi P(Sn−2−i,k = x)+q2
x∑

i=k

(i +1)pi P(Sn−2−i,k = x − i);

(c)

P(Sc
n,k = n − 1) =

{
nqpn−1 if n ≥ k + 1,

0 otherwise;

(d) P(Sc
n,k = n) = pn.

Proof. The proofs of parts (a), (c), and (d) are straightforward. Thus, we proceed to prove
part (b). Consider the sequence Z1, Z2, . . . , Zn, as given in the proof of Proposition 3.1. We
consider the events A0 = {Z1 = 0}, B0 = {Zn = 0}, Aj = {Z1 = · · · = Zj = 1, Zj+1 = 0},
Bl = {Zn−l = 0, Zn−l+1 = · · · = Zn = 1}, j, l = 1, . . . , n − 2. Then, for x = k, k + 1, . . . ,

we find that
{Sc

n,k = x} =
⋃
j

⋃
l

[{Sc
n,k = x} ∩ Aj ∩ Bl],

where the double union is over the integers j, l satisfying the conditions j, l = 0, . . . , x,

0 ≤ j + l ≤ x. So, we obtain

P(Sc
n,k = x) =

∑
j

∑
l

P(Sc
n,k = x | Aj ∩ Bl) P(Aj ∩ Bl)

=
k−1∑

j+l=0

(j + l + 1)q2pj+l P(Sn−(j+l)−2,k = x)

+
x∑

j+l=k

(j + l + 1)q2pj+l P(Sn−(j+l)−2,k = x − (j + l)),

and this establishes the result.
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Proposition 4.4, below, relates the probability P(Gc
n,k = 0) = P(Sc

n,k = 0) to the cumulative
distribution function of Lc

n, the length of the longest (circular) success run, and the reliability
of a circular consecutive system.

Proposition 4.4. It holds true that

P(Lc
n < k) = P(Gc

n,k = 0) = P(Sc
n,k = 0) =

n∑
y=1

pn(y)
n

y

[(n−y)/k]∑
i=0

(−1)i
(

y

i

)(
n − ki − 1

n − ki − y

)
.

(4.10)

Taking s = 0 we obtain a formula for the reliability Rc(k, n; 1−p) ≡ P(Lc
n < k) of a circular

consecutive-k-out-of n:F system with common component reliability 1 −p = b/(w + b). For
an alternative derivation of the distribution of Lc

n, see Makri et al. (2007b).
By conditioning on Sn,1 we obtain

P(Lc
n < k | Sn,1 = n − y) =

(
n − 1

y − 1

)−1 [(n−y)/k]∑
i=0

(−1)i
(

y

i

)(
n − ki − 1

n − ki − y

)
, (4.11)

which is equivalent to Equation (2.80) of Balakrishnan and Koutras (2002).

4.2. The waiting time associated with the sum of success run lengths

In this section we consider the statistic Tr,k for r ≥ k > 0. By a slight modification
of Proposition 2.1 the exact PDF of Tr,k is established in Theorem 4.7 for s ≥ 0 and in
Proposition 4.5 for s = −1. In the sequel, 1A(·) stands for the indicator function of the set
A = {1, 2, . . . , k − 1}.
Theorem 4.7. Let Tr,k (s ≥ 0) denote the number of draws according to the Pólya–Eggenberger
sampling scheme until the total number of successes in runs of length greater than or equal to
k is equal to or exceeds the value r for the first time. Then,

(a) P(Tr,k = r) = pr(0);

(b) for n ≥ r + 1,

P(Tr,k = n) =
k−1∑
α=0

n−r∑
y=1

pn(y)

y∑
i=0

(
y

i

)(
r − k − (k − 1)i + α − 1A(α)

r − (i + 1)k + α

)

× C(n − y − r − α, y − i, k − 1). (4.12)

Proof. Obviously part (a) holds. We proceed to prove part (b). Set Bα = {the total number
of successes in runs of length greater than or equal to k in n trials is equal to r + α}, α =
0, 1, . . . , k − 1, and denote by Yn the total number of failures in the sequence of n draws.
Then, a typical element of the event {Tr,k = n} ∩ Bα ∩ {Yn = y} is a permutation of n − y

