
AN EXTENSION OF THE CLASS OF 
ALTERNATIVE RINGS 

D. L. OUTCALT 

1. Introduction. Define R to be a ring of characteristic not 2 or 3 satisfying 
the identity 

(1) (x,y,z) = (y,z,x) 

for all x, y, z G R, where by characteristic not p is meant x —> px is a one-to-
one mapping of R upon R. The associator (a, b, c) of R is defined by (a, 6, c) 
= ab-c — a-bc. lî R also satisfies the identity 

(2) (x, x, x) = 0 

for all x £ R, then it is easy to see by linearizing (2) and applying (1) that 
R is alternative. Conversely, it is well known that (1) and (2) are satisfied by 
every alternative ring. That R need not be alternative is seen by (4, Ex. 1, 
p. 986); hence the class of rings satisfying (1) is a non-trivial extension of the 
class of alternative rings. 

Some time ago, P. Jordan pointed out that (x, x, x)2 = 0 is an identity in 
R (7, p. 395). This observation of Jordan's, which has apparently not been 
verified in the literature, yields the result that if a2 = 0 implies a = 0 in R, 
then R is alternative. In this paper, we verify Jordan's observation in the 
process of establishing the following results on the structure of R. If R is either 
simple or primitive, then R is a Cayley-Dickson algebra or associative; and 
if R is semi-simple, then R is a subdirect sum of Cayley-Dickson algebras and 
primitive, associative rings. 

We are using the standard terminology. R is simple provided R has no 
proper ideals and R2 ^ 0; R is primitive in case R contains a regular, maximal 
right ideal which contains no non-zero ideals of R; the radical of R is the 
intersection of its regular, maximal right ideals; and R is semi-simple if the 
radical of R is zero. 

Note that our results on the structure of R are identical with those for 
alternative rings (2, Th. 2, p. 729 and Th. 3, p. 730; 3, Th. 3, p. 399). Also, 
that R is a Cayley-Dickson algebra or associative if R is simple, generalizes 
Kleinfeld's theorem that an assosymmetric ring of characteristic not 2 or 3 
without ideals I 9^ 0 such that I2 — 0 is associative (4, p. 985). Finally, the 

Received September 17, 1963. Presented to the American Mathematical Society, August 30, 
1963. This paper is based upon the author's doctoral dissertation written at The Ohio State 
University under the direction of Professor Erwin Kleinfeld. The author wishes to express his 
appreciation for all the guidance and encouragement that Professor Kleinfeld has given him. 

130 

https://doi.org/10.4153/CJM-1965-013-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-013-0


ALTERNATIVE RINGS 131 

result on simple rings is shared by many classes of associator dependent rings 
(6, Th. 6). Associator dependent rings are defined to be rings satisfying (2) and 

(3) «i(x, y, z) + a2(y, z, x) + a3(z, x, y) + a4(x, 2, y) 
+ ah(z, y, x) + a*(y, x, z) = 0 

for fixed a* in some field of scalars (5). A natural extension of the study of 
associator dependent rings would be to drop the assumption of (2) and study 
rings satisfying a particular form of (3) which does not imply (2). Rings 
satisfying (1) are such a class of rings. 

2. The/ - funct ion. In this section we shall study the properties in R of the 
/-function introduced in (1, p. 880): 

(4) f(w, x, y, z) = (wx, y, z) — x(w, y, z) — (x, y, z)w. 

Then we shall use those properties to derive some useful identities. 
Most of the computations which follow involve the use of equation (1). 

However, it will be easy to tell when (1) has been used; so its use will not 
be cited. 

We need the Teichmiiller identity, which holds in an arbitrary ring: 

0 = h(w, x, y, z) = {wx, y, z) — (w, xy, z) + (w, x, yz) 
— w(x, y, z) — (w, x, y)z. 

