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Abstract

Meltwater drainage beneath ice sheets is a fundamental consideration for understanding ice–bed
conditions and bed-modulated ice flow, with potential impacts on terminus behavior and ice-
shelf mass balance. While contemporary observations reveal the presence of basal water
movement in the subglacial environment and inferred styles of drainage, the geological record
of former ice sheets, including sediments and landforms on land and the seafloor, aids in under-
standing the spatiotemporal evolution of efficient and inefficient drainage systems and their
impact on ice-sheet behavior. We highlight the past decade of advances in geological studies
that focus on providing process-based information on subglacial hydrology of ice sheets, how
these studies inform theory, numerical models and contemporary observations, and address
the needs for future research.

1. Introduction

Liquid water beneath ice sheets influences ice-flow organization and velocity (Kyrke-Smith
and others, 2014; Bell and others, 2007; Larter and others, 2019), subglacial sediment rheology
and transport (Damsgaard and others, 2020; Minchew and Meyer, 2020), grounding-line
behavior (Horgan and others, 2013; Fried and others, 2015) and ice-shelf mass balance
(Le Brocq and others, 2013; Alley and others, 2016). Ice-sheet response, however, is contingent
on subglacial water supply and drainage organization (Röthlisberger, 1972; Walder, 1986;
Schoof, 2010). While some components of subglacial hydrological systems are relatively stable
(i.e. fixed), such as large subglacial lakes beneath the East Antarctic ice sheet (Kapitsa and
others, 1996) and incised bedrock channels (Kirkham and others, 2020), other reservoirs
and drainage pathways are more transient and evolve through time and space with non-linear
and spatially heterogeneous impacts on ice-sheet behavior (Schroeder and others, 2013;
Andrews and others, 2014; Hoffman and others, 2016; Siegfried and others, 2016; Rada and
Schoof, 2018). Beyond the grounding line, contemporary sediment plumes emanating from
marine-terminating outlet glaciers of the Greenland ice sheet observed via satellite imagery
(Fried and others, 2015; Schild and others, 2016) and surficial expressions of channelization
beneath Antarctic ice shelves (Le Brocq and others, 2013; Alley and others, 2016) indicate
active subglacial hydrological systems upstream.

Major advances in observing contemporary ice-sheet hydrology, such as radar specularity
(Schroeder and others, 2013) and repeat satellite measurements (Fricker and others, 2016),
reveal spatiotemporal evolution of basal water transmission on sub-decadal scales. Yet, the lim-
ited nature of long-term (decadal to millennial) observations impedes holistic perspectives on
the modes and magnitudes of water drainage beneath ice sheets and their consequences for
ice-sheet behavior. In formerly glaciated landscapes and continental margins, relict subglacial
water drainage is recorded by meltwater landforms and sedimentological successions (Fig. 1;
Kehew and others, 2012; Lee and others, 2015; Greenwood and others, 2016; Esteves and
others, 2017). Channels (broadly defined) incised into bedrock and sediments and
positive-relief esker ridges record drainage styles and organization (Storrar and others, 2014;
Zoet and others, 2019; Lewington and others, 2020) and, in some cases, associated ice-margin
retreat behavior (Livingstone and others, 2020; Simkins and others, 2021) and creation of tidal
embayments in grounding lines (Horgan and others, 2013). Distinct meltwater plume deposits
and hydrologically sorted sediments reveal relative magnitudes and frequency of water drain-
age into the ocean, precursory, synchronous or resulting glacial environment changes, and
geochemical signatures of sediment and water provenance (Witus and others, 2014;
O’Regan and others, 2021; Lepp and others, 2022). Such empirical observations based on
the geological record have long guided and continue to inform, and challenge, glaciological
theory (e.g. Walder and Hallet, 1979; Boulton and others, 2009; Hewitt, 2011).