Ss and y Fs such that a success run of length at least k (for α = 0) or exactly equal to k (for
α = 1, 2, . . . , k − 1) follows the last F, and the total number of successes in runs of length
greater than or equal to k is equal to r + α. The calculation of the number N(n, α, y) of these
permutations can be carried out as follows. Initially i cells, Uj1 , . . . , Uji

, are chosen from the
cells U1, . . . , Uy in

(
y
i

)
ways, i = 0, 1, . . . , y. Fix i and j1, . . . , ji . We note that any allocation

of n − y Ss in y + 1 cells under the restrictions of the problem is carried out in two stages for
α = 0 and in three consecutive stages for α = 1, 2, . . . , k − 1. Namely, for α = 0, at the first
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stage r Ss are placed in the cells Uj1 , . . . , Uji
, Uy+1, with each cell receiving at least k Ss in

J (r, i +1, k) ways by Lemma 2.3 and, for α = 1, 2, . . . , k−1, k Ss are placed in the cell Uy+1,
and in the sequel r + α − k Ss are allocated to the cells Uj1 , . . . , Uji

, with each cell receiving
at least k Ss in J (r + α − k, i, k) ways. Next, the remaining n − y − r − α Ss are placed in the
remaining y − i cells with no cell receiving more than k −1 Ss in C(n−y − r −α, y − i, k −1)

ways by Corollary 2.2. Summing with respect to i and applying the multiplicative principle,
we find that

N(n, 0, y) =
y∑

i=0

(
y

i

)
J (r, i + 1, k)C(n − y − r, y − i, k − 1)

and, for α = 1, 2, . . . , k − 1, we find that

N(n, α, y) =
y∑

i=0

(
y

i

)
J (r + α − k, i, k)C(n − y − r − α, y − i, k − 1).

Each of these permutations has probability pn(y), and hence

P({Tr,k = n} ∩ Bα ∩ {Yn = y}) = N(r, α, y)pn(y).

Finally, summing with respect to α and y, y = 1, . . . , n − r , the probability P(Tr,k = n), n ≥
r + 1, follows.

For s = 0 and k = 1, (4.12) reduces to the ordinary negative binomial distribution with PDF

f (n) =
(

n − 1

r − 1

)
pr(1 − p)n−r , n = r, r + 1, . . . .

For s > 0 and r > k, Theorem 4.7 provides new distributions. For s = 0 and r ≥ k, it gives
new exact formulae for the PDF of Tr,k which, for r = k, becomes a new expression of the
geometric distribution of order k (Philippou et al. (1983)) as Wk = Tk,k . A recursive evaluation
of the PDF of Tr,k for s = 0 and r ≥ k was given by Antzoulakos et al. (2003b). Makri et al.
(2007a) provided an alternative formula for the PDF of Tk,k for s ≥ 0.

The case in which s = −1 requires special attention because the random variable Tr,k might
take on the value ∞ with positive probability. We give in the sequel its probability distribution.

Proposition 4.5. Let Tr,k be the balls drawn from an urn containing w white balls and b black
balls, without replacement (s = −1), until the total number of successes in runs of length
greater than or equal to k is equal to or exceeds the value r for the first time. Then,

(a) P(Tr,k = r) = w(r)/(w + b)(r), r ≤ w;

(b) for n = r + 1, . . . , w + b,

P(Tr,k = n) =
k−1∑
α=0

n−r∑
y=1

w(n−y)b(y)

(w + b)(n)

y∑
i=0

(
y

i

)(
r − k − (k − 1)i + α − 1A(α)

r − (i + 1)k + α

)

× C(n − y − r − α, y − i, k − 1);

(c) P(Tr,k = ∞) = ∑r−1
x=0 P(Sw+b,k,w,b,−1 = x), where Sw+b,k,w,b,−1 ≡ Sw+b,k for

s = −1.
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Proof. It is straightforward.

For r > k, Proposition 4.5 provides a new distribution. For r = k, it gives new formulae
for the PDF of Wk = Tk,k , which are alternative to the corresponding ones given by Panaretos
and Xekalaki (1986), Ling (1988), Godbole (1990), and Makri et al. (2007a).

