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Abstract. We consider the primes which divide the denominator of the x-
coordinate of a sequence of rational points on an elliptic curve. It is expected that
for every sufficiently large value of the index, each term should be divisible by a
primitive prime divisor, one that has not appeared in any earlier term. Proofs of this
are known in only a few cases. Weaker results in the general direction are given, using
a strong form of Siegel’s Theorem and some congruence arguments. Our main result
is applied to the study of prime divisors of Somos sequences.
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1. Introduction. Let E denote the elliptic curve in generalized Weierstrass form,
VAt aixy +azy =X + ax’ + asx + ag, ()

defined over @, the rational numbers. We assume that the coefficients are chosen to lie
in Z and equation (1) defines a minimal model. For background, definitions and all
properties of elliptic curves used in this paper, consult [19], [22] and [21]. Let K denote
an algebraic number field of degree d = [[K: Q] over Q. Throughout the paper, E(K)
denotes the group of K-rational points of E and O denotes the point at infinity, the
identity for the group of K-rational points. Suppose P and Q denote K-rational points,
P, Q € E(K), with P non-torsion. Assume that nP + Q # O for all positive integers n
and write nP + Q = (x,, y»). The assumptions on E allow the factorization

(xXn) = (x(nP + Q) = atn/Pn. 2

of the principal ideal (x(nP + Q)) into relatively prime integral ideals «,, and B,.

In the rational case, we may take 8, to be a positive integer. Silverman [20] proved
that when P is a rational point and Q = O the point at infinity, for all sufficiently large
n, B, has a primitive divisor, that is, a divisor of 8, which is coprime to 8, for all positive
integers m < n. In general, the expression primitive ideal divisor of a term B, is used
to describe an ideal Z which divides 8, and is coprime to S, with m < n. Cheon and
Hahn [2] have extended Silverman’s result in [20] to the algebraic case, showing that for
all sufficiently large n, 8, has a primitive ideal divisor. The same conclusions are drawn
in [5] under the assumption that Q is an arbitrary torsion point. Under the assumption
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that Q= O and P is the image of a KK-rational point under a non-trivial isogeny, it is
shown in [5] that for all sufficiently large n, 8, has a composite primitive ideal divisor.
Pheidas [11] has raised the exciting possibility that results of this kind could be related
to Hilbert’s Tenth Problem over the rationals, which has still not been settled.

Results about primitive divisors have a long and fine tradition for certain sequences
which satisfy a linear recurrence relation, see [6]. Consider the sequence u, =a" — b",
where a > b are positive coprime integers. Zsigmondy’s theorem [28] says that u, always
has a primitive divisor unless (i)a =2, b= 1andn=6or (ii)a+ b=2Fand n=2.In[15],
Schinzel extended this result in a number of directions. He established a large class of
indices for which u, has a composite primitive divisor. As an example of his results,
when u is the Mersenne sequence (¢ =2 and b=1), he proved uy, has a composite
primitive divisor for all odd k> 5. He also proved an algebraic version for primitive
ideal divisors of sequences of the form u, =«”" — B", where @ and B are algebraic
numbers with «/8 not a root of unity (see [16] and [17]). If the sequence is changed
slightly to u, = ya" — ", then a Zsigmondy-type theorem is proved in [16] under the
assumption that y is a root of unity. The Zsigmondy theorem extends to all Lucas and
Lehmer sequences and has recently been cast in a very strong uniform manner. Bilu,
Hanrot and Voutier proved in [1] that for any n > 30, the n-th term of any Lucas or
Lehmer sequence has a primitive divisor.

For an integral ideal Z of KK, let wi(Z) denote the number of prime ideal divisors of
Z. Assuming P is non-torsion guarantees that all of the terms in the sequence 8 = (8,)
are non-zero. Obviously, for any sequence of integral ideals v = (v,) which satisfies a
Zsigmondy-type theorem, the following lower bound holds:

M+N
wK( l_[ Un) >N, (3)

n=M+1

for all sufficiently large M. In the absence of a full Zsigmondy theorem for elliptic
sequences, we still prove a similar lower bound.

Recall that A « Band B > A are equivalent to 4 = O(B). Throughout the paper,
the implied constants may dependent on E and the points P and Q.

THEOREM 1.1. Let P and Q denote algebraic points on an elliptic curve, with P
non-torsion. With B, defined by (2), for all sufficiently large M,

M+N
wK( I1 ﬁn) > N. )

n=M+1

Very few results about the existence of primitive (rational) divisors are known
for the Lehmer-Pierce sequence Nm(«” — B") (see [9, 12]), where Nm(z) denotes the
usual field norm of z € K. In [4], some easy counter-examples are given but the general
problem remains very much open. In the elliptic case, the same problem is studied
in [5], with greater success, although a fully general understanding lies some way off.
Write b,, for the ideal norm

b, = Nm(B,). 5

An immediate corollary of Theorem 1.1 follows. When K= Q, write wx = wg = in
the usual way.
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COROLLARY 1.2. With b, defined by (5), for all sufficiently large M,
M+N
w ( 1_[ b,,) > N.
n=M+1

The proof of the Corollary is immediate because wi(8) < dw(Nm(B)) for any ideal
B from K.

