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Abstract

The Emeishan large igneous province (ELIP) in SW China is considered to be a typical mantle-
plume-derived LIP. The picrites formed at relatively high temperatures in the ELIP, providing
one of the important lines of argument for the role of mantle plume. Here we report trace-
element data on olivine phenocrysts in the Dali picrites from the ELIP. The olivines are Ni-rich,
and characterized by high (>1.4) 100xMn/Fe value and low (<13) 10 000xZn/Fe value,
indicating a peridotite-dominated source. Since the olivine-melt Ni partition coefficient
(KpNi®¥melt) will decrease at high temperatures and pressures, the picrites derived from peri-
dotite melting at high pressure, and that crystallized olivines at lower pressure, can generate
high concentrations of Ni in olivine phenocrysts, excluding the necessity of a metasomatic
pyroxenite contribution. Based on the Al-in-olivine thermometer, olivine crystallization tem-
perature and mantle potential temperature (Tp) were calculated at ¢. 1491°C and c. 1559°C,
respectively. Our results are c. 200°C higher than that of the normal asthenospheric mantle,
and are consistent with the role of a mantle thermal plume for the ELIP.

1. Introduction

Large igneous provinces (LIPs) are characterized by voluminous volcanic sequences (>10° km?
>10° km?®) erupting over a short period of time (1-5 Ma), and their formation is generally related
to mantle plumes (Richards et al. 1989; Campbell & Griffins, 1990; Chung & Jahn, 1995;
Campbell, 2005). The association of picrites with LIPs provide one of the important lines of
evidence in favour of a relatively high-temperature plume source (He et al. 2003; Hanski
et al. 2004; Ali et al. 2005; Campbell, 2005, 2007; Zhang et al. 2006; Shellnutt, 2014; Santosh
et al. 2018; Condie & Puetz, 2019). However, some recent studies suggested that the source
of the Emeishan large igneous province (ELIP) picrites involved variable proportions of pyrox-
enite or eclogites (Kamenetsky et al. 2012; Yu et al. 2014, 2017; Liu et al. 2017; Zhu et al. 2018).
The presence of eclogites or pyroxenite in the mantle source region can lead to overestimates in
temperature as the thermometers assume a peridotite-dominated source (e.g. olivine-liquid
equilibrium for primary magmas produced by melting of fertile peridotite; Zhang et al.
2006; Herzberg, 2011; Shellnutt & Pham, 2018). One of the important challenges is therefore
to clarify whether the mantle source of ELIP picrite is dominated by peridotite or pyroxenite.

As one of the earliest crystallized minerals from typical mantle-derived magmas, the com-
position of olivine phenocrysts with high Fo values (atomic 100xMg/(Mg + Fe)) can provide
important information on the primary magma. Recent studies suggest that some trace elements
(such as Mn and Zn) in olivine from pyroxenite-derived and peridotite-derived melts have two
distinct trends (Le Roux et al. 2010; Howarth & Harris, 2017) and can therefore be used to dis-
tinguish pyroxenite components in the mantle source region. Some studies recorded picritic
rocks in the inner zone of the ELIP (Hanski et al. 2010; Kamenetsky et al. 2012; Yu et al.
2017; Yao et al. 2019), which were thought to have formed at relatively high temperatures
(Xu et al. 2001; Zhang et al. 2004, 2006; Shellnutt & Pham, 2018). However, some other studies
suggested that the picrites were derived from a metasomatized pyroxenite-bearing mantle
source (Kamenetsky et al. 2012; Yu et al. 2017). The role of high-temperature primary magmas
in the ELIP therefore remains contentious. In this paper, we investigate this aspect based on
petrology and mineral chemistry of olivine phenocrysts from Dali picrite in the inner zone
of the ELIP, with a view to evaluate the nature of the mantle source and the conditions of
melting.
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2. Geological setting

