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Abstract

We study real hypersurfaces of a complex projection space and show that there are no such
hypersurfaces with harmonic curvature on which the structure vector is principal.
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Introduction

Let PnC be an n-dimensional complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature 4. Let M be a real
hypersurface of P"C and {P,E,co,g) be an almost contact metric structure
induced from the complex structure of PnC. Kimura [2] proved recently the
following

THEOREM A. There are no real hypersurfaces with parallel Ricci tensor of
P"C on which E is principal.

The hypersurface M is said to be with harmonic curvature, if the Ricci
tensor S satisfies

(0.1)
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for any vector fields X and Y, where V denotes the Riemannian connection
of M. The purpose of this note is to prove the following

THEOREM. There are no real hypersurfaces with harmonic curvature ofP" C
on which E is principal.

The authors would like to express deep thanks to the referee for his criti-
cism and suggestion.

1. Preliminaries

Let M be a real hypersurface of PnC (n> 2). On a neighborhood of each
point, by <̂  is denoted a local unit normal vector field of M in PnC. As
is well known, M admits an almost contact metric structure induced from
the complex structure J of P"C (see Yano and Kon [5]). Namely, for the
Riemannian metric g of M induced form the Fubini-Study metric g' of PnC,
we define a tensor field P of type (1,1), a vector field E and a 1-form co on
Mby

g(PX, Y) = g'(JX, Y), g(E, Y) = co(Y) = g'(JZ, Y)

for any vector fields X and Y on M. Then we have

(1.1) P2X = -X + co(X)E, PE = 0, g(E,E) = l.

Moreover we have

(1.2) g(PX, PY) = g(X, Y) - (o(X)fo(Y).

By V and V are denoted the Riemannian connections of M and PnC re-
spectively. The Gauss and Weingarten formulas are given by

(1.3) VxY

and

(1.4)

respectively, where A is the shape operator of M in P"C derived from the
unit vector £. From (1.3) it follows easily that we have

(1.5) VxP(Y) = co(Y)AX-g(AX,Y)E,

and

(1.6)
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Let R be the Riemannian curvature tensor of M. Since P"C is of constant
holomorphic sectional curvature 4, we have the following Gauss and Codazzi
equations

R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(PY,Z)PX - g(PX,Z)PY

-2g(PX,Y)PZ + g(AY,Z)AX - g(AX,Z)AY;

(1.8) VXA(Y) - VYA(X) = (o(X)PY - co{Y)PX - 2g(PX, Y)E.

By (1.1), (1.6), (1.7) and (1.8) we get

(1.9) SX = (In + 1)X - 3w(X)E + hAX - A2X,

and
= " 3{8{PAX>Y)E +

(no
+ dh{X)AY + (h -

where h = TTA and 5 denotes the Ricci tensor of M.
An eigenvector X of the shape operator A is called a principal vector and an

eigenvalue X is called a principal curvature. We assume that structure vector
E is principal. By a is denoted the principal curvature associated with E,
that is, it satisfies AE = aE. Then it is seen that a is constant (see [5]) and
hence (1.6) implies VXA(E) = aPAX - APAX, from which, together with
the Codazzi equation (1.8), it follows that

(1.11) 2APA = a(PA + AP) + 2P,

VXA{E) = a(PA - AP)X/2 - PX, and

VEA{Y) = a{PA - AP)Y/2.

2. Proof of theorem

First of all, we define a tensor field T of type (0,3) by

(2.1) T(X,Y,Z) = g(VxS(Y)-VYS(X),Z)

for any vector fields X, Y and Z on M. According the hypersurface M has
harmonic curvature if and only if the tensor field T vanishes identically. By
means of (1.10), we have

T(X, Y,Z) = co(X){hg(PY,Z) - g((AP - 3PA)Y,Z)}

- a)(Y){hg(PX, Z) - g((AP - 3PA)X, Z)}

(2.2) - (o(Z){2(h - a)g(PX, Z) + 3g((PA + AP)X, Y)}

+ dh(X)g(AY,Z)-dh(Y)g(AX,Z)

+ g(AX, VYA(Z)) - g{AY, VXA(Z)).
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Assume that M has harmonic curvature. Taking account of the second
equation of (1.11) and (2.1) with Z = E, we have

(2.3) - 2g((PA + AP)X, Y) - ag(APAX, Y) + ag((PA2 + A2P)X, Y)/2

+ 2(a - h)g(PX, Y) + a{dh(X)(o(Y) - dh(Y)a)(X)} = 0.