Now, expanding/ and h and collecting terms yields 

f(w, x, y, z) — h(w, x, yj z) — h(x, y, z, w) 
= — (zw, x, y) + w(z, x, y) + (w, x, y)z\ 

but 
f(z, w, x, y) = (zw, x, y) — w(z, x, y) — (w, x, y)z; 

hence 

(5) f(w,x,y,z) = -f(z,w,x,y). 

Define the commutator (a, b) by (a, b) = ab — ba. Then 

f(w, x, y, z) - /(z, w, x, y) + f(y, z, w, x) - h(y, z, w, x) 
= O , (x, y, z)) - (x, (y, z, w)) + (y, (z, w, x)) - (z, (w, x, y)) 

upon expanding/ and h and collecting terms. However, by (5) we have 

f(w, x, y, z) - f(z, w, x, y) + f(y, z, w, x) = 3/(w, x, y, z), 

hence 

(6) 3/(w, x, y, z) = (w, (x, y, z)) - (x, (y, z, w)) + (y, (z, w, x)) 
- (z, (w, x, y)). 

Letting w = x and y = z in (6), we obtain/(x, x, y, y) = 0, which yields, upon 
linearizing, 
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(7) /(«;, x, y, z) + f(x, w, y, z) + f(w, x, z, y) + f(x, w, z, y) = 0. 

Using (5) and (7), we can write 

f(w, x, y, z) = / (x, w, z, y) + f(z, y, x, w) - f(w, x, z, y) - f(y, z, x, w) 

- 3f(x,w,z,y). 

Expanding the first four terms using (4) and the last using (6), we obtain 

(8) f(w, x, y, z) = ((x, w), z, y) + (x, w, (z, y)). 

Using (4) and then (6) to expand 3/(x, y, x, z), we obtain, upon subtracting 
the resulting expressions, 

A (x, y, z) = 3(xy, x, z) — x(y, x, z) — 2(y, x, z)x — 2y{x, x, z) — (x, x, z)y 

- (x, (x, y,z)) + 0 , (y, x, x)) = 0. 

Similarly, using (4) and then (6) to expand 3/(x, x, y, z), we obtain 

B(x, y, z) = 3(x2, y, z) — 3x(x, y, z) — 3(x, y, z)x — (y, (z, x, x)) 

+ (s, (y, x, x)) = 0. 

Also, by (7) we have 

0 = 2f(y, z, x, x) - f(z, y, x, x) - 3f(y, z, x, x). 

Expanding the first two terms using (4) and then the last term using (6), we 
obtain 

(9) 2(yz, x, x) — (zy, x, x) — z(y, x, x) — (z, x, x)y = 0. 

Next, we wish to establish the important identity 

(10) 3((;y, x, x), x, x) + ((x, x, x), x, y) + ((x, x, x), y, x) = 0. 

Indeed, if we expand / by (4), we observe that 

I i /Y* /Y* ^ 2 -V* i # I Y* Y" Y* Y*2 } • 
/ \ %A/ y *A/ y vV « \A/ J j \%A/ j •A'j vV • iA/ J • 

hence application of (5) yields 

(11) fix2, x, x, x) = 0. 

Note that in an arbitrary ring, 

( /y» /y /y* \ —— / /y» Z /y» J _— ( 'V* /V* " 1 
«A/j iA/ y Jv j "—" V.A/ } vA/y "~"~ V«A/ y *A/ } • 

Thus 

a /y» /y* / y ] / y / y \ _ _ [ f -y* 'V* 2 \ /y* /y* \ • 
•/v i •A' • vV y « vV • »Â  y \ \ «A/ « •A' y • %A/ • «A/ y • 

but by (8) 

— I I T -v* 1 Y* 'Y*! T i Y*" 'Y* Y* Y*l 
V \ *A" • «A/ y « *A/ • »A/ y / l *V • «A/ « <A/ • «A/ y • 

hence by (11) we have 

(12) ((x, x, x), x, x) = 0 . 
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Substituting x + y for x in (12) and then — x + y for x in (12) and adding 
yields 