2. Recent scientific advances from paleo-ice sheets

Over the past decade, advances in geophysical methods, growing data accessibility and sedi-
mentological studies from deglaciated terrains have pushed the boundaries of subglacial
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Fig. 1. (a) Murtoo pathway within glacially streamlined terrain in central Finland (Mäkinen and others, 2017; Ojala and others, 2019). Data: LiDAR-based DEM from
the National Land Survey of Finland. (b) Meltwater channels and eskers drape and incise drumlins in the Bothnian Sea (Greenwood and others, 2017). Data:
MBES-based DEM from the Swedish Maritime Administration. (c) Meltwater channel incised retreat moraines (red dots) on Thor Iversenbanken in the Central
Barents Sea (Esteves and others, 2017). Data: MAREANO MBES-based bathymetry from the Norwegian Mapping Authority. (d) Meltwater corridor in which channels
cross-cut grounding zone wedges (red dots) in the Ross Sea, Antarctica (Simkins and others, 2021). Data: MBES-based DEM from cruise NBP15-02, available through
the United States Antarctic Program Data Center. In (a)–(d), red dashed lines outline the encompassing areas of meltwater landforms. (e) CT scan and photograph
of the upper 250 cm of sediment core NBP19-02 KC-08, collected in the Amundsen Sea, records meltwater plume events that emanated from the Thwaites Glacier
grounding line (Lepp and others, 2022).
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hydrology understanding and challenged concepts of the spatio-
temporal evolution of water drainage beneath ice sheets. Near
complete coverage of light detection and ranging (LiDAR) and
satellite photogrammetry elevation data across terrestrial land-
scapes formerly glaciated by the European and North American
ice sheets, give unprecedented views of paleo-subglacial meltwater
landforms that range in relief from 10−1 to 102 m and lengths of
101–105 m, allowing holistic ice-sheet scale assessment of controls
on drainage. While nowhere near as complete, increasing coverage
and quality of bathymetry data from deglaciated continental
shelves provide perspectives on water flow beneath marine-based
ice sheets and implications for ice-sheet behavior at fine scales
previously unseen. These offshore advances via multibeam echo
sounding (MBES) surveys are facilitated by national hydrographic
programs such as MAREANO (e.g. Esteves and others, 2017),
marine geological repositories such as the Marine Geoscience
Data System and researcher-led surveying and compilations (e.g.
Greenwood and others, 2021). Additionally, 3-D seismic survey
grids, albeit sparse but increasing in spatial coverage due to
industry-academic relations, are unique datasets to assess tem-
poral evolution of drainage pathways and internal architecture
of meltwater landforms (e.g. Kirkham and others, 2021, 2022).
These advances in terrain data acquisition and availability have
not only permitted ice-sheet scale documentation of small-scale
(meter to sub-meter) and intricate meltwater landforms, demon-
strating their variability as well as near ubiquity, but have also
uncovered both new types of landforms and little recognized
meltwater landform assemblages, stimulating new hypotheses
for meltwater landform genesis and understanding of the coup-
ling to ice-flow and ice-margin behavior (Storrar and others,
2014; Ojala and others, 2019; Kirkham and others, 2020).

Challenging the traditional binary categorization of subglacial
drainage through either ‘channelized’ or ‘distributed’ pathways
(Röthlisberger, 1972; Kamb, 1987), meltwater corridors found
in the Northern Hemisphere (e.g. Peterson and others, 2018;
Lewington and others, 2020), and on the Antarctic seafloor
(Simkins and others, 2021) represent broad subglacial drainage
pathways of meltwater landform assemblages that span 101–102