The ELIP is mainly located in the western part of the Yangtze cra-
ton in SW China (Fig. 1). Its southwestern margin is bounded by
the Ailaoshan-Red River Fault, and the northwestern boundary is
traditionally thought to be the Longmenshan-Xiaojinhe Fault. The
volcanic successions in the ELIP trend N-S with a rhombic shape
and cover an area of more than 2.5 X 10° km?, with a total erupted
volume of more than 3 x 10° km? (Xu et al. 2001, 2004; Ali et al.
2005, 2010). The thickness of the volcanic sequence ranges from
¢. 5000 m to several hundred metres, with the thickest zone located
near the Lijiang and Binchuan sections in the western part of the
ELIP and the thinnest area located in the eastern part of the ELIP
(Xu et al. 2004; Song et al. 2001, 2004; Xiao et al. 2003, 2004;
Zhang et al. 2006). The ELIP comprises a succession of tholeiites,
with minor picritic and rhyolitic/trachytic lava flows. Many mafic-
ultramafic intrusions are exposed in a belt extending along the
Panzhihua-Xichang region in the SW part of the ELIP, and some
of these intrusions host giant Fe-Ti-V oxide and Ni-Cu-PGE sul-
phide deposits (Shellnutt, 2014). Previous studies have indicated
that the main phase of magmatism took place at c¢. 260 Ma over
a short duration of 1 Ma (Zhou et al. 2002; He et al. 2007;
Shellnutt et al. 2008, 2012; Zhong et al. 2009, 2011, 2014; Sun
et al. 2010; Xu et al. 2010; Jerram et al. 2016).
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The picritic lavas mainly occur in the central ELIP such as those
in the Dali and Binchuan districts, and these areas are considered
to represent the centre of the mantle plume (Zhang et al. 2006;
Hanski et al. 2010; Kamenetsky et al. 2012; Li et al. 2015; Ren
et al. 2017; Wu et al. 2018). The samples of Dali picrite for this
study were collected from a road-cut section c¢. 20 km NE of
Dali City (25° 40’ 48" N; 100° 21’ 14" E), the occurrence of which
was reported by Hanski et al. (2010) and Ren et al. (2017). The pic-
rites occur in the bottom part of the Emeishan basaltic sequence
(Fig. 2a). A newly opened quarry from where the basalts and pic-
rites are mined exposes fresh outcrops, where the picrites are easily
distinguished from their darker colour compared with the associ-
ated basalt flows.

Most of the picrites are porphyritic (with 20-40 vol% phenoc-
rysts), and the dominant phenocryst is olivine (c. 80 vol% of the
phenocrysts) with minor clinopyroxene. The olivine phenocrysts
are subhedral to euhedral, generally ranging from 0.2 to 2 mm
across with the largest grains up to 4 mm in diameter. Some olivine
crystals are altered to serpentine along the rims and cracks,
but their cores remain unaltered. Minor euhedral to subhedral
Cr-spinel grains occur within the olivine phenocrysts (Fig. 2c).
The groundmass consists predominantly of microcrystalline-
cryptocrystalline olivine, anhedral clinopyroxene and small
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plagioclase crystals. Some Cr-spinels and Fe-Ti oxide minerals
occur in the groundmass.

The basalts are porphyritic (with 15-40 vol% phenocrysts), and
plagioclase is the dominant phenocryst (c. 80-90 vol% of the phe-
nocrysts; Fig. 2d) with minor clinopyroxene (c. 10-20 vol% of the
phenocrysts). The groundmass consists predominantly of micro-
crystalline plagioclase, anhedral clinopyroxene, some basaltic glass
and a small amount of magnetite and Fe-Ti oxide.

3. Analytical methods

Polished thin-sections of picrite samples were prepared for the
analysis. The olivine phenocrysts selected for analysis show little
alteration with no zoning. The unaltered Cr-spinel inclusions with-
out any fractures were selected for analysis.

Major and minor elements in olivines and Cr-spinels were
analysed using an EPMA-1720 electron microprobe at the
EPMA Laboratory, Institute of Earth Sciences, China
University of Geosciences, Beijing (CUGB). For most elements,
the accelerating voltage was 15 kV, beam current 20 nA and beam
diameter 1 pm, with the on-peak counting time set for 10 s per
element and 5 s for background. The Al element was analysed
using a 60 s peak counting time and the background was set
for 30 s. The standard samples are natural minerals and synthetic
oxides produced by SPI Supplies of the United States of America.
The precision is better than 1% for most major and minor
elements.