(13) 3((x, x, 3/), x, x) + ((x, x, x), x, y) + ((x, x, x), y, x) + ((y, y, y), x, x) 
+ 3((y, y, x), y, x) + 3((y, y, x), x, y) + 3((y, x, x), y, y) = 0, 

since terms with one or three x's cancel, and terms with no x's or five x's go 
out by (12). Similarly, substituting x + 2y for x in (12) and then —x + 2y 
for x in (12) and adding yields 

3((x, x, y), x, x) + ((x, x, x), x, 3/) + ((x, x, x), 3/, x) + 4((y, 3/, 3/), x, x) 
+ 12((y, 3% x), y, x) + 12((y, 3/, x), x, 3O + 12((3% x, x), y, y) = 0. 

Subtracting (13) from this last equation and cancelling by 3, we obtain 

((y, J, y), x, x) + 3 ((3% y, x), y, x) + 3((y, y, x), x, 3O + 3((y, x, x), y, y) = 0, 

which yields (10) on comparing with (13). 
Proceeding from (10) in somewhat the same way as we did from (12), 

substituting x + z for x in (10) and then x — z for x in (10), and adding yields 

(14) 0 = ((y, x, x), z, 2) + ((3/, x, z), z, x) + ((3/, x, z), x, z) + ((3/, z, x), z,x) 

+ ((3% s, x), x, z) + ((3/, z, z), x, x) + ((z, x, x), z, y) 

+ ((z, z, x), x, y) + ((z, x, x), y, z) + ((2, z, x), y, x). 

Letting 3; = x in (14) yields 

(15) 0 = ((x, x, x), z, z) + 3((z, x, x), z, x) + 3((z, x, x), x, z) 
+ 3((z, z, x), x, x). 

Similarly, we substitute x + y for x in (15) and then —x + y for x in (15) 
and add to obtain 

(16) 0 = ((y, x, x), z, z) + ((z, x, x), z, 3O + ((2, x, 3O, 2, x) + ((z, 3/, x), z, x) 
+ ((z, x, x), 3>, z) + ((z, x, 3O, x, z) + ((z, 3>, x), x, z) 

+ ((z, z, x), x, 3O + ((z, z, x), 3/, x) + ((z, z, 3O, x, x). 

Next, we wish to substitute (x, x, x) for y in (16); however, before doing 
that we shall introduce some new notation to make the equations less cumber­
some to work with. 

3. The v-function. For x £ R, define vn(a), a £ R, by 

v(a) = (a, x, x), fl*(a) = z>(^-1(a)). 

It will cause no ambiguity in what follows to fail to take into account in the 
notation that vn(a) depends upon x as well as a. 

Clearly, 

vm (vn (a) ) = vn (vm (a) ) = vm+n (a), 
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and 

vn(a + b) = vn(a) + vn(b). 

Equations (9), (10), and (12) become, respectively, 

C(y, z) = 2v(yz) — v(zy) — zv(y) — v(z)y = 0, 

D(y) = 3v2(y) + (v(x), x, y) + (v(x), y, x) = 0, 

and 

(17) i/2 (a) = 0. 

In what follows, we shall derive some basic identities involving the ^-function, 
and then we shall make the substitution y = v(x) in (16) that we mentioned 
previously. This substitution will lead to the identity vA(y) = 0, which in 
turn yields the identity vd(a)v*(b) = 0. In so doing, we shall also show that 
if a2 = 0 implies a = 0 in R, then R is alternative. 

Now, expanding 0 = B(y,x,x) yields 

(18) v(y2) = yv{y) + v(y)y. 

Also, expanding 

0 = B(y, v(x), x) + B(y, x, v(x)) - 3D(y2) + 3D(y)y + 3yD(y) 

yields 

0 = -9v2(y2) + 9v2(y)y + 9yv2(y); 

hence, by (18) we have 

(19) v2(y2) = v(yv(y) + v{y)y) = v2(y)y + yv2(y). 

