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ABSTRACT. Oceanic and fluid core effects inherent in polar motion and 
l.o.d.-data were analyzed and related results are discussed in detail. 

A new exact analytic solution to the hydrodynamic equations is ob­
tained, which describes tidal motions at low frequencies in a homoge­
neous, incompressible, inviscid liquid core with arbitrary core-mantle 
topography. Some geophysical and astrometrical consequences of this 
solution are considered. 

The numerical estimation of the deviations of the pole tide from 
the static one is obtained. A new hypothesis is proposed that the 
known interrelation between long-term amplitude and frequency variati­
ons in Chandler wobble may be attributed to the influence of turbulent 
friction of non-equilibrium pole tide. 

1. INTRODUCTION 

Astrometric space missions such as Hipparcos may substantially contri­
bute to relative accuracy of stellar and other (fundamental) catalo­
gues. On the other hand, the associated absolute systems of reference 
are still basically referred to the Earth. Consequently, any impro­
vement in modeling the irregular rotation of the Earth with respect to 
the celestial frame or system or reference contributes also to the im­
plementation of celestial reference systems. This holds for optical as 
well as for radio catalogues (de Vegt et al., 1988, Argue, 1989). 

In this paper we focus on the long-period variations of Earth rota­
tion which are related to the fluid parts of the Earth : (a) oceanic 
effects and (b) outer core perturbations. By "long-period" effects of 
periods longer than a few months up to about 14 months (Chandlerian 
period) is meant. The emphasis is here put, as far as the oceanic ef­
fects are concerned, on pole tide which is basically the variation of 
sea surface caused by the varying centrifugal force of polar motion. 
The latter reflects the changes between celestial and terrestrial (in 
the sense of CTS - Conventional Terrestrial System) systems and there­
fore represents the transformation parameters for the transition from 
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celestial to terrestrial systems and vice versa. As pole tide is exci­
ted in a thin layer of liquid (in comparison with the Earth's radius) 
two-dimensional integrations of related differential equations along 
the Earth's surface are sufficient in most cases. The fundamental phe­
nomena were investigated by J. Wahr, S. Dickman and others which led 
to the conclusion that basically pole tides are in equilibrium. There­
fore, we focus here on the finer structure of such effects; this is 
necessary in view of the increased accuracy of modern observations and 
analysis methods. It affects mainly effects such as the dependence of 
polar motion frequency variations on its amplitude variations. 

The influence of inner and outer core effects on polar motion and 
LOD-data is of particular importance because there is limited informa­
tion on the Earth's core; there are relatively few phenomena such as 
Earth tides, free vibrations related to very big earthquakes, geoma­
gnetism, seismology, to some extent, and a few others which can really 
give reliable information on the detailed structure of the Earth's 
core. Therefore, the analysis of Earth rotation data in terms of LOD-
and polar motion data is of utmost importance. Mainly the detailed 
geometry and topography of the core-mantle-boundary (CMB) is important 
in that respect as well as the physics around it such as questions of 
hydrostatic equilibrium etc. which are closely related to its topogra­
phy. In spite of impressive recent results and of rather general 
agreement, within certain limits, there is still a wide disagreement 
on details. This paper aims at contributing to a clearer understanding 
of related phenomena. 

In the first part of this report the influence of the CMB, both on 
the Chandler wobble and on the length of day variation, is considered. 

A new analytical solution to the hydrodynamic equations is obtai­
ned, which describes tidal motions at low frequencies in a homoge­
neous, incompressible, inviscid liquid core with arbitrary core-mantle 
topography. The result is applied to the estimation of the influence 
of the core-mantle boundary topography on the Chandler wobble and on 
the long-periodic tidal variations of the length of day. 

It is found, that the influence of CMB topography is manifested not 
only in the changes of the parameters, describing these events (period 
and ellipticity of the Chandler wobble, amplitudes of the tidal varia­
tions of the length of day), but also leads to a new "cross-coupling" 
effect of (1) the excitation of the length of day variation with the 
Chandlerian period and (2) the excitation of polar motion with the pe­
riods of zonal tidal waves. 

The orders of values of all these effects are strongly dependent on 
the values of gradients of the CMB topography. The numerical estima­
tion for the reasonable models of CMB-topography shows, that the in­
fluence of CMB-topography on the period and ellipticity of the Chand­
ler wobble as well as the excitation of the polar motion by the long-
period tidal waves are, however, less than the errors of the modern 
VLBI-measurements. But at the same time, the excitation of the length 
of day variations by the Chandler wobble is significant. As a result, 
the analysis of the observed values of the length of day amplitudes at 
Chandler frequency makes it possible to obtain new information concer-
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ning the CMB topography of the actual Earth. Some numerical estimati­
ons of this type are 
obtained which are based on the analysis of modern VLBI data. 

In the second part of this paper the influence of dynamical pole 
tide on the Chandler wobble is considered. The results of new numeri­
cal calculations of the planetary vorticity maps for the actual ocean 
are presented. Some qualitative and quantitative estimations of the 
possible dynamical effects are obtained. 

An interesting consequence of the dynamical theory of the pole tide 
is the conclusion, that the system (Earth + ocean) is not linear. It 
is known, that the frequencies of free oscillations of such systems 
are dependent on the amplitudes of the oscillation. As a result, the 
frequency of the Chandler wobble must be dependent on its amplitude. 