km in length. Corridor-like drainage systems have also been iden-
tified beneath the contemporary Greenland ice sheet (Hoffman
and others, 2016; Davison and others, 2019) with complex config-
urations evolving depending on hydraulic gradients, meltwater
input to the subglacial environment and sediment deformation
(Davison and others, 2019). These corridors indicate co-existence
of drainage styles, varying genetic erosional and depositional pro-
cesses and waxing and waning of drainage magnitudes in time
and space. Additionally, newly observed landforms in Scandinavia,
termed murtoos, potentially bridge the long-standing gap in recog-
nizing geomorphic evidence for distributed subglacial drainage
(Mäkinen and others, 2017; Ojala and others, 2019). These low-
relief triangular subglacial landforms oriented with their apex in
the ice-flow direction (Fig. 1a) often occur with other meltwater
landforms such as channels and eskers, and sediments which
have undergone hydraulic sorting, ductile deformation and liquefac-
tion (Becher and Johnson, 2021). Collectively, murtoo presence sug-
gests efficient transitional drainage between channelized and
distributed under high-pressure conditions, potentially in response
to transient linked cavity-type drainage systems (Ojala and others,
2022) similar to those beneath the Greenland ice sheet (Hoffman
and others, 2016). Both corridors and murtoos point to variable
modes of drainage that co-exist or evolve in time and space includ-
ing ‘efficient’ and ‘inefficient’ components, thus questioning the val-
idity of assuming or parameterizing singular modes of subglacial
water drainage.

A long-standing challenge in glacial geomorphology has been
how to interpret the temporal significance of meltwater

landforms: the time required, and the stability of discharge
required, for both landform and whole drainage pathway forma-
tion. Meltwater landform relations to other subglacial and ice-
marginal landforms provide insights in this regard (e.g.
Greenwood and others, 2017; Simkins and others, 2017; Ojala
and others, 2019; Livingstone and others, 2020). For example,
drumlins and mega-scale glacial lineations incised by channels
and draped by eskers in the Bothnian Sea indicate a geomorphic
switch from active bedform shaping to channelized water drain-
age overprinting stable bedforms, shortly before deglaciation
(Fig. 1b; Greenwood and others, 2017). Here, interlinking chan-
nels and eskers of comparable sizes within a coherent drainage
path highlight the transitory dominance of erosion and deposition
in the subglacial environment. Episodic esker segment (‘bead’)
deposition has long been inferred from the terrestrial landform-
sediment record (De Geer, 1897; Banerjee and McDonald, 1975;
Mäkinen, 2003). Livingstone and others (2020) demonstrate a
tight relationship between esker beads and De Geer moraines in
central Nunavut and infer time-transgressive landform building
by drainage pathways to the ice margin. Similarly, meltwater
channel incision through retreat moraines in the Barents Sea
(Fig. 1c; Esteves and others, 2017) and variable incision of or
draping by retreat moraines in the western Ross Sea (Simkins
and others, 2017) indicate the relative persistence of channelized
drainage during active ice-margin retreat. Embayments can form
where meltwater channels drain at grounding lines (Horgan and
others, 2013; Simkins and others, 2017) likely through grounding-
line sediment non-deposition, with potential to enhance tidal
action at and upstream of the grounding line as ocean water
flushes in and out of the channel path as observed at the contem-
porary Whillans Ice Stream (Horgan and others, 2013). A corri-
dor of over 80 meltwater channels on the Antarctic continental
shelf (Fig. 1d; Simkins and others, 2021) had prolonged impacts
on grounding-line behavior as larger magnitude grounding-line
retreat events and grounding zone wedge deposition occurred
while the channels within the corridor were active, compared to
smaller retreat events and moraine deposition when the channels
were inactive. While the mechanism for this relationship remains
unknown, it possibly results from hydrological controls on sedi-
ment rheology and mobility that influence building of ice-
marginal landforms that may or may not reduce effective water
depths enough to counterbalance grounding-line buoyancy-
driven retreat. Such observations of meltwater–grounding-line
landform associations and the potential to document these over
large tracts of paleo-ice-sheet beds offer new possibilities for con-
straining the time component of the meltwater landform record,
as well as quantifying sediment loads and, for example, seasonal
deposition of individual esker beads.