Trace-element concentrations of olivine were determined by
laser ablation - inductively coupled plasma — mass spectrometry
(LA-ICP-MS) using the Agilent 7900 Quadrupole ICP-MS coupled
with a Photon Machines Analyte HE 193 nm ArF Excimer laser
ablation system. The analyses were carried out at the Mineral
Geochemistry Lab, Ore Deposit and Exploration Centre
(ODEC), Hefei University of Technology, China. In this study,
the ablation protocol employed a spot of 30 pm diameter at
8 Hz with an energy of c. 4 ] cm™ fluence. Each spot was measured
for 40 s, and each spot analysis was followed by a gas blank for 20 s.
Helium was used as the carrier gas and argon was used as the make-
up gas, and they were mixed via a T-connector before entering
the ICP (Ning et al. 2017; Wang et al. 2017). Reference materials
GSE-1G, GSD-1G, BCR-2G and SRM-612 were used as external
standards, and they were measured every 10-12 spot analyses to
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viously measured olivine Dali picrite data are from Hanski et al.
(2010) and Yu et al. (2017). WPM - within-plate magmas.

check reproducibility through the analytical session. Off-line selec-
tion and the integration of background and analytical signals, and
time-drift correction and quantitative calibration, were performed
with ICP-MS Data Cal (Liu et al. 2008). The precision for most
trace elements in each spot was better than 10%.

4. Mineral chemistry of olivine and Cr-spinel

The major elements and some minor elements (Ni, Mn and Al)
were analysed by EPMA, and all the analytical spots were on fresh
core regions of the grains (online Supplementary Table S1a, avail-
able at http://journals.cambridge.org/geo). The olivine phenoc-
rysts show Fo values of 82.1-93.3. The grains with low Fo
values (Fo < 85) are relatively small in size compared with those
with high Fo values (Fo > 85). Most olivine grains with high Fo
values show 0.2-0.4 mm diameter with a few cracks, whereas those
grains with low Fo values are mainly 0.1-0.2 mm in diameter.

Generally, the content of NiO (0.25-0.51 wt%) shows a positive
correlation with the Fo values, whereas the MnO content displays a
negative correlation with the Fo values (0.11-0.32 wt%). The CaO
concentration is relatively high, ranging from 0.25 to 0.46 wt%,
with no correlation with the olivine Fo values. The Al,O5 content
in olivine range from 0.03 to 0.11 wt%. All the olivine phenocrysts
of the Dali picrites contain > 0.25 wt% CaO content, and exhibit no
kinked band. We infer that they were crystallized from magma and
are not mantle xenocrysts, and can therefore be used as an indica-
tor of the primary melt.

With regard to the minor- and trace-element concentrations in
the core of the olivine phenocrysts (analysed by LA-ICP-MS), the
Ni concentration ranges from 2563 to 3897 ppm (0.32-0.49 wt%
NiO) and shows a positive correlation with the Fo values (Fig. 3).
The CaO concentration ranges from 0.25 to 0.50 wt%. MnO con-
tent ranges from 0.11 to 0.22 wt% (Fig. 4), whereas the Zn concen-
tration range is 49.8-120.9 ppm, showing a positive Zn-Mn
correlation (Fig. 5a; online Supplementary Table S2, available at
http://journals.cambridge.org/geo). In addition, the olivine con-
tains 115.6-171.1 ppm Co, 5.8-21.1 ppm V and 4.4-8.9 ppm Sc.
However, most rare earth elements (REEs), especially light REEs
(LREEs), are present in quantities lower than the detection limits.
Although some minor elements such as Ni and Mn were analysed
by both EPMA and LA-ICP-MS, we discuss the LA-ICP-MS data
as it is of greater precision.
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Fig. 2. (Colour online) (a) Picritic lava showing sharp contact with basalt in the Dali geological section. (b) Olivine and clinopyroxene phenocrysts in Dali picrite (cross-polarized
light). (c) Small Cr-spinel grains included by olivine phenocryst (plane-polarized light). (d) Plagioclase phenocrysts in those basalts that coexist with Dali picrites (cross-polarized
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Fig. 4. (Colour online) The forsterite (Fo) values versus MnO concentrations in olivine
phenocrysts. Dali picrite data analysed by LA-ICP-MS; errors on measurements are
smaller than the symbols. Olivine MORB and Hawaii data from Sobolev et al. (2005,
2007) and the previously measured olivine Dali picrite data are from Hanski et al.
(2010) and Yu et al. (2017).