Finally, computing 

0 = C(v(y),y) + C(y,v(y))f 

we obtain 

0 = v(v(y)y + yv(y)) — yv2(y) — v2(y)y — 2(v(y))2; 

hence (19) yields 

(20) (v(y))* = 0. 

Equation (20) has far-reaching consequences. In the first place, Jordan's 
result that (v(x))2 = 0, which we mentioned in §1, is a special case of (20), 
and we have by the comments in §1, the following theorem. 

THEOREM 1. If a2 = 0 implies a = 0 in Ry then R is alternative. 

Linearizing (20) yields 

E(a, b) = v(a)v(b) + v(b)v(a) = 0. 
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Since 

{v{a),v(a),v(b)) = (v(a), i/(ô), v(a)) = (v(b), v(a), v(a)), 

using (20) we obtain 

3(z/(a), v(a), v(b)) = —v(a)'v(a)v(b) + v(a)v(b) -v(a) 

— v(a)'v(b)v(a) + v(b)v(a) -v(a) 

= -v{a)E(fl,, b) + E(a, b)v(a) = 0. 

Hence 

(21) (»(a),t>(o),»(i)) = 0 . 

Linearizing (21) we obtain 

(22) (0(a), »(J), v{c)) + (i>(6), »(a), »(<;)) = 0. 

Finally, by (22), 

0 = v(b)E(a, c) - E(a, b)v{c) + (v(a), »(6)f v(c)) + (v(b), v(a), v(c)), 

which yields, upon expansion, 

(23) v(a)-v(b)v(c) = v(b) -v(c)v(a). 

Now, computing 0 = 2C(a, b) + C(b,a), we obtain 

F(a, b) = 3*>(a£) - ai;(6) - 2»(ô)a - v(a)6 - 2bv{a) = 0. 

Next, we expand 

0 = 3v(F(a, b)) + F(a, v(b)) + 2F(v(b), a) + F(v(a), b) 
+ 2F(b,v(a)) +8£ (a , b) 

to obtain 

G(a, b) = 9v2(ab) - 5av2(b) - Av2(b)a - 5v2(a)b - Uv2(a) - 2v(a)v{b) = 0. 

Linearizing (19), we have 

H(a, b) = v2(ab + ba) - av2(b) - v2{a)b - bv2(a) - v2(b)a = 0. 

Then, we compute 0 = G (a, b) — 4:H(a, b) to obtain 

I(a,b) = 5^2(a&) - ±v2(ba) - az;2(6) - v2(a)b - 2i/(a>(ô) = 0. 

Finally, expanding 

0 = 3v(G(a, b)) + 5F(a, v2(b)) + 4F(v2(b), a) + 5F(v2(a), b) 
+ 4F(i, v2(a)) + 2F(v(a), v(b)) + 15E(a, »(*)) + l5E(y(a), b) 

yields 

J(a , 6) = 27v*(ab) - 13av*(b) - Uv*(b)a - 13z;3(a)£ - 14fa/3(a) 
- 3v2(b)v(a) - 3v(ô>2(a) = 0. 

https://doi.org/10.4153/CJM-1965-013-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-013-0


136 D. L. OUTCALT 

Letting y = v(x) in (16), subtracting 

0 = (D(z), x, z) + (D(z), z, x) + D«z, z, *)), 

and applying (17), we obtain 

(24) 0 = (v(z), z} v(x)) + (v(z), v(x), z) + v((z, z, v(x))) - S(v2(z), x, z) 

— 3(v2(z), z, x) — 3v2((z, z, x)). 

Substituting x + y for z in (24), subtracting 0 = D(v(y)) + v(D(y))f and 
applying (17) yields 

(25) 9^3(;y) = (v(x),v(x),y). 