The qualitative theoretical analysis of this effect makes it possi­
ble to conclude, that the Chandler period is an increasing function of 
the amplitude. It is known, that a similar conclusion was made by Mel-
chior (1957) (see also Munk & McDonald, 1960) based on the analysis of 
polar motion data since 1900,0. Thus we may conclude that it is possi­
ble to attribute this event to the influence of non-equilibrium pole 
tide. 

2. THE SMALL LONG-PERIODIC OSCILLATIONS OF THE HOMOGENEOUS INCOM­
PRESSIBLE INVISCID LIQUID, CLOSED IN THE RIGID NONUNIFORMLY 
ROTATING CONTAINER WITH ARBITRARY GEOMETRY. 

The small oscillations of the homogeneous incompressible inviscid li­
quid are described in the uniformly rotating system of Cartesian coor­
dinates by the known system of governing equations and boundary condi­
tions (Lamb, 1932): 

v + 2wxv + wxwxr + wxr - - V 
P 
- + V 

(la) 

V • v - 0 , (lb) 

(v,N)|g - 0 , (2) 

where w is the vector of the angular velocity of the system of coor­
dinates, r is the radius-vector, 

v - r is the velocity of the element of fluid with respect to 
this system, p - pressure, p — density, V is the gravitational poten­
tial, the dot above a symbol denotes the time derivative with respect 
to the non-uniformly rotating system of coordinates, N is the outer 
normal to the boundary surface s. 
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We adopt the system of Cartesian coordinates (x,y,z) which is ri­
gidly connected with the container in such way, that |wx|«wz, 
|co |«coz (z is the direction of the uniform rotation). In this case, 
by taking into account only the linear term with respect to wx/o> , 
u>yA>z , we write eq. (la) in the form 

v + 2o>zezxv = - V̂ > + x 
(2) 

p a>z 
TJ, + y (x2+y2) + (wxwz+o)y) xz + (<oywz-cox) yz 

P 2 (3) 

w2 (yex-xey) + 2ez (coyx-wxy), 

w 
ex, e , ez are the unit vectors, which are oriented along the 
direction of the axes x,y and z, correspondingly. 

To present eq. (la) in a form which is suitable for the application 
of the method of perturbation, we calculate the curl of left and right 
sides of eq. (2). Taking into account conditions (lb) and (4), we get: 

3v 
c u r l ( e z x v ) - e z ( V - v ) - ( e z , V ) v , 

3z 

c u r l x - ~ 2o> , 

and 

8v 

dz 

co 1 Lo 
— + c u r l v - — 

2w. 
cjĵ  + — c u r l v 

2 (5) 

where a is the frequency of oscillations and u^ = w - wz ez is 
the variable part of w. 

In the limiting case a-*0, the right side of (5) tends to zero, too, 
and eq. (5) is reduced to the well known Proudman-Taylor theorem, in 
accordance with which the stationary flows in rotating fluids 
("geostrophic flows") satisfy the equation 

3v(0)/dz - 0 ; (6) 

and as a result, the components vx
0 ), vy

0 ), vz
0 ) are functions 

of x,y only. 
It is known (Greenspan, 1969), that the geostrophic flows in the 

bounded volume are described by the conditions: 
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1) the lines of flow coincide with the isolines 

z _ z
2(

x>y) - zi(x.v) _ const , (7) 

where z2(x,y) and z1(x,y) are consequently the equations of the upper 
and lower boundary surfaces. 

2) the velocities of geostrophic flows are described by the conditi­
ons: 

dz 
v(0) _ v<°>(x,y) - - 4(z) — 

9x 

v<0) _ v<°>(x,y) - tf(z) 
ay (8) 

v(0) _ v<°)(x,y) - 7(x,y) *(z) 

where 

3z 3z 3z 3z 
7(x,y) •, 

3x 3y 3y 3x 

z1(x,y)+z2(x,y) 
z - z(x,y) -

and ̂ (z) is an arbitrary function of z which is determined by the in­
itial conditions only. It is easy to see, that the components of v 
described by (8) satisfy the boundary condition (2), the condition of 
incompressibility (lb) and the dynamical equation (6). 

Subsequently, we can use this solution as a zero approximation. Ob­
viously, when we consider the case of forced oscillations instead of 
the case of stationary flows, then the function <f>(z) must be deter­
mined uniquely. Let us consider this condition: 

To use the method of perturbations, we present the vector of velocity 
v as a sum of the zeroth-order term in the form (8) and as a first-
order term: 

v - v(0) + v(1> . (9) 
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Substituting (9) into (5) and taking into account the first-order 
terms only, we get: 

3z 

where 

K(x,y) 

K(x,y) (10) 

ox + - curl v(0)(x,y) 
2 (11) 

After the integration of (8) with respect to z in the limits from 
z1(x,y) to z2(x,y) we get: 

v(1)(x,y,z) =Vl(x,y) |z„0 + Kz (12) 

Let us consider now the condition of incompressibility and the boun­
dary conditions for the vector vc1>. Substituting (9) into (lb) and 
(2) and taking into account, that, in accordance with (8), v{°J sa­
tisfies the conditions (lb) and (2) automatically, we get: 

V • v(1) - 0 , 

(v(1,,N)|s = 0 . 