The Cr no. (atomic Cr/(Cr+ Al)) of Cr-spinel ranges from
0.570 to 0.685 (online Supplementary Table S1b). The content
of TiO, is in the range of 0.4-1.8 wt%, and total iron as FeO
(FeO*) is 19.5-29.2 wt%. The MgO contents vary from 9.7 to
14.3 wt%, and the Al,O; values range from 16.4 to 20.8 wt%.
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5. Discussion
5.a. Origin of high-Ni olivine

The Ni content of primitive mantle is estimated as 1960 ppm,
which is similar to that of the depleted peridotite (McDonough
& Sun, 1995; Herzberg et al. 2013), whereas the Ni concentration
of olivine in mantle peridotite ranges from 2800 to 3100 ppm
(Ionov, 2007; Herzberg et al. 2013, 2016). However, the olivine
phenocrysts in Dali picrites, especially those grains with high Fo
values, have much higher Ni concentration (with Ni concentration
up to ¢. 3900 ppm, Hanski et al. 2010; Yu et al. 2017) than those
from mid-ocean ridge basalts (MORBs) or mantle peridotite
(Fig. 3). The excess Ni in olivine can result from the following proc-
esses. (1) The core-mantle interaction can produce a less-degassed
Ni-rich source, and this source continues adding into the mantle
plume, which finally formed picrites with high Ni content
(Herzberg et al. 2013, 2016). (2) The silica-rich melts formed from
recycled crust might interact with mantle peridotite to form a sec-
ondary olivine-poor pyroxenite source. Magmas derived from such
metasomatic pyroxenite source would therefore contain higher Ni
content than those derived from peridotite source (Sobolev et al.
2005, 2007; Herzberg, 2006; Foley et al. 2011, 2013). (3) Higher
melting temperature and pressure would decrease the partition
coefficient of Ni between olivine and melts (KpNi®/™e!t); this will
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result in a higher Ni concentration in primary melt, and the olivine
crystallizing from this melt will have higher Ni content (Niu et al.
2011; Putirka et al. 2011; Matzen et al. 2013, 2017).

Olivine with high Ni content has also been recognized in other
LIPs. The picrites in Baffin Island and West Greenland also have
olivine phenocrysts containing high Ni concentration
(c. 3800 ppm) (Sobolev et al. 2007; Herzberg et al. 2013), even
20% higher than the modern MORB source (2800-3100 ppm)
(Ionov, 2007). These picrites are characterized by elevated
3He/*He ratios (Starkey et al. 2009). Picrites from Baffin Island
and West Greenland show *He/*He values up to 50 times the
atmospheric value. Herzberg et al. (2013) proposed that a less-
degassed mantle reservoir formed by core-mantle interaction near
the core-mantle boundary contains high *He/*He, and they corre-
lated the elevated *He/*He associated with high Ni concentration
to the less-degassed Ni-rich material from core-mantle boundary
that was added to the mantle source region. For the ELIP, however,
picrites from Dali, Binchuan and Lijiang area generally have higher
Os concentration and slightly lower Re concentration than many
other ocean island picrites, although the 870s/!%0s ratios are
obviously lower than the mantle value with negative yOs values
(Chen et al. 2007; Xu et al. 2007; Zhang et al. 2008; Li et al.
2010; Hao et al. 2011), which are distinctly different from the
Siberia LIP picrites that display relatively positive yOs values.
The Os isotopic compositions of the picrites in the ELIP therefore
suggest no major input from the core-mantle boundary to the
source region.