5. Numerical examples

In this section we illustrate the distributions derived in Sections 3 and 4 by means of numerical
examples. In Example 5.1 we calculate the exact joint and marginal PDFs of the RVs Sn,k, Gn,k

and Sc
n,k, G

c
n,k . In Examples 5.2 and 5.3 we provide the means and variances of the RVs Gn,k ,

Gc
n,k , Sn,k , Sc

n,k , and Tr,k . Finally, in Example 5.4 we give some critical values of the conditional
distributions of the RVs Gn,k , Sn,k , Ln, and Gc

n,k , Sc
n,k , Lc

n, given the number of successes Sn,1
in a linear and a circular binary sequence, respectively.

Example 5.1. For s = 0 and k = 2, we calculate the exact joint and marginal distributions of
Sn,k , Gn,k (linear case) and Sc

n,k , Gc
n,k (circular case) as functions of p and q. The value n = 5

was chosen so that the required computations can also be carried out by hand and, thus, it is
possible to gain insight into the formulae presented in the theorems.

Linear case: Let

pi,j = P(M5,2 = (i, j)) = P(S5,2 = i, G5,2 = j), i ∈ {0, 2, 3, 4, 5}, j ∈ {0, 1, 2}.
Then we have

p0,0 = p3q2 + 6p2q3 + 5pq4 + q5, p2,1 = 6p3q2 + 4p2q3,

p3,1 = 2p4q + 3p3q2, p4,1 = 2p4q,

p4,2 = p4q, p5,1 = p5,

and pi,j = 0 otherwise, by (4.1). Let

fi = P(S5,2 = i), i = 0, 2, 3, 4, 5,

and
gj = P(G5,2 = j), j = 0, 1, 2.

Then we have

(a)

f0 = p3q2 + 6p2q3 + 5pq4 + q5, f2 = 6p3q2 + 4p2q3,

f3 = 2p4q + 3p3q2, f4 = 3p4q,

f5 = p5,

by (4.2);

(b)

g0 = p3q2 + 6p2q3 + 5pq4 + q5, g1 = p5 + 4p4q + 9p3q2 + 4p2q3,

g2 = p4q,

by (3.5).

The marginal distributions fi and gj can also be derived using the joint distribution pi,j .
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Circular case: Let

pi,j = P(Mc
5,2 = (i, j)) = P(Sc

5,2 = i, Gc
5,2 = j), i ∈ {0, 2, 3, 4, 5}, j ∈ {0, 1}.

Then we have

p0,0 = 5p2q3 + 5pq4 + q5, p2,1 = 5p3q2 + 5p2q3,

p3,1 = 5p3q2, p4,1 = 5p4q,

p5,1 = p5,

and pi,j = 0 otherwise, by (4.7). Let

fi = P(Sc
5,2 = i), i = 0, 2, 3, 4, 5, and gj = P(Gc

5,2 = j), j = 0, 1.

Then we have

(a)

f0 = 5p2q3 + 5pq4 + q5, f2 = 5p3q2 + 5p2q3,

f3 = 5p3q2, f4 = 5p4q,

f5 = p5,

by (4.8);

Table 1: The means and variances of Gn,k and Sn,k .

s w b n k E(Gn,k) V (Gn,k) E(Sn,k) V (Sn,k)

−1 5 5 5 1 1.61 0.32 2.50 0.69
2∗ 0.64 0.27 1.53 1.73

10 1 3.00 0.67 5.00 0.00
3∗ 0.50 0.25 1.67 2.94

9 1 10 1 1.80 0.16 9.00 0.00
7∗ 0.60 0.24 4.80 15.76

0 5 5 10 1 2.75 0.69 5.00 2.50
3∗ 0.56 0.36 2.13 5.52

100 3 6.19 3.52 24.63 61.77
6∗ 0.75 0.68 5.23 34.24

9 1 10 1 1.71 0.54 9.00 0.90
7∗ 0.62 0.24 5.64 20.23

100 3 7.80 3.41 87.04 23.50
27∗ 0.48 0.35 16.85 448.76

1 5 5 10 1 2.55 0.82 5.00 4.55
3∗ 0.59 0.40 2.45 7.80

100 7∗ 0.82 1.65 7.62 171.33
9 1 100 39∗ 0.42 0.31 27.62 1396.26

5 5 5 10 1 2.00 1.20 5.00 10.00
3∗ 0.60 0.43 3.20 13.44

100 11∗ 0.65 1.38 14.04 739.03
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Table 2: The means and variances of Gc
n,k and Sc

n,k .