Complementary to geomorphological studies, sediment
records from deglaciated continental shelves and proglacial lake
basins elucidate the temporal persistence of subglacial and
grounding-line water discharge and associated changes in ice-
sheet configuration and behavior (e.g. Rüther and others, 2012;
Lee and others, 2015; Avery and others, 2021; O’Regan and
others, 2021; Lepp and others, 2022). Meltwater plume deposits
offshore of Thwaites Glacier, Antarctica and Ryder Glacier,
Greenland are a common feature associated with (or precursor
to) glacier retreat and ice-shelf break up events, indicated by the
millimeter-scale stratigraphy resolved by computed tomography
(CT) scans and by grain-scale sedimentology (Fig. 1e; O’Regan
and others, 2021; Lepp and others, 2022). Downcore stratigraphy
and trace elemental ratios in cores that sample meltwater plume
deposits reveal differences in relative magnitudes and frequencies
of subglacial drainage into the ocean offshore of western and east-
ern Thwaites Glacier, and suggest greater magnitudes of
sediment-laden water were delivered to the ocean in recent
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centuries compared to the past several thousand years (Lepp and
others, 2022). In the Baltic Sea basin, where proglacial varved
sediments have long been used to document the pattern and
pace of Fennoscandian ice-margin retreat, Avery and others
(2021) find multi-decadal cycles of enhanced meltwater discharge
through a 725 year varve series, ∼15 000 years ago. In these paleo
cases, and particularly where the former ice-sheet bed is now
exposed, there is great potential for examining links between
the temporal information archived in the distal sedimentological
record of meltwater events and longevity of discharge, and the
high-resolution geomorphology of the hydrological system
responsible.

A recent body of work examining physical processes of and
conditions for subglacial fluvial erosion, deposition and sediment
mobility is an important step forward (Beaud and others, 2016,
2018; Damsgaard and others, 2017; Hewitt and Creyts, 2019;
Kirkham and others, 2022; Stevens and others, 2022; Vérité and
others, 2022). These studies build towards an integrated or con-
tinuum view of meltwater organization, depending on water sup-
ply and sources, basal conditions and substrate properties.
Importantly, they make advances towards knowledge of where,
over what timescales, and with what meltwater discharge regimes,
sediments are mobilized and landforms may form, opening up
the vast landform record to much more effective and accurate
use as a document of coupled meltwater – ice flow – ice margin
behavior in paleo-ice sheets over seasonal-to-millennial
timescales.

3. Looking forward

To push the field of subglacial hydrology forward using the land-
form and sediment records of deglaciated regions, we need:
increased geophysical data coverage in regions proximal to con-
temporary ice-sheet margins; coupled remote-sensing and
field-based observations in terrestrial landscapes; reporting of
quantitative sedimentologic and morphometric data and commu-
nity building to work across disciplinary bounds and study-area
silos. Of promise in narrowing knowledge gaps are emerging
themes of research on deeper groundwater interactions with the
ice–bed interface (Gustafson and others, 2022) and its implica-
tions for landform genesis (Boulton and others, 2009;
Hermanowski and Piotrowski, 2019), understanding subglacial
lake and ice-sheet surface connections to subglacial drainage sys-
tems (Greenwood and others, 2016; Simkins and others, 2017),
assessment of the role of local (100–101 m relief) variability in
bed conditions on drainage organization (Simkins and others,
2021) and the continued pursuit of constraining time for melt-
water landform construction and evolution; each of these pursuits
will benefit from more seamless integration of theory, numerical
models and coupled geomorphological and chronological studies
(Kirkham and others, 2022; Stevens and others, 2022).
Additionally, higher-resolution topographic data from the surface
of Mars offer opportunities to dig deeper into the surficial expres-
sions of meltwater landforms (e.g. Butcher and others, 2020),
whereby comparison with Earth’s meltwater landforms may
offer new insights into key processes controlling their genesis.
Here on Earth and on Mars, we need to be mindful of what we
are not seeing, such as evidence for distributed, transient and
hard-bed systems that might not leave their mark, in geomorpho-
logical and sedimentological records of subglacial hydrological
systems. Additionally, when planning new research projects,
those of us working on records of paleo-ice sheets and those
studying contemporary ice sheets should draw on literature
from the two respective fields to identify key gaps in understand-
ing of subglacial hydrological forms and processes that will aid in
assessing the future of the Greenland and Antarctic ice sheets.
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