(13a) 

(13b) 

Substituting (12) into (13a) and taking into account, that, in accor­
dance with (11), 

V • K = 0 , 

we obtain: 

V • v\ - V • v1(x,y)|z=0 + zV • K + (K,Vz) = 0 , 

3vx
(1)(x,y)|z=0 av_{1)(x,y)|8.0 

+ K (x,y) = 0 . (14) 
Sx ay 

Taking into account, that N - Nx -

on the surface z1(x,y) and 

azĵ  azĵ  

ax ay 

N = N 2 = 
3z, 

ax 

3z„ 

3y 
-, 1 on the surface z2(x,y) 
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we can present the condition (13b) in the form: 

(v^x.y)!,.,,, Nx) + Zl(K .N,) = 0, 
(15a) 

(^(x.y)!,.,,, N2) + z2(K,N2) - 0 . 
(15b) 

To exclude from the equations (15) the component vz
(x'(x,y)|z = 0, we 

sum up (15a) and (15b). We then get: 

dz dz d 
v
x
(1)(x-y)lz-o — + vy«

1)(x.y)|1.0 — + Kx — Czz) 

ax ay ax 
(16) 

3 
+ Ky — (zz) - Kzz - 0. 

a y 

The conditions (14) and (16) determine the unknown function <j>{z) uni­
quely. To prove this, let us reduce the system (14), (16) to a single 
integro-differential equation. It is easy to see, that, if eq. (14) is 
valid, then the components of v on the surface z=0 can be presented 
in the form: 

3£(x,y) x 
vx

(1)(x,y)|z=0 / Kz(x',y)dx' , (17) 
3y 0 

3£(x,y) 
vy

(1)(x,y)|z.0 , 
dx 

where £ is an arbitrary single-valued twice differentiable function of 
x,y. Substitution of (17) into (16) reduces the system (14), (16) to a 
single integro-differential equation: 

az a? az a? 
+ F(x,y) - 0 , (18) 

dx dy dy dx 

where 

3 _ 3 _ dz x 
F(x,y) - Kx — (z,z) + Ky — (zz) - Kzz / Kz(x',y)dx' . 

dx 3y dx 0 
(19) 
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Now our analysis is very close to the analysis given in (Molodensky, 
1989) for the two-dimensional case. 

The form of eq. (18) makes it possible to find the increment of the 
function £(x,y) along some contours in terms of F in a manner similar 
to Cauchy's method for the integration of first-order quasi-linear 
equations in partial derivatives (Kamke, 1966). Indeed, relation (18) 
may be regarded as an orthogonality condition for vectors with the 
Cartesian coordinates 

® 1 -

and 

<*2 " 

' a£ 3£ 
—, — , - i 

. ax ay 

dz dz 
, — , - F 

. ay ax 

Since 

a* at 
d£ - — dx + — dy, 

3x 3y 

the vector e1 is also orthogonal to the vector 

e3 - (dx.dy.dO 

which is tangent to the surface £(x,y). The vector e2 is thus per­
pendicular to the normal to the surface £(x,y), hence it lies in a 
plane that is tangent to that surface. Consequently, the curves defi­
ned by the equations 

dx 

dz 

dy J 

dy 

" dz 

ax 

(-F) 
(20) 

belong to the surface £(x,y). The first part of this equation is equal 
to 

dz 3z 
— dx + — dy - 0 , 
3x 3y 

i.e. the curves under consideration coincide with the geostrophic con-
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tours z - const. The second part of (20) determines the increment of 
£ along these contours: 

*Z\i 

F dx 

di/dy 

F dy 

dz/9x 

F AS. 

dz/dn 
(21) 

where di - (dx2+dy2)* is the element of length of this contour and 
d/dn is the derivative along the outer normal to it. 

Equation (21) is fully equivalent to the original integro-differen-
tial equation (18), in the sense that any integral curve of (21) be­
longs to the surface £(x,y) defined by (18) and, conversely, any solu­
tion of (18) can be represented as a family of integral curves of 
(21). For this reason, the condition of existence for solutions of the 
partial equation is equivalent to that for solutions of the equation 
(21). It is easy to see, that this latter is reduced to the single re­
quirement that 

F di 
§ dcj - - § 
T T dz/dn 

(22) 

When (22) does not hold, the increment of | along a closed geostrophic 
contour T does not vanish, which is incompatible with the assumption 
of | being a single-valued function of the coordinates. 

Let us show now that the condition of existence for the first-order 
terms in (22) determines uniquely the function <j>{z) which enters 
into the zero-order equation. To show this, one expresses the function 
F which enters into (22) in terms of <f> and the known functions z, 
z, 7-

Substitution of (8) into (11) yields 

K(x,y) -
icr 

wz 

S i 

1 
+ -

L 2 

dy 
+ * — 

dx) 

eT 

-

+ e z 

dz dy 
<l>'y — + <j> — 

I a y By J 
-\ ~ 

<j>' {Vz)2+4> A z ) 

» J -

dz 
<j>'y — + 

dx 

where 

d*(z) 

dz 

Taking into account this expression and (19), one can write eq. (22) 
in the form: 
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di 
§ 
r az/an 

1 

2 

dz dy 
<j>'y — + <j> — 

dy dy 

3(zz) 

ax 

» , - -

3z 37 
0 ' 7 — + <j> — 

ax ax 

3(zz) 
- ( 0 ' (Vz) 2 + <f>Az) z -

dy 
(23) 

3z x 
/ ( ^ ' ( V z ) 2 + <f>A~z) dx ' 

3x 0 
0. 