s w b n k E(Gc
n,k) V (Gc

n,k) E(Sc
n,k) V (Sc

n,k)

−1 5 5 5 1 1.39 0.25 2.50 0.69
2∗ 0.70 0.21 1.81 1.80

10 1 2.78 0.62 5.00 0.00
3∗ 0.60 0.24 2.02 3.01

9 1 10 1 1.00 0.00 9.00 0.00
9∗ 1.00 0.00 9.00 0.00

0 5 5 10 1 2.50 0.62 5.00 2.50
3∗ 0.63 0.35 2.50 6.25

100 3 6.25 3.52 25.00 62.50
6∗ 0.78 0.70 5.47 35.78

9 1 10 1 1.25 0.26 9.00 0.90
8∗ 0.78 0.17 7.32 15.45

100 3 7.29 3.57 87.48 22.25
29∗ 0.47 0.34 17.90 518.35

1 5 5 10 1 2.28 0.74 5.00 4.55
3∗ 0.62 0.37 2.81 8.77

100 7∗ 0.85 1.72 7.98 183.33
9 1 100 44∗ 0.40 0.26 30.50 1649.38

5 5 5 10 1 1.76 1.00 5.00 10.00
4∗ 0.42 0.26 3.00 14.87

100 12∗ 0.56 1.10 13.74 754.54

(b)

g0 = 5p2q3 + 5pq4 + q5, g1 = p5 + 5p4q + 10p3q2 + 5p2q3,

by (3.9).

The marginal distributions fi and gj can also be derived using the joint distribution pi,j .

Example 5.2. The means and variances of Gn,k , Sn,k , and Gc
n,k , Sc

n,k , using several sampling
schemes PE(w, b, s), are presented in Tables 1 and 2, respectively, for various values of n and
k. The results of the tables show a variety of possible configurations and highlight similarities
and discrepancies between the means and variances of linear and circular sequences.

The selected values of the parameters s, w, b, n, and k illustrate sampling schemes of special
interest; commonly used initial urn contents, especially for the case in which s = 0; values
of n ranging from small to large; and values of k of special meaning. For instance, the value
k = 1 is related to the number of success runs—via Gn,1 (Gc

n,1)—as well as to the number of
successes in the sequence—via Sn,1 ≡ Sc

n,1. The values of k with stars (∗) equal the nearest
integer to the mean length of the longest success run, a characteristic number of consecutive
successes in every linear or circular sequence. To obtain the results of Tables 1 and 2 we have
used (3.5), (3.9), (4.2), (4.5), (4.8), and (4.10).

Example 5.3. Here we calculate the mean and variance of the RV Tr,k for t = min{n :∑n
x=r P(Tr,k = x) ≥ 0.995} or for t = 125 trials, whichever stopping time t comes first.
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Table 3: The stopping times, cumulative sums, means, and variances of Tr,k .

s w b k r t

t∑
x=r

P(Tr,k = x) E(Tr,k) V (Tr,k)

0 5 5 2 2 26 0.9953 5.85 18.87
4 38 0.9958 11.82 39.63

9 1 1 1 3 0.9990 1.11 0.11
2 4 0.9963 2.20 0.22

2 2 6 0.9962 2.32 0.58
4 10 0.9978 4.67 1.27
8 15 0.9969 9.13 1.94

1 5 5 1 1 13 0.9952 2.16 3.22
2 21 0.9954 4.37 8.14

2 2 79 0.9950 7.55 78.12
4 125 0.9940 15.19 217.91

9 1 1 1 3 0.9955 1.11 0.12
2 5 0.9950 2.22 0.29

2 2 9 0.9962 2.36 0.92
4 14 0.9952 4.73 2.22
8 24 0.9957 9.30 5.02

5 5 5 1 1 125 0.9921 4.42 100.91
2 125 0.9841 7.84 177.82

2 2 125 0.9170 10.68 346.93
4 125 0.8735 15.83 454.89

Table 3 presents t ,
∑t

x=r P(Tr,k = x), E(Tr,k), and V (Tr,k) for various PE(w, b, s) sampling
schemes with s ≥ 0 and several values of k and r . To obtain the results of Table 3 we have
used (4.12).