We obtain 

(26) v'{y) = 0 

by letting y = v(y) in (25) and applying (21). Next, we expand 

0 = 3v(J(a, b)) + lSF(a, vd(b)) + UF(v*(b), a) + 13F(v*(a), b) 

+ UF(b, v*(a)) + 3F(v2(b), v(a)) + 3F(v(b), v2(a)) 

+ 43£(a, v2(b)) + 43E(v2(a), b) + 6E(v(a), v(b)) 

to obtain, upon applying (26), 

(27) 2v(a)vz(J>) + 2vz(a)v(b) + 3v2(a)v2(b) = 0. 

Finally, letting a = v(a) and b = v(b) in (27) and applying (26), we obtain 

(28) v*(a)v*(b) = 0. 

4. An ideal. Define 

U(x) = {u G R\u(r, x, x) = (r, x, x)u = (u, x, x) = 0 for all r Ç R}. 

In terms of the ^-function, this would be written 

uv(r) = v(r)u — v(u) = 0. 

LEMMA 1. U(x) is an ideal of R for all x Ç R. 

Proof. Clearly U(x) is a subgroup of the additive group of R. Now, 

(29) v(ur) = v(ru) = 0 

for u G U(x) and r G R since 

3v(ur) = F(u, r) = 0 = F(r, u) = 3v(ru). 

Let u Ç U(x) and r, s Ç. R. Then computing 

0 = uC(r, s) + C(r, s)u — (u, s, v(r)) — (u, v(s), r) + (s, v(r), u) + (v(s), r, n) 
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yields 

(30) us-v(r) = —v(s)-ru. 

Next, we obtain 

(31) us-v(r) = — 2v{us-r) 

upon expanding 

0 = C(r, us) — C(ru, s) + 2v((r, u, s)) — 3v((u, s, r)) + v((s, r, u)) 

and applying (29) and (30). Furthermore, expanding 0 = 2F(us, r) and 
applying (29) and (31), we have 

(32) 5us-v(r) = — 4v(r)-us. 

We establish that 

(33) us-v(r) = — 4ru-v{s) 

by expanding 

0 = 4C(r, s)u + 4(5, v(r), u) + 4:(y(s), r, u) — 4(^(r), u, s) — 4(r, u, v(s)) 

and applying (30) and (32). Finally, expanding 

0 = 4F(ru, s) - 4F(r, us) - 12v((r, u, s)) + 12v((u, s, r)) 

and applying equations (29) through (33), we obtain 6us*v(r) = 0. This 
latter, along with (29), (30), (32), and (33), completes the proof. 

5. Property P . R will be said to have property P providing there is a 
subgroup N of the additive group of R such that v2(N) = 0 for all x € R 
and such that N + I = R for every ideal I 9e 0 of R. Property P is of interest 
because clearly R has property P if R is simple (take N = 0), and we shall 
see that R has property P if R is primitive. 

LEMMA 2. If R has property P, then v(R) C U(x) for all x 6 R. 

Proof. Letting a = x and b = v2(a) in (21), we have 

(v(x),v(x),v*(a)) = 0, 

and by (25) and (28), 

vz(a)(v(x), v(x)j r) = 0 = (v(x), v(x), r)vz(a)\ 

hence vz(a) € U(v(x)). If U(y(x)) = 0, then v\a) = 0; if U(v(x)) ^ 0, then 
N + U(v(x)) = P . For n £ N, u £ U(v(x)), we have, using (25), 

9vz(n + w) = 9vz(n) + (z>(x), fl(x), w) = 0. 

Hence, in either case we have 

(34) v*(a) = 0. 
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Applying (34) to J (a, b) = 0 yields 

(35) v2(b)v(a) + v(b)v2(a) = 0, 

and we obtain 

(36) v2(b)v2(a) = 0 

if we let a = v(a) in (35) and apply (34). 
The next sequence of identities will show that 

v2{b) e U(v2(a)). 

