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1. INTRODUCTION 

Stellar convection zones often extend over several pressure scale heights and 

convective velocities can be comparable to the local sound speed. Neither laboratory 

convection experimentsnor analytic solution of the non-linear equations are feasible 

in such regimes. In order to gain insight into the details of stellar convection we 

are obliged to use numerical simulations. At the present time, even this approach 

cannot be applied to the parameter range typical of stellar interiors; however sol­

utions can be obtained which extend over many scale heights and have non-negligible 

Mach numbers. Under these conditions it is necessary to employ the full compressible 

equations rather than the anelastic approximation (Gough [l]) or the Boussinesq app­

roximation (Spiegel & Veronis [2]). 

2. THE PROBLEM 

Rather than attempting to model a complete star, we will employ a simplified 

geometry. In this way we can facilitate the numerical calculation, while avoiding 

the complexities of treating the transition between the convective zone and the opt­

ically thin region. 

As a standard problem, we consider a gas confined in a rectangular box with slipp­

ery walls. The upper and lower faces are maintained at fixed but different temperat­

ures, Tu and T-j. The side walls are thermally insulating. A constant gravitational 

field is imposed which has sufficient magnitude to produce a significant density var­

iation with height. 

The equation governing the problem are 

H + I P • * . 

* 
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where W) : V bX, "̂  ixi, 3 0l"J b x i ' , 

S is the specific entropy, "f] is the coefficient of viscosity, K is the thermal conduct­
ivity and all the other symbols have their usual meaning. 

Even if we prescribe the equation of state, the functional forms of the conduct­
ivity and the viscosity and the aspect ratios of the box, we still have five degrees 
of freedom in setting up the problem (see Graham [3] ). In addition we can choose our 
initial velocity, density and temperature distribution. 

Numerical solutions for the two-dimensional problem have been presented by Graham 
[3]. The most important parameters are found to be the Rayleigh number, R, the Prandtl 
number,<X , and the layer depth parameter, Z, given by 

U/f«.ct)(Vp«.) 

cj = cP T) / k , Z = (Te - To) I Tu. , 

It is sometimes useful to have solutions of the linear equations for the onset of 
convection. These equations have been treated by Spiegel [4], Gough et alf5] and by 
Graham and Moore[6]. A relative Rayleigh number,X , can be defined by scaling R by 
the critical Rayleigh number of the linear problem. 

3. NUMERICAL METHODS 

A variety of numerical methods have been used for compressible convection. The 
first solutions were obtained for two-dimensional motions using a modified Lax-Wendroff 
finite difference scheme. This method is described by Graham [3]. The scheme has 
been generalised to three-dimensional flows. An alternative to the finite difference 
method is the pseudo-spectral or collocation method. This has been successfully used 
for compressible convection equationsby Graham (unpublished). Each dependent variable 
is approximated by a truncated Chebyshev series in two or three space dimensions. The 
series are substituted into the differential equations. The time derivatives of the 
coefficients of the series are determined by requiring that the differential equations 
be satisfied at selected collocation points. Because Chebyshev transforms can be cal­
culated using fast Fourier techniques, the method is economical. Both the Chebyshev 
scheme and the Lax-Wendroff scheme suffer from numerical stability problems for low 
Prandtl numbers and large values of the Rayleigh number. Solutions have been obtained 
withX =100,0" =0.1 and Z=10. Current work is directed at developing an alternating 
direction implicit finite difference scheme. 
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4. THE RESULTS 

Because of the computational labour involved in obtaining three-dimensional sol­

utions, most of the calculations are restricted to two dimensional flows. The calcul­

ations reported by Graham L3] relate to a perfect gas law and constant K and /n . 

A number of general results were found. 

1. Two-dimensional solutions evolve to steady state flows. The time taken to reach a 

steady state increases with increasing horizontal box dimension and decreasing <T . 
This suggests that for more extreme configurations, there may be no steady solution. 
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2. There is an asymmetry between upward and downward velocities, downward velocities 

usually being larger. Horizontal velocities are similar at the upper and lower surfaces, 

with the lower velocity often being slightly larger. This is a surprising result, par­

ticularly for large values of Z, because continuity arguments have been proposed to su­

ggest that convective velocities are larger in low density regions. 

3. When the horizontal box dimension is large enough to permit several convective rolls, 

the horizontal wavelength differs significantly from that which would maximise heat 

flux. 

4. Convective cells extend over several pressure scale heights in the vertical direction. 

No cases were found where the flow breaks up into several rolls in the vertical. 

Further calculations have been performed with a constant kinematic viscosity,"]/, 

rather than a constant dynamic viscosity,'*). It had been conjectured that the increase 

of V near the surface reduced the upper horizontal velocity. Figure la shows the ratio 

of upper to lower velocity as a function of ̂  with Z=10. We see that it is only for 

small values of X that the upper velocity is enhanced. Figure lb shows the correspond­

ing behaviour of the ratio of downward to upward velocities. The variations with Pran-

dtl number is shown in figures lc and Id. The general conclusion is that the solutions 

are insensitive to the form of the viscosity law in the cases of large R and small S , 

which is the regime found in stellar convection zones. 

Figure 2 
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Relatively few three-dimensional calculations have been performed. If the horizontal 

box size is comparable to the vertical size, two-dimensional flow patterns are found. 

As the horizontal size is increased, the flow pattern becomes time dependent even for 

modest values of A . Figure 2 shows a velocity field for Z=l andA»10. In this per­

spective picture, a rectangular bite has been removed from one corner of the box to 

reveal the interior. The arrows represent velocity components parallel to the faces. 

The arrows are distributed at random with a probability proportional to the density. 

The cut away portion shows that the fluid has significant vertical vorticity. Such 

regions are observed to be short lived, being dissipated and then reforming in a new 

position. 

5. CONCLUSIONS 

Numerical simulation of compressible convection provides a way of obtaining a 

detailed picture of stellar convection. At the present time, solutions are still far 

from the parameter range found in stellar interiors. However the solutions are well 

removed from the Boussinesq limit of laboratory convection experiments. It is to be 

hoped that future developments in the form of more efficient algorithms for computat­

ional fluid dynamics, turbulence theories for handling the fine scale features of the 

flow and increases in the available computing resources will all help in attempts to 

construct more realistic models of stellar convection zones. 
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