The last term in the left hand side of (23) can be transformed in the 
following way: By taking into account that on the contour T in accor­
dance with (21) 

di 3z 
— dy 
3z/3n 3x 

one can write 

di 3z x 
- § / (<£'(Vz)2 + <£Az) dx' = - JJ(^'(Vz)2 + 4>Az) ds , 

r 3z/3n 3x 0 s 

where ds = dx dy and s is the area of the region, which lays in the 
plane (x,y) and is bounded by the contour r. Taking into account now 
that 

^'(Vz)2 + <f>Az - div (^Vz) , 

and using the well known Gaussian formula, one writes this term in the 
form: 

- J T W ( V z ) 2 + <j>Az) ds = - § -KVz.n) d£ = - § <f> — di . 
s r r 3n 

In accordance with (8), <j> is a function of the single argument z, 
and the values <j>, <f>' are constants on the contour T, where z — 
const. Therefore, the values <f>,4>' can be shifted in front of the sym­
bol of integration, and eq. (23) can be presented in the form of an 
ordinary differential equation with respect to the single unknown 
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c1(z)#'(z) + c2(z)^(z) + c3(z) = 0 

where 

(24) 

1 di 
c^z) / 

2 r 3z/3n 

3z 3(zz) 3z 3(zz) 

dy 3x 3x 3y 
- z 

3z 

3n 

z d£ 

-§ 
2 T 3z/3n 

* 

72 + 
rszi 

3n. 

2" 

.. 

(25) 

;(Z) - " f 
di 

2 T 3z/3n 

37 3(zz) 37 3(zz) 

3̂y 3x 3x 3y 
zAz 

c3(z) ("i)z s(z) + § 
di 

r az/3n 

3(zz) 3(zz) 
CO + CO.. 

3x ay 

- (wz)i
z 

Taking into account now that the element of the surface ds is equal to 

didz 
ds (26) 

3z/3n 

we present the expression for c2(z) in the form: 

c,(z) -
1 d 

2 dz s 

37 3(zz) 37 3(zz) 
zAz 

3y 3x 3x ay 

3z 

3n 

12^ 

ds 

Id Id 
// div A ds / (A,n) di 

2 dz s 2 dz r 
(27) 
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I d d£ 

- - § 
2 dz T 3z/3n 

(A.Vz) , 

where 

A - e_ 
3(zz) _ 3z 

-7 - z — 
3y 3x 

+ e.. 

9(zz) _ dz 
7 z — 

ax ayj 

Substituting (28) into (27), one realizes that 

dcx(z) 
c,(z) 

(28) 

(29) 
dz 

The expression for the coefficient c3(z) is performed analogously. 
Using (26), we get: 

c 3 ( z ) - - ( c o 1 ) ! 

d s ( z ) 
s ( z ) + z 

dz dz 
J / d i v B ds 

d d 
- -(<•>!>;; — ( z s ( z ) ) + 

dz dz 

d i 

f 
T 3 z / 3 n 

3z 3z 
— B + — B 

x y 

3x 3y 

where 

B - z z ( w x e x + u y e y ) 

(30) 

(31) 

Substituting (31) into (30) and taking into account, that z|r 
const., we get 

dD(z) 
c,(z) -

where 

(32) 
dz 

D(z) - -z^J.sfz) + z § 
dlz 

T 3z/3n 

3z dz 

I 3x 3yJ 
(33) 

The conditions (29), (32) make it possible to integrate the differen­
tial equation (24) analytically. Indeed, using (29), we get 
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c1(z)*»(i) + c2(z)^(z) - (Cl(z)4(z))' , 

and equation (24) is reduced to 

(Cl(z)^(z) + D(z))' - 0 . 

After the integration of this equation with respect to z we get: 

D(z) const.(z) 
^(z) + . 

c^z) cx(z) 

Using the expression for cx(z) (25), one sees that the coefficient 
Cĵ  (z) is equal to zero in the points of extrema of the function 
z(x,y). Taking into account, that the velocities v(°' are bounded 
in the vicinities of these points, we can counclude, that 

const, (z) * 0 , 

and, as a final result, 

^(z) -
D(£) 

cx(z) 

diz 
-s(z)(Wl)2 + / 

r a£/an 

dz dz 
w_ + 

ax ay 
di 

r az/an 

' 

1z + 
fail 

3n 

2' 

(34) 

Equations (34) and (8) give the full solution of the problem under 
consideration. 

2.1 THE QUALITATIVE ANALYSIS OF THE RESULTS 

It is interesting to compare (34) with the well known Poincare's solu­
tion (Lamb, 1932). It is known that the last one describes the oscil­
lations (generally, with finite amplitude and arbitrary frequency) of 
the homogeneous, incompressible, inviscid liquid, which is surrounded 
by a non-uniformly rotating rigid container with an ellipsoidal boun­
dary. 

Our solution (34) describes the more particular case in so far as 
we consider only the small oscilations for the limiting case of the 
very long periods (a/ii>->0). At the same time, in some aspects, it is 
essentially more general because it describes the motions not only in 
the ellipsoidal cavity, but in the cavity of arbitrary geometry. 

It is easy to show that this solution predicts some new effects, 
which are absent in the case of the Earth model with an elliptical 
core-mantle boundary (which is axially symmetrical with respect to the 
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axis of rotation). They are as follows: 

1. It is known, that the free Eulerian (Chandler) wobble of the Earth 
model with an elliptical core-mantle boundary excites the motions in 
the liquid core with an invariant z-component of angular momentum. 
Consequently, the Chandler wobble is not accompanied by the l.o.d. 
(length of day) variations at the same (Chandlerian) period. 

2. Inversely, the tidal variations of the l.o.d. excite the currents 
inside the liquid core without the x- and y- components of angular mo­
mentum. As a result, the long periodic tidal waves don't excite the 
polar motion. 