Expanding 

0 = B(v2(a),v2(a),r) 

and applying (20) and (21) with a — b = v(a) yields 

(37) 2v2(a)(v2(a), v2(a), r) + (v2(a),v2(a), r)v2(a) = 0 . 

Similarly, expanding 

0 = B(v2(a),r,v2(a)) 

yields 

(38) -2v2(a)(v2(a), v2(a), r) - 4(v2(a), v2(a), r)v2(a) = 0. 

By adding (37) to (38) we obtain 

(39) v2(a) (v2(a),v2(a),r) = 0 = (v2(a), v2(a), r)v2(a) 

upon referring to (38). Substituting a + b for a in (39) and then — a + b for 
a in (39) and adding yields 

(40) v2(a)[(v2(a),v2(b), r) + (v2(b),v2(a),r)] = -v2(b) {v2(a),v2(a), r), 

[(v*(a),v2(b),r) + (v2(b), v2(a), r)]v2(a) = - (v2(a), v2(a), r)v2(b) 

since terms with one or three a1 s cancel, and terms with no a's go out by (39). 
Now, applying (20) to the expansion of 

0 = B(v2(a),v2(b),r) + B(v2(a), r, v2{b)) 

yields 

0 = -Zv2{a)[{v2{a),v2(b),r) + (v2(b), v2(a), r)) 

- 3[(^2(a), v2(b), r) + (v2(b), v2(a), r)]v2(a)y 

to which we apply (40) to obtain 

(41) v2(b)(v2(a), v2(a), r) + (v2(a), v2(a), r)v2(b) = 0. 

Furthermore, computing 

0 = A(v2(a),r,v2(b)) + B(v2(a), r, v2{b)) - 3h(v2(a), v2(b), v2(a), r) 
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and applying (20), (21), (36), and (40), we have 

0 = 3v*(b)(v2(a),v2(a),r). 

Hence, referring to (41), we see that 

(42) v2(b)(v2(a), v2ia), r) = 0 = (v2(a), v2(a), r)v2(b). 

Equations (21) and (42) show that v2(b) G U(v2(a)). If U(v2(a)) = 0, 
then v2(b)=0; if U(v2(a)) ^ 0, then N + U(v2(a)) = R. For n 6 N, 
u G U(v2(a)), we have, using (25) with x = via), 

(n + u, v2(a), v2(a)) = (n, v2(a), v2(a)) 

= 9(((w, v{a), via)), via), via)), via), via)) = 0 

since ((«, via), via)), via), via)) = 0 by the definition of N. Hence, in either 
case we have 

(43) iv2ia),v2ia),r) = 0 . 

Evaluating the associator in (43) and applying (20), we obtain 

(44) v2ia)-v2ia)r = 0, 

and linearizing (43) yields 

(45) 0 = iv2ia), v2ib), r) + iv2ib), v2ia), r). 

Since by (45) we have 

0 = lia, a)v2ir) - v2ia)Iia, r) + iv2ia), a, v2ir)) + (a, v2ia), v2ir)), 

we obtain, upon expanding and applying (20), (36), and (44), 

0 = 2v2ia)-via)vir); 

but then, using (23) with a = r, b = via), and c = a yields 

(46) 0 = vir)-v2ia)via). 

It is easy to see that (1) holds in the anti-isomorphic copy R' of R and that 
R' has property P if R does; hence (46) holds in Rf. But then we have in R 
the identity 

0 = via)v2ia)-vir), 

from which we subtract 

0 = E(a,v(a))v(r) 

to obtain 

(47) 0 = v2(a)v(a)>v(r). 
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Computing 0 = F (v2 (a), v (a)) and applying (20) and (34) yields 

(48) v(v2(a)v(a)) = 0. 