Example 5.4. We illustrate the conditional distributions of the statistics Gn,k , Sn,k , and Ln,
and Gc

n,k , Sc
n,k , and Lc

n, given the number of successes Sn,1 = n−y in binary sequences ordered
linearly and circularly, respectively. Results similar to the ones presented here may be useful
in nonparametric tests of randomness in which the null distributions are given by (3.6), (3.10),
(4.3), (4.6), (4.9), and (4.11).

Let Un denote either the RV Ln or the RV Lc
n, and let Vn,k denote any of the RVs Gn,k , Gc

n,k ,
Sn,k , Sc

n,k . For 0 ≤ y ≤ n, 1 ≤ k ≤ n − y, and a given nominal probability α (the significant
level), let uβ and vγ be integers (critical values) in the support of the corresponding RV such
that

P(Un ≥ uβ | Sn,1 = n − y) = β, P(Vn,k ≥ vγ | Sn,1 = n − y) = γ.

The probabilities β (0 < β ≤ α < 1) and γ (0 < γ ≤ α < 1), the exact α values, or the
natural significant levels are the largest real numbers which do not exceed α. They may not
be equal to the assigned nominal probability α, as they refer to discrete random variables. In
Table 4 we give such upper-tailed critical values of uβ and vγ for α = 0.05 and n = 10 linearly
and circularly ordered trials. The values of β and γ are shown in brackets. For the linear case,
the fourth column refers to Gn,k and the fifth column refers to Sn,k . For the circular case, the
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Table 4: uβ and vγ for α = 0.05 and n = 10. The values of β and γ are shown in brackets.

n − y uβ k vγ

Linear case

4 4 (0.0333) 1 – –
2 – –
3 – 4 (0.0333)
4 1 (0.0333) 4 (0.0333)
5 – –
6 – –
7 – –

5 5 (0.0238) 1 5 (0.0238) –
2 – –
3 – 5 (0.0238)
4 – 5 (0.0238)
5 1 (0.0238) 5 (0.0238)
6 – –
7 – –

6 6 (0.0238) 1 5 (0.0238) –
2 3 (0.0476) –
3 2 (0.0476) –
4 – 6 (0.0238)
5 – 6 (0.0238)
6 1 (0.0238) 6 (0.0238)
7 – –

7 7 (0.0333) 1 – –
2 – –
3 – –
4 – 7 (0.0333)
5 – 7 (0.0333)
6 – 7 (0.0333)
7 1 (0.0333) 7 (0.0333)

Circular case

4 4 (0.0476) 1 – –
2 – –
3 – 4 (0.0476)
4 1 (0.0476) 4 (0.0476)
5 – –
6 – –
7 – –

5 5 (0.0397) 1 5 (0.0079) –
2 – –
3 – 5 (0.0397)
4 – 5 (0.0397)
5 1 (0.0397) 5 (0.0397)
6 – –
7 – –

6 6 (0.0476) 1 – –
2 3 (0.0476) –
3 – –
4 – 6 (0.0476)
5 – 6 (0.0476)
6 1 (0.0476) 6 (0.0476)
7 – –
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fourth column refers to Gc
n,k and the fifth column refers to Sc

n,k . Similar tables can be provided
for larger values of n and for any α.

The data of Table 4 admits the following interpretation for a possible application in nonpara-
metric tests of randomness. For instance, suppose that we want to test the null hypothesis of
randomness, H0, versus the alternative hypothesis of nonrandomness, H1, for a linearly ordered
binary sequence with S10,1 = 5. Then, by Table 4, at a significant level of at most α = 0.05,
the null hypothesis, H0, is rejected when

(a) the length of the observed longest success run is at least 5 (because uβ = 5, with
β = 0.0238);

(b) the number of success runs of length at least 1 observed is at least 5 (vγ = 5, with
γ = 0.0238), or the number of success runs of length at least 5 observed is (at least)
equal to 1 (vγ = 1, with γ = 0.0238);

(c) the sum of the lengths of all the success runs of length at least k (with k = 3, 4, or 5)
observed is at least 5 (vγ = 5, with γ = 0.0238 for k = 3, 4, or 5).

A similar interpretation holds for circularly ordered sequences. Hence, based on analogous
arguments, we do not reject the null hypothesis of randomness, at a significant level of at most
0.05, of the sequence SSSFSFSSFS arranged on a line or on a circle (given in Section 2.1).
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