Using our expression (34), one can see, that these both properties 
don't take place in the general case of an arbitrary core-mantle boun­
dary. Moreover, in the case of Chandler wobble the amplitude of x-com­
ponent of the angular momentum in the liquid core does not generally 
coincide with the amplitude of the y-component. As a result, the tra­
jectory of the Chandler wobble is not circular, but elliptical. 

Taking these circumstances into account, it is possible to formu­
late the inverse problem of estimation of the possible core-mantle 
boundary heterogeneities based on modern astrometrical data. To make 
this, we shall consider first the dynamics of the liquid core for some 
very simple models of the core-mantle boundary. 

Let us begin the qualitative analysis of equ. (34) from the consi­
deration of some very simple cases. 

2.1.1. If the container is symmetrical with respect to the plane z = 
0, then z2(x,y) = -z1(x,y), and z = 7 = 0. Substituting these va­
lues into (34), we get: 

s(£) 
4>{z) - - 2 K ) Z . (35) 

dz 
§ — di 
T 3n 

It is interesting to note, that the geostrophic flow determined by 
(35) is not dependent on the components cox , w . Probably, the physical 
sense of this conclusion can be interpreted as follows: it is known 
(Greenspan, 1969), that the geostrophic currents organize the system 
of Proudman-Taylor columns, which are similar to the rigid bodies in 
several aspects. For example, these columns have the tendency to con­
serve their form and sizes. It is, indeed, easy to see, that the sta­
tionary geostrophic flow described in section 1 is possible only in 
the case, where the sizes of the columns in the direction parallel to 
w is not dependent on time (in the opposite case the stationary flow 
along the geostrophic contours z=const. does not satisfy the condi­
tion (6)). If the boundary surfaces are mobile, with respect to the 
vector u, then, in general, the flow is not stationary and the kine­
tic energy of the fluid is not constant. 
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The compression of the Proudman-Taylor columns in the z-direction 
is accompanied by a decreasing z-component of circulation (curl v)z 

and of the total knetic energy; in the case of stretching the signs 
are opposite. 

From the simple geometrical considerations it is easy to see, that 
for the case z2(x,y) - -ZjCx.y), the small tilt of the vector w is 
not accompanied by any compression or stretching of the Proudman-Tay­
lor's columns, and the geostrophic flows are not excited. This is why 
<t>(z) is not dependent on the components a>x , u . 

Using the general relation (34), one can see that the ratio of the 
velocities of geostrophic flow to the velocities of the column's com­
pression or stretching are in the general case of the order of w/cr. In 
the limiting case cr-»0 this ratio tends to infinity. It means, that 
even very small long-periodic polar motion (such as the Chandler wob­
ble) results in significant geostrophic motions. In the case of Chand­
ler wobble of the real Earth the boundary of the liquid core is close 
to the sphere, and the geostrophic contours are close to the circles 
with centers on the axis of the Earth's rotation. Such motion has an 
angular momentum mainly in the direction of the z axis and must result 
in variations of the length of day with Chandler period. We shall con­
sider the numerical estimation of this effect in section 2.3. 

2.1.2 For the most simple case when the container is symmetrical both 
with respect to the plane z = 0 and to the axis x = y - 0, the values 
dz/dn are constant on the contour T, and relation (35) is reduced to 

2s(z)(o>1)z 

Hi) - . 
i(z) dz/dn 

where i(z) is the length of the contour line z = const. Taking 
into account, that this contour coincides with the circle, we get: 

s (z) - ?rr2 , i ( z ) - 2rrr, <j>{z) - - r / 3 z / 3 n , and v( ° > 

( " ! ) z e zxn , 

(where r - (x2+y2)* is the radius of circle, and r, as before, is 
the radius-vector). This result has a trivial physical meaning: Ob­
viously, the non-uniform rotation of the container with respect to its 
axis of symmetry does not excite any differential motion in the li­
quid, and the liquid conserves its uniform rotation around the z axis 
in space. In the non-uniformly rotating system of coordinates (x,y,z) 
this motion is described similarly to the non-uniform rotation of a 
rigid body. 

Using the relation (35), one can see, that the dynamic coupling 
between the liquid core and mantle is determined not by the value of 
the deviation of the core-mantle boundary with respect to the axially 
symmetric geometry but only by the ratios of the bounded surfaces 
s(z) inside the contours Y to the lengths of the contours 
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i. - § dl . 
r 

The dynamic coupling is significant when the ratios s/i. are small 
enough. This situation takes place, for example, when the contours z 
- const, present the system of closed contours with a relatively small 
scale of lengths. 

2.1.3. Now we can consider the more realistic case where the core-
mantle boundary is close enough to the sphere. If we propose, in addi­
tion, that the partial derivatives of the core-mantle boundary (with 
respect to x,y) are close enough to the same derivatives of the unper­
turbed (spherical) boundary, then we can write 

dz 
z « 2bcos0, — = - 2 tg 6 

dn 

and 

dz 

dn 

where 6 is the co-latitude and a is the mean radius of the core-mantle 
boundary. 