Similarly, putting X = E in (2.2), we obtain

(2.4) g((3PA - AP)Y,Z) + (h- a)g(PY,Z) + a2g((PA - AP)Y,Z)/2

- ag((PA - AP)AY, Z)/2 + dh(E)g(AY, Z) - adh(Y)(o(Z) = 0,

and then putting Z = E, we have

(2.5) a{dh(E)(o-dh} = 0.

Accordingly, from (2.3) and (2.5) it follows that

T{X, Y,E) + (o(Y)T(E,X,E) - (o(X)T(E, Y,E)

= ag((PA2 + A2P)X, Y)/2 - 2g((PA + AP)X, Y) - ag(APAX, Y)

+ 2(a - h)g{PX, Y) = 0.
Therefore (2.4) and the above equation mean that if M has harmonic curva-
ture, then we have

(2.6) 3PA-AP + {h-a)P + a(PA-AP){a-A)/2 + pA-agradh®co = 0,

and

(2.7) a(PA2 + A2P)/2 - 2(PA + AP) - aAPA + 2(a - h)P = 0,

where P = dh{E).
We prove here that the principal curvature a is a non-zero constant. Sup-

pose that a = 0. Then (2.6) and (2.7) are reduced to 3PA-AP+hP+0A = 0,
PA + AP + hP = 0, and hence we have 4PA + 2hP + 0A = O. let X be a prin-
cipal vector with principal curvature A which is orthogonal to E. Then, by
means of the above equation, we have {4X+2h)PX + f}XX = 0, which implies
that 4A + 2h = 0 and pk = 0, because X and PX are mutually orthogonal.
This yields that the trace of A satisfies h — a + (2n - 2)X = -{n - \)h, which
means that X = h — 0, and hence M is totally geodesic, a contradiction.

Next, the fact that h is constant is proved. Since a is non-zero constant,
(2.5) yields grad A = PE or dh = Pco, from which we have dP(X)co(Y) -
dp(Y)co(X) = -Pg((PA + AP)X, Y), because of the fact that

g(Vxgndh, Y) = g(VY grad A,*).

Suppose that there exist points x at which P(x) ^ 0. Putting Y = E
in the above equation we have dp = dP(E)co and hence this implies that
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P(PA + AP) = 0, which contradicts the first equation of (1.11). Thus P
vanishes identically and by (2.5), h must be constant.

For a principal vector X with principal curvature A which is orthogo-
nal to E, Y = PX is also a principal vector with principal curvature fi =
(ak + 2)/(2A - a), by the first equation of (1.11). Hence (2.6) gives rise to

(2.8) 3k-n + h-a + a{k-/i)(a-k)/2 = 0,

because h is constant. Accordingly the principal curvature A is the root of
the following cubic equation with constant coefficients

ax3 - 2(a2 + 3)x2 + (a3 + 5a - 2h)x + (ah + 2) = 0.

Thus M has at most four distinct constant principal curvatures. By Kimura's
theorem [ 1 ], M is congruent to an open subset of a homogeneous real hyper-
surface of type A\,Ai or B of PnC.

On the other hand, for a principal vector Y = PX with principal curvature
H,PY = -X is also a principal vector with principal curvature A and hence we
can change A and n in (2.8). Thus we have 3fi-k+h-a+a(/i-k)(a-fi)/2 - 0,
which together with (2.8) yield (A - ^.){a(k + fi) - 2(a2 + 4)} = 0. this is
equivalent to (A2 -ak- l){aA2 - 2(a2 + 4)A + a(a2 + 5)} = 0.

Suppose that M is congruent to an open subset of a homogeneous real
hypersurface of type B. Then the distinct principal curvatures at three, say
a = 2cot 2t, X\ = cot(/ - 7t/4) and ki = -tan(t - n/4) (for details, see [4,
page 47, Table]). By the way, k\ and A2 have to satisfy A2 - 2(cot 2i)k - 1 = 0,
which leads to a contradiction. Thus M is congruent to an open subset of a
homogeneous hypersurface of type A\ or A2. By a theorem in [3], the Ricci
tensor 5 is cyclic-parallel, namely it satisfies

g(VxS(Y),Z) + g(VYS(Z),X) + g(VzS(X), Y) = 0.

hence it is parallel and we can apply Theorem A to our situation, which
concludes the proof.
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