If the silica-rich melt derived from recycled crust reacts with
peridotite, an olivine-free pyroxenite source can be generated that
would produce magmas with high Ni concentration (Sobolev et al.
2005). Olivine crystallizing from such a magma will generally be
characterized by high Ni concentration and low Mn/Fe. The
Mn, Fe and Zn in olivine mostly occur as divalent elements and
their ionic radii is close to that of Mg?" (De Hoog et al. 2010); they
therefore behave similarly in the olivine-melt system. Since Mn, Fe
and Zn have similar olivine-melt partition coefficients (0.89, 1.1
and 1.09, respectively; Foley et al. 2013; Howarth & Harris,
2017), their ratios are relatively constant during partial melting
or fractional crystallization. The ratios of these melts could there-
fore well constrain the nature of their mantle source (Sobolev et al.
2007; Herzberg, 2011; Foley et al. 2013; Herzberg et al. 2016).
Experimental studies show that the olivine crystallized from melts
derived from pyroxenite have 100xMn/Fe values of 1.05-1.35,
whereas those in melts derived from peridotite source show higher
100xMn/Fe values (>1.5) (Sobolev et al. 2007; Foley et al. 2013).
The Dali picrites have olivine phenocrysts with higher Mn content
compared with those of Karoo or Hawaii, and show a similar trend
to the Mn content of MORB (Fig. 4). Additionally, the high
100xMn/Fe ratios (1.43-1.73) of olivine in Dali picrites are con-
sistent with those olivines crystallized from melts derived from
peridotite (Fig. 5b). This evidence indicates that the primary
magma of the Dali picrites was more likely derived from a
peridotite-dominated source.

Sobolev et al. (2007) suggested that the percentage of metaso-
matic pyroxenite (X5 in the mantle source could be calculated
based on the Mn/Fe values of the olivine phenocrysts. The equation
was proposed as: Xx =3.48—[2.071x(100xMn/Fe)]. Combined
with the trace-element data from LA-ICP-MS analysis (online
Supplementary Table S2), we calculate an average X, in the
Dali picrite mantle source of 22.6% (Fig. 6). For comparison,
Sobolev et al. (2007) suggested an average X, value of 17% for
MORBs. However, the data for olivine in MORB reported by these
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Fig. 5. (Colour online) (a) Diagram of Zn concentrations versus forsterite (Fo) values
of olivine phenocrysts in Dali picrites. (b) 100xMn/Fe versus 10 000XZn/Fe of primitive
olivines in the Dali picrites. Tuli, Mwenezi, Etendeka and Buffin picrite data from
Howarth & Harris (2017). (c) Mn/Zn ratio of the olivine phenocrysts. Olivine from a
pyroxenite-derived melt is characterized by low Mn/Zn ratios (<14), while those from
peridorite-derived melt have high ratios (>14).

authors spans a somewhat larger range in X, values, which show a
similar range to the Dali picrites (Fig. 6); this suggests that the man-
tle source of Dali picrites is not pyroxenite dominated. It is notable
that high pressure may increase the partitioning of Mn between
olivine and melts (KpMn°/™¢!) (Matzen et al. 2017). Our calcula-
tion of X, using the method of Sobolev et al. (2007) is therefore
very likely to be flawed.
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Azores, Iceland and MORBs (Sobolev et al. 2007).

The ratio of inter-mineral exchange coefficient of Zn/Mn
between olivine and clinopyroxene, Kp(Zn/Mn)®*°l  defined
as Kp(Zn/Mn)P¥melt/K o (Zn/Mn)o/™et s ¢. 026 (Le Roux et al.
2010). It has also been established that Kp(Zn/Fe)/™e!t js close to
1, but for clinopyroxene (Kp(Zn/Fe)P¥melty the value is much lower
(Le Roux et al. 2010). This suggests that Zn/Fe is minimally fraction-
ated during partial melting of peridotite mantle, but strongly frac-
tionated during melting of pyroxene. As demonstrated previously,
olivine grains in magmas derived from peridotite-dominated
sources and pyroxenite-dominated sources have significantly differ-
ent variation trends when plotted in the 100xMn/Fe versus
10 000xZn/Fe diagram (Howarth & Harris, 2017). Moreover,
olivine equilibrated with melts derived from pyroxenite was demon-
strated to have 10 000XZn/Fe values of >14 (Le Roux et al. 2010;
Howarth & Harris, 2017). Olivines in Dali picrites have
10 000xZn/Fe values of 8.0-12.7, showing a similar trend to olivine
in picrites from Edenteka and Baffin Island, which were derived
from a peridotite source (Fig. 5b). In addition, olivine crystallized
from pyroxenite-derived melts have a relatively low Mn/Zn ratio
(<14), while those from peridotite-derived melts exhibit a higher
Mn/Zn ratio (>14). The Mn/Zn values of the olivine in the Dali
picrite range from 13.6 to 18.4, with most Mn/Zn values >15, also
indicating a peridotite dominate source (Fig. 5c).