The geostrophic contours Y are close to the circles, di - asin0 dA 
and one can estimate the contribution to the integral in (34) as fol­
lows : 

dl 
72 + f 

T 3z/3n 

Taking into account that 

dz 

9n 

dz s in 2 ( 
/ — di « -47ra 
T 3n cosfl 

a£/ax 3z/3x 
cosA sinA 

3z/3n 3z/3n 

where A is longitude, equ. (34) is presented in the form: 

1 2TT_ 

4>(z) - — — c t g 6 J z(cosA6o>x + sinAfiw ) dA . 
4JT 0 

(36) 

Using the presentation of function z(x,y) in the form of a Fourier 
series 

https://doi.org/10.1017/S0252921100063739 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100063739


183 

z = 2 zjj (R) c o s n A + z* (R) s i n n A 
n=0 

| ^ 2 where R -= J x 2 + y 2 

one realizes that the integral (36) does not vanish only for the har­
monics of degree n - 1. After integration of (36) with respect to A, 
we get: 

1 
^(z) c t g 6 ( z j 8u>x + z\ Su ) . 

kit (37) 

The substitution of this expression into (8) yields all three compo­
nents v£0), v'0), v£0) and the angular momentum of the liquid 
core uniquely. Using the definition of the z-component of the angular 
momentum, we estimate: 

c z 
Mz ~ J" (xvy0) " yv<0>) P dr ~ - ^ Sw , (38) 

r a 
_ _ 2 2 

where c1 is the moment of inertia of the liquid core.Zj = (zj + 
z\ )*> 

a is the mean radius of the liquid core and Sw = (Sw2 + 6w2)* . 

Using the numerical value So-ICT6 wz (which corresponds to an ampli­
tude of Chandler wobble of - 0,2 arc sec), and Cĵ -0.1 c (where c is 
the moment of inertia of the mantle) we find 

10-7 _ _ (39) 

M wz a 

where M — cw is the angular momentum of the mantle and (Su> ) ,., is 
z ° ^ z ' m a n t l e 

the amplitude of the periodic variation of (to ) ,., at Chandler fre-
r r x z ' m a n t l e 

quency. 
To make this relation more obvious let us consider the case where z1 

is a linear function of R, i.e. zx = K R. It is easy to see that the 
value d - K/e (where e is the geometric flattening of the liquid core) 
is equal to the tilt of the main axis of the liquid core's ellipsoid 
of inertia with respect to the axis of rotation to. Taking this rela­
tion into account and introducing the values 5A = f(5w ) . . dt, 
which is equal to the angular displacement of the mantle in the direc­
tion of longitude, and (5AQ) which is the amplitude of 5A, then we may 
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write (39) in the form 

S\0 - 6 m arc sec. • a . (40) 

If we assume that the accuracy of modern VLBI-measurements of periodi­
cal processes is of the order of 0.15 rp 0.18 m arc sec. (Gwinn, and 
Shapiro, 1986), then the measurements of 6\0 make it possible to de­
termine a with the accuracy of the order of 0.025 - 0.030 rad or 1.5 -
2 degrees. 

We may thus conclude that the measurements of l.o.d.-variations at 
the Chandler period can be considered as a very sensitive method for 
investigating the core-mantle boundary. Some numerical estimations and 
examples are given in Section 3. 

Inversely, using (34), it is easy to show, that the influence of 
the tidal l.o.d. variations on polar motion is extremely weak. Under 
no circumstances do they exceed a value of the order of 10"3 m arc s, 
which is two orders of magnitude smaller than the current accuracy in­
herent in the harmonic analysis of VLBI measurements. 

2.1.4. The influence of the core-mantle topography on the Chandler 
period and on the ellipticity of the Chandler wobble can be estimated 
as follows. Using Poincare's presentation for the velocities within 
the ellipsoidal liquid core in the form 

v x 5wy , 

Z<7 

v y 6cox , 
w z 

a 
v z (x$wy - y Swx) , 

w z 

and comparing these expressions with our solutions (8) and (37), we 
realize that 

v<°>/v - v(0)/v 
x ' x y ' y 

z 
z^ dzx/d\ wz 

7(0) A, ~ 
2R2 

In the case of the Chandler wobble (uz/o - 400) the first ratio is 
equal to unity if zx/z - 1/400, i.e. whenever the deviations of 
core-mantle boundary with respect to the ellipsoid are of the order of 
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only 10 km. Consequently, the topography of the core-mantle boundary 
for the real Earth model can exert an extremely strong influence on 
the distribution of the currents in the liquid core. Nevertheless, the 
influence of these currents on the Chandler period TCh and on the el-
lipticity of the Chandler wobble is comparatively weak. 

To show this it is enough to remember that the hydrodynamic motions 
under consideration have mainly z-component of the angular momentum 
and, consequently, they influence mainly the l.o.d. variations. 

2.2 THE COMPARISON WITH THE MEASUREMENTS 

The results of the Maximum Entropy Spectrum Analysis of the modern 
V.L.B.I.-l.o.d. data are presented in Fig. 1. It is necessary to note, 
that the amplitudes obtained by MESA-technique are well known to be 
problematic in general. One can see, that some peak with very small 
amplitude in the vicinity of Chandler frequency probably exist, but 
its ratio to the level of noise is too small to identify it with the 
necessary reliability. 