Finally, we include some discussion to indicate what the true picture might be
for divisors of sequences 8 =(8,) as in (2). Calculations support our belief that for
any given w, for all sufficiently large n, 8, has a primitive ideal divisor with at least
w distinct prime ideal factors. For the moment, the best result we can obtain in that
direction is the following.

THEOREM 1.3. With the hypotheses of Theorem 1.1, suppose Q = O. Given any
w > 0, there is an integer ¢ > 1 such that

M+N
a)K< 1_[ ,Bq,,> > wN.
n=M+1

In the next two sections, we gather some tools then prove Theorem 1.1. In the
following section, the proof of Theorem 1.3 is given. Finally, we give an application of
Theorem 1.1 to the study of divisors of Somos sequences.

2. Congruences and the growth of 5,. The first lemma is a very strong form of
Siegel’s Theorem.

LEMMA 2.1. Suppose P denotes a non-torsion W-rational point of E. For all
sufficiently large n

log b, = dhn* + O(n),
where the constant h = iz\(P) is the global canonical height of the underlying point P.

Proof of Lemma 2.1. Writing H(R) for the naive height of an algebraic point, then

H(R) = [ [ max{1, [x(R)l,} 7.

where the product is taken over all valuations v of K, including the archimedean or
infinite valuations, which correspond to the embeddings of KK into C. In our set-up, we
can interpret this as

1 1
logHmP + Q) = y Zlogmax{l, [xnl0} + glogbn.

v|oo
The theory of heights gives an estimate for

log H(nP + Q) = h(nP + Q) + O(1),
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where 71\(nP + Q) denotes the canonical height of nP + Q. Since this is a positive definite
quadratic form, the bound in (6) follows:

> logmax{l, [x,|u} + logb, = dhn* + O(n). (6)

v|oo

The estimate in Lemma 2.1 follows from an upper bound for |x,|, for each
archimedean valuation v. When this quantity is large it means nP+ Q is close
to the point at infinity in that valuation. On the complex torus, this means the
elliptic logarithm is close to zero. Thus bounds from elliptic transcendence theory
are applicable. We use Théoréme 2.1 in [3] but see also [24] where an explicit version
of David’s Theorem appears on page 20. The nature of the bound is

log |x,|, < lognloglogn, (7

where the implied constant depends upon v, E and the points P and Q. Combining the
estimates in (6) and (7) gives Lemma 2.1. Il

For integers M >0, N > 1, and Z an integral ideal, denote by 7(M, N,Z) the
number of solutions of the congruence

Bn=0 (modI), M+1<n<M+N.

LEMMA 2.2. If P is not a torsion point and T is an integral ideal then for any integers
M=>0,N>1,

T(M,N,T) < 1.

N

(log Nm(Z)2

Proof. In this proof we are going to use the arithmetic of the curve E modulo 7 so
some care is needed. For any ideal o", where g denotes a prime ideal of [, the set of
rational points with denominator divisible by g", together with O, forms a group. For a
detailed proof of this statement in the rational case, consult [22, Chapter 2, Section 4].
The set of points with denominators divisible by Z is the intersection of those groups
for all powers of prime ideals dividing Z; hence it too is a group and is closed under
subtraction between two points.

Suppose that there are two integers n and k with 1<n<n+k<N and
k<N/(T(M,N,T)— 1) for which

Bu= Bk =0 (mod 7).

By the opening remark, subtracting gives again a point with denominator divisible by
Z,kP =0 (mod 7). Because P is not a torsion point we conclude that b; # 0 and
thus by > Nm(Z). Lemma 2.1 now implies the desired bound. Il

3. Proof of Theorem 1.1. For a prime ideal g and an integer k > 1 we denote by
Ve (k) the g-adic order of k. Let

M+N

w=T] 8

n=M+1
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For a prime ideal g, we denote by r, the p-adic order of W and by s,, the largest
g-adic order of the terms 8,,n=M +1,..., M + N. Then

S

ro <Y T(M,N,g".

s=1

By Lemma 2.2 we have

S N S1/2
. | ___ e )
(AP ((s log Nm(p)? ) < TogNm(p)? ¥

By Lemma 2.1 we see that s, < (N + M )?/log Nm(g). Therefore

o« (N + M)?
? 7 logNm(p)
Thus
logNm(W) = ) " ry logNm(p) < (N + M)* > 1
"w>0 rp>0
M+N
= (N + M) i ( [1 m) .

n=M+1

Lemma 2.1 implies that N(N + M)?> « log Nm(W) which finishes the proof. O

4. Proof of Theorem 1.3.

LEMMA 4.1. If Q = O, then the sequence B, is a divisibility sequence, meaning that
BB as ideals, whenever m|n.