Equations (46), (47), and (48) imply that v2(a)v(a) G U(x). If U(x) = 0, 
then v2(a)v(a) = 0; if U(x) ^ 0, then N + U(x) = R. For n G N, u G U(x)t 

we have v2{n + u) = 0 . Hence, in either case we have 

(49) v2(a)v(a) = 0. 

Linearizing (49) yields v2(a)v(b) + v2(b)v(a) = 0, from which we subtract 
(35) to obtain 

0 = v2{a)v(b) - v{b)v2{a) + E(b, v(a)) = 2v2(a)v(b); 

hence 

(50) v2(a)v(b) = v(b)v2(a) = 0. 

Equations (34) and (50) imply that v2(a) G U(x). If U{x) = 0, then*/2(a) = 0; 
if U(x) j* 0, then N + U(x) = R. For n G N, u G U(x), we have as before 
v2(n + u) = 0 . Hence, in either case we have v2{a) = 0. But then computing 
0 = G(a, b) yields v{a)v{b) = 0 = v(b)v(a). Therefore, v(a) G U{x). 

6. Structure theorems. 

THEOREM 2. 4̂ simple ring R of characteristic not 2 or 3 satisfying (1) is 
alternative and hence a Cayley-Dickson algebra or associative. 

Proof. Clearly R has property P if R is simple. Hence, by Lemma 2, v(a) 
G U(x), which implies that v(a) = 0 if U(x) = 0 or if U(x) = R. Therefore, 
R is alternative and we can apply (3, Th. 3, p. 399). 

THEOREM 3. A primitive ring R of characteristic not 2 or 3 satisfying (1) 
is alternative and hence a Cayley-Dickson algebra or associative. 

Proof. First we shall show that R has property P if R is primitive. Let M 
be a maximal right ideal of R which contains no ideals I ^ 0 of R. The letter m 
will denote an element of M ; other letters will denote arbitrary elements of 
R. By r = s we shall mean that r — s G M. Clearly 

(51) (m, x, y) = 0 

since M is a right ideal. In particular, it follows from (51) that v(m) = 0. 
Also, since M is a right ideal, (51) yields 

(52) viniy) = v{m)y = 0. 

Expanding 0 = F(;y, m) — C(m, y) and applying (52), we have 

(53) v(ym) = 0. 
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Furthermore, expanding 0 = F(y, m) and applying both (52) and (53) yields 

(54) yv{m) + v(y)m = 0. 

Next, we expand 0 = E(m, y) and apply (52) to obtain 

(55) v(y)v(m) = 0. 

Letting m = v{m) in (54), we have by (55) 

(56) yv2(m) == 0. 

Now define 

5 = {s e M\Rs ^ 0 } . 

S is an ideal of R. Indeed, for s Ç S, a, b £ R, (51) yields a-sb z= as-b = 0 
and a-Ô5 = ab-s = 0. Hence, 5 = 0 since 5 C M . But then v2(m) = 0 since 
y2(m) G 5 by (56). Hence R has property P since itf + I = _R for all ideals 
I ?*0 of R. Therefore, v(a) Ç U(x) by Lemma 2. If U(x) C If, then E/(s) = 0 
and v{a) = 0; if U(x) <£ If, then M + U(x) = R. For m G if", M € [/(a), 
Î;(W + m) = v(m). Hence in either case, (51) yields 

(57) v(a) s 0. 

Computing 0 = C(a, b) and applying (57) yields bv(a) = 0. Thus v{a) 6 S 
which implies v(a) = 0. Hence i? is alternative and we can apply (2, Th. 2, 
p. 729) to complete the proof. 

The proof of (2, Th. 3, p. 730) can be seen to hold for every class of rings 
in which the primitive rings are Cayley-Dickson algebras or associative. 
Therefore, that theorem holds in R: 

THEOREM 4. The radical Q of a ring R of characteristic not 2 or 3 satisfying 
(1) is an ideal having the property that R/Q is a subdirect sum of Cayley-Dick s on 
algebras and primitive, associative rings. 
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