3. LINEAR AND NONLINEAR MODELS OF THE DYNAMICAL POLE TIDES 

The asymtotic behaviour of solutions to Laplace's tidal equations 
(L.t.e.) at low (for example, Chandlerian) frequencies was considered 
in recent years in may papers (see, for example, Dickman 1985, 1986; 
O'Connor, 1986; Carton, Wahr, 1986; Molodensky, 1989; Groten, Len-
hardt, Molodensky, 1990). It was shown in the last two papers, that 
for the limiting case a/u -»0 (where a is the tidal frequency and w is 
the angular velocity of the Earth's diurnal rotation)) these solutions 
are unstable in that the functions involved in the zero-order 
approximation are not uniquely determined by the zero-order equations, 
but depend on first-order terms (terms of the order of CT/W) as well. 
As a result, the solutions of L.t.e. significantly depend on the very 
small terms entering the L.t.e. In the most general case the equations 
describing the pole tides in the thin (in comparison with the Earth's 
radius r) layer of the liquid are described by the known system of go­
verning equations (see, for example, Kagan, Monin, 1978) read: 

v + (v,V)v + 2wcos0 [erv] - -gV(f-{
r) + F , 

f - - div2(vh) , (41) 

where v-(v8, vA) is the two-dimensional vector of tidal velocity, f 
is the level of the ocean, f-f(0,A) is the associated equipoten-
tial surface, « is again the angular velocity of the Earth's diurnal 
rotation, er is the radius-vector, g is the acceleration due to gra-
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vity at the Earth's surface, h - h(0 ,\) is the ocean depth, div2(vh) 
is the divergence of two-dimensional vector vh-h*(ve,vA), F-(Ffl, 
T?x) are the components of the force of friction, which act on the ele­
ment of the liquid. In the most general case the vector F is presen­
ted in the form 

F - - k0v + b^Av, 

where kQ is the coefficient of the bottom friction and 1^ is the coef­
ficient of turbulent horizontal friction. In case of turbulent motion 
the coefficient k0 is proportional to |v|-(v

2 + v 2 ) % being a 
function of the depth distribution h(0,A); in case of laminar motion 
k0 is independent of v and is a function of the distribution h(0,A) 
only. 

3.1 LINEAR MODEL 

The asymtotic behaviour of solutions to eq. (41) for the linear appro­
ximation is described by the conditions: 

1) the lines of flow and isolines f-f-f coincide with the geostro-
phic contours T as determined above which, for the case of a thin 
layer of liquid, are described by 

g h(0,A) 
a — = const. 

2wa2 cos0 

2) the dependence of £(a) is determined by the ordinary differential 
equation (Molodensky, 1989): 

[Cl(a) X'(«)]" + c3(a)f(a) - b(a) , 
(42) 

where the prime denotes differentiation with respect to a and c^ , c3, 
b are the known functions of the depth distribution, which are descri­
bed by the relations: 

(/c+iff)da/dn 
cx (a) = a § 6.SL , 

T cos0 

2iaw dZ 
c 3 ( a ) § , (43) 

a2 r 3a/3n 
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2iaw fdi 
b(o) / , 

a2 T da/dn 

where a is the mean radius of the earth, di is the element of length 
of the geostrophic contour T (here for simplicity we put kj,-0) . 

The solutions of this equation depend mainly on the dimensionless va­
lue 

g h 73 ha 

4a>2cos20 r 0
2 cos2 8 r 0

2 

r0 is the horizontal scale of length of the closed contours a — const. 
Taking into consideration the dimensionless value 7, which is equal to 
the ratio of the mean values of f to the mean value of f in the same 
region, one obtains a simple estimate of the relation 7(H) for the 
dissipationless case as follows (Molodensky, 1989): 

H - 0 ,1 0,2 0,5 1,0 2,0 5,0 
7 - 0,520 0,656 0,812 0,893 0,944 0,976 

From this table one realizes that, when depth increases (or in, other 
words, equivalently: when the horizontal dimensions of the closed 
geostrophic contours a - const, decrease), the dynamic tide approaches 
the static one. When cos20-0.5 and h-4 km, H-0.1 corresponds to 
r0-6«10

3 km and H-5 to r„-8*102 km. One sees from the aforementioned 
table that, for the first case, the deviation of the dynamic pole tide 
from the statical one is significant, whereas for the second case it 
is very small. 

The isolines a-const., for the real ocean model, are given in Levi-
tus (1982) and were recalculated by us on the ground of the spherical 
harmonics expansion of the depths distribution for degrees i<180. The 
results are shown on Fig. 20, 20b. These pictures reveal that in most 
regions of the real ocean the characteristic scale of the length r0 is 
in almost any case less than (2-3)«103 km. Moreover, the regions, 
where isolines a-const. are closed, cover a comparatively small part 
of the oceanic surface. Using the simple estimates based on the afore­
mentioned relation 7(H), one sees that, in linear approximation, ever­
ywhere in the ocean we have 

r < 0.1 r , 

and the influence of the dynamic pole tide on the Chandler period is 
less than the errors inherent in modern measurements: STch < 1 day. 
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3.2 NON-LINEAR MODELS 

As was mentioned above, the instability of the solutions of the equa­
tions (41) results in the strong dependence of the solutions on small 
perturbing terms. To estimate the non-linear effects in the dynamic 
theory of pole tide, it is necessary to compare two groups of small 
perturbations. 

1) the linear terms v, (F). m. „„ and 
' ' ^ 'laminar 

2) the non-linear terms (P) t u r b u l e n t , (v,V) v. 

To estimate the non-linear terms, it is necessary to take into account 
not only the tidal currents, but also the nontidal stationary currents 
in the real ocean, i.e. to present the velocity vector v as a sum: 

where vQ is the vector of velocity of the nontidal stationary ocean 
currents and vx is relatively small vector tidal flow, in comparison 
with v0. By taking into account that, for the real ocean, vQ is of 
the order of a few cm s"1 one realizes that the non-linear group of 
perturbing terms is greater than, or of the same order as, the linear 
group, and they must consequently be included in our considerations. 
The influence of non-linear terms is manifested in the following new 
properties of the governing equations: 

1) The geostrophic contours (lines of flow) are determined not only by 
the depth distribution h(0,A), but also by the distribution of the 
world ocean currents v„-. Consequently, instead of contours h/cosfl = 
const., it is necessary to consider the isolines of "potential vorti-
city" 

2w cos0 + (rot vQ) 
P - - const. ; 

in this case, the role of the parameter rQ plays the role of horizon­
tal scale of length of the closed contours P=const. 