All the features presented above suggest that Dali picrites are
more likely to have formed from peridotite-dominated mantle
source. However, how a peridotite source can produce a picrite
with high-Ni olivine phenocrysts needs to be evaluated further.
According to recent experimental studies, the partition coefficient
of the Ni element between olivine and melts (KpNio/melt) jg mainly
controlled by temperature and pressure. Under conditions of high
temperature and pressure, the Ni partition coefficient (KpNio/melt)
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will decrease and result in less Ni left in residual olivine. As the
melts rise to a shallower level or even to the sub-surface, the par-
tition coefficient of Ni between olivine and melts (KpNic/melt) will
increase due to the decreasing pressure. This may result in higher
Ni concentrations in olivine phenocrysts, which are even higher
than those in residual olivine in mantle (Li & Ripley, 2010; Niu
et al. 2011; Matzen et al. 2013, 2017).

Matzen et al. (2013) presented results from experimental work
which allowed them to investigate the effects of temperature (T)
and pressure (P) on KpNi®/™€! independent of substantial changes
in liquid composition. The partition coefficient of Ni between oli-
vine and melts is described by the equation:

In (KDNiOI/hq) = [(_ArHTref, Pref)/(RT)} + (ArSOTref, Pref/R)
— In[X(MgO)"/X (MgSi50,)"]

where —A Hrer pref/R and A S°rrer, pre/R are constants indepen-
dent of pressure and temperature, and T 'is the olivine liquidus tem-
perature in degrees Kelvin. Putirka et al. (2018) reproduced the
calibration data (n=17) with a standard error of estimate of
+1.3 with an R? of 0.82, using the high-precision work of
Matzen et al. (2013). The above equation can be simplified to:

KDNiol/lir — (3349/T)—0.79

where the olivine liquidus temperature T is in degrees Celsius.
From a rough estimate of the source region pressure via the inver-
sion of lanthanide REE data and olivine-melt equilibrium, the
pressure at the start of melting is estimated as 4 GPa (Xu et al.
2001; Zhang et al. 2003, 2006). Tao et al. (2015) used the olivine
and clinopyroxene composition in ELIP picrites to determine
the P-T condition when magma crystallization occurred, and
reported that the olivine phenocrysts crystallized at a pressure of
1 GPa. As we calculate later in Section 5.b, the olivines in Dali pic-
rites crystallized at a temperature of ¢. 1491°C, and the mantle
potential temperature T, is c. 1560°C. When these temperature
estimates are introduced into the simplified equation above, the
resulting Ni partition coefficient KpNi®/™e!t is ¢, 3.8 and 4.3 for
melting and crystallizing, respectively. The Ni content of melts
derived from peridotite is defined as:

Nigee = 2.9594 x MgOy, 4%

where Ni is in ppm and MgO in wt%, provided by Niu et al. (2011).

According to the olivine-bulk-rock equilibrium and melt inclu-
sions data, previous studies suggested that the primary melt of the
Dali picrites had MgO content of 20-23 wt% (Li et al. 2012, 2014;
Ren et al. 2017). When we use the primary melt MgO content in the
equation above, the Ni content is 776-1006 ppm. The Dali picrites
melted at high pressure (c. 4 GPa), adiabatically ascended to the
near-surface environment at low pressure (c. 1 GPa) and started
to crystallize olivine. In this case, the Ni partition coefficient
KpNi®/melt = 4.3 In order to crystallize olivine with ¢. 3900 ppm
Ni concentration, there should be at least c. 907 ppm Ni in the melt.
This is consistent with the calculated Ni concentration in the pri-
mary melt of Dali picrite, suggesting that it is possible for the Dali
picrite melt to crystallize high-Ni olivines. In other words, the Dali
picrites were produced by partial melting of a peridotite source. We
therefore propose that the high concentration of Ni in olivine in the
Dali picrites might be attributed to the relatively low KpNio/melt
during peridotite partial melting at conditions of high temperature
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Fig. 7. (Colour online) Results of Al-in-olivine thermometry for the Dali picrites shown
in olivine Fo versus T (°C). Estimated 26 errors for the temperatures are shown (see
Section 5.b).

and high pressure, which resulted in enrichment of the primitive
magmas with Ni, and the high KpNi®/m¢t when the deep mantle-
derived magma rose to a shallower environment of lower temper-
ature and pressure, which resulted in