Proof. The proof of this follows from the standard local theory of elliptic curves;
see [19, Chapters 4 and 7]. For every prime ideal g, write [, for the completion of K
with respect to the valuation corresponding to . There is a subgroup of the group of
[<,-rational points:

H(KK,,) = {0} U {R € E(K,) : ord,,(x(R)) < —2}.
From [19, Theorem 6.4], for all R € H(IK,,), we have
ordy, (x(nR)) = ordg,(x(R)) — 2ord,(n)

and the divisibility statement follows at once from this. ]

Proof of Theorem 1.3. Suppose r > 3w is an integer and r < p; < ... < p, denote
r distinct primes. Put ¢=p; ... p,. Recalling the notation of (2), let R=¢P and write
(x(nR)) = y, /3, for the factorisation into integral ideals. Similarly, foreachi=1, ..., r,
write R; = p; P with (x(nR;)) = y;»/8in for the factorisation into integral ideals. We claim
that if » is coprime to ¢, then 8, has at least r distinct primitive prime ideal divisors.

https://doi.org/10.1017/50017089504002113 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089504002113

120 GRAHAM EVEREST AND IGOR E. SHPARLINSKI

From Cheon and Hahn’s Theorem [2], for all sufficiently large n, §;, has a primitive
prime ideal divisor. We claim each of these is a primitive prime ideal divisor of §, when
n is coprime to ¢. By Lemma 4.1, 8 = (8,) is a divisibility sequence, thus any divisor of
3in 1s a divisor of §,,. Suppose g is a primitive prime ideal divisor of §;, and g divides
8, for some m. Then mR =mqP = O mod g. In other words, (mq/p;)(p;P) = O mod g.
Now g is a primitive divisor of §;, and this forces n to divide mgq/p;. Since n is coprime
to ¢, this forces n to divide m and shows that every primitive ideal divisor of §;, is a
primitive ideal divisor of §,. Each of these primitive ideal divisors is distinct thus we
conclude that §, has at least r distinct primitive prime ideal divisors. It follows that for
M sufficiently large,

M+N M+N r 1
wK( 1_[ ﬂqn) > wg 1_[ 8;1 ZVNH<1_;>
i=1 !

n=M+1 n=M+1,(n,q)=1
1\’
> rN(l - —> > re”'N > wN,
r

which completes the proof of Theorem 1.3. ]

5. Somos sequences. Sequences such as u, =a" — b" are known to satisfy a
binary linear recurrence relation with integer coefficients. Recently, Swart [25], building
on some unpublished identities of Nelson Stephens, has related elliptic curves to
Somos sequences. These sequences, named after Michael Somos [23], satisfy a bilinear
recurrence relation of the form

2
Sp428n—2 = Asn+lsn71 + BSn, (8)

where 4 and B are rational numbers, not both zero. A special case is the sequence
s=(s,) with A =B=1, which begins 1, 1, 1, 1, ... with subsequent terms defined by
the recurrence relation (8). This is known as the Somos-4 sequence. Although a division
is needed in the definition of the later terms, they do all turn out to be integral. For
an introduction to Somos sequences, as well as links to other areas of mathematics,
consult [6], [7], [8], [10], [13], [14].

If P=(x,y) and Q are rational points with Q4+ nP never the point at infinity,
continue to write Q +nP = (x,, y,). Then a sequence s satisfying (8) can be obtained
as follows (see [25]): let s_; and sy be arbitrary non-zero rational numbers and

(X, — x)s2

Sprl = " forn > 0. 9)

Sn—1
Clearly the sequence s = (s,,) could turn out to have rational terms. In fact Swart [25]
shows that the denominators are easy to understand in terms of the starting data. In
a sense that can be made precise, each rational sequence is equivalent to an integral
sequence. Moreover, she shows that beginning with a rational sequence s satisfying (8)
it is possible to reverse the process and recover an elliptic curve together with the two
rational points P and Q which yields the sequence s according to the formula in (9).

EXAMPLE 5.1. If 5 is the Somos-4 sequence, the corresponding elliptic curve is

Y +y=x—x,
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with 0=(0,0) and P=(1,0)=20Q and s_; =s9=1. Thus the terms of the Somos-4
sequence correspond to the denominators of the odd multiples of the point O = (0, 0).

Any elliptic divisibility sequence (see [18, 26, 27] for background and basic
properties) arises when Q is the point at infinity, and satisfies a relation (8) with
A=1 and B=—1. Thus Somos sequences are a generalisation of elliptic divisibility
sequences. We are able to record a weaker version of Theorem 1.1 for Somos sequences.
This is stated in the rational case because it relies on Swart’s thesis, which deals
with rational sequences only (although her methods will surely generalise to algebraic
sequences). The definition of w extends to all non-zero rational numbers, if ¢ =a/b
with ¢ and b denoting coprime integers then w(g) = w(a).

COROLLARY 5.2. Let E denote a rational elliptic curve having rational points P and
Q with P non-torsion and Q + nP = (x,, y,) not the point at infinity for all n. Let s denote
a rational sequence defined by (9), which satisfies (8) for some A and B. Then

) (ﬁsn> > N.

n=1

Proof. It is shown in [5] that for any Somos sequence s = (s,,), any primitive divisor
of b, is a primitive divisor of the sequence of numerators of s,,_;. The result now follows
from Corollary 1.2 ]

It seems likely that the methods in this paper could be used to prove a stronger
version of Corollary 5.2, of the kind in Corollary 1.2.
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