2) As the values k. are functions of o 
coefficients Cĵ  , c3 are functions of 

v|f entering into (43) the 
v | too. This means that the 

governing equations (42) are significantly non-linear. 
The distribution of the surface currents vQ(0,A) in the actual 

global ocean (Fahrbach et al., 1985) is presented in Fig. 3. Comparing 
Fig. 2 and 3, one realizes, that the difference between the isolines 
a=const. and P=const. is significant and that it is manifested in the 
bigger scale length of the regions bounded by isolines P=const. in 
comparison with the regions, bounded by a-const. As a result, the in-

https://doi.org/10.1017/S0252921100063739 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100063739


189 

fluence of the dynamic pole tide on the Chandler period is essentially 
greater for the non-linear model than for the linear one. 

From Fig. 3 is seen that, for the non-linear model, the typical va­
lues r„ are of the order of (3-5-5)'103 km. Taking into account the re­
lation 7(H) given in the aforementioned table we conclude, that for 
the non-linear model without dissipation (i.e. for the model which ta­
kes into account the non-linear term (v,V ) v only) the possible va­
lues of 7 are of the order of 0.6-5-0.8. Consequently, the influence of 
the dynamical pole tides on the period of Chandler wobble may be of 
the order of 6+12 days. 

The more exact numerical estimation of the dynamical pole tides for 
the non-linear approximation is complicated mainly by the following 
circumstances: 

1. The absence of the rigorous mathematical models of oceanic bottom 
and horizontal turbulent friction. As a result, the models of the de­
pendence of the coefficients kx , k2 on |v|, h are based on some in­
exact empirical and semi-empirical laws (Schwiderski, 1980); 

2. The absence of the detailed models of the world-ocean currents dis­
tribution with the depth. 

As a result, the exact estimation of the bottom friction is impos­
sible even in the case when the law of bottom friction is known. 

Nevertheless the sign of the effects of the ocean friction is de­
termined uniquely. As a matter of fact, when a/k -> 0, then the devia­
tion of the dynamic pole tide from the statical one is negative and 
tends to zero (Molodenski, 1989). Conseqeuntly, the period of Chandler 
wobble is an increasing function of the coefficients of friction k„ 
and 1^. Moreover, it is known that, for turbulent motions, the values 
of these coefficient present an increasing (usually linear) function 
of the velocities (Kagan, Monin, 1978). As a result, we may claim, 
that the period of Chandler wobble must present an increasing function 
of its amplitude, and the range of the variation of the period is of 
the order of 6-5-12 days. It is interesting to note, that exactly the 
same conclusion was obtained by Melchior (1957) based on the analysis 
of empirical data. 

It is interesting to compare the Melchior's results with the re­
sults of the latest analysis. The maximum entropy spectral analysis of 
the intervals 1900-1920; 1920-1940; 1940-1960; 1960-1978 and 1967-1984 
was performed by Lenhardt, Groten (1985). The results are presented on 
Fig. 4 (circles). The results of Melchior are presented on the same 
picture as points. One can realize, that there is a very high probabi­
lity, that hte correlation between the amplitudes and periods of 
Chandler wobble exist indeed. 

Thus we may conclude that the interrelation between long-tern am­
plitude and frequency variations in polar motion may be attributed 
with the high probability to the influence of turbulent friction for 
the non-equilibrium pole tide. 
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CONCLUSIONS 

The efforts discussed in this paper basically refer to the axis of ro­
tation and the associated modulus of the earth rotation vector which 
might be expressed in terms of LOD. Insofar the title of this paper 
might be questioned if we assume that, by definition, the quantities 
considered here are related to the celestial system of reference in­
stead of the terrestrial frame. As polar motion defines two of the Eu-
lerian angles relating celestial to terrestial system it is more or 
less a matter of personal judgment whether we discuss those perturba­
tions with respect to terrestrial or celestial frames. The sources of 
these perturbations are so closely related to the earth itself that 
our choice of title appears appropriate in order to avoid misunder­
standing. 

Consequently, we did not refer to a particular type of a CTRS 
(Boucher, 1990) such as IERS-TRF and rather treated the topic in gene­
ral terms. 

Two aspects have to be stressed : (1) It still appears possible to 
clear up existing open problems related to the fluid parts of the 
earth-fluid outer core and ocean - by precise analysis of polar motion 
and LOD-data. Consequently, astrometry has not yet been fully ex­
ploited in giving information on geophysics in a domain of frequencies 
where little alternative information is available and (2) by still im­
proving the accuracy in measuring polar motion and LOD we may still 
get substantially better information on the physics of the earth 
which, together with improved atmospheric (AAM etc.) data, could lead 
to the possibility to model and predict polar motion and LOD better 
than it is carried out now. This paper fills a gap in that respect. 
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Fig.2a - Planetary vorticity (10 °m 'sec ') 
(from Levitus, 1982) 
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Fig. 4 
The correlation between the amplitudes and periods 
of the Chandler wobble (the small second peak in 
the spectrum for the period 1940-1960 (Lenhardx, 
Groten, 1985) is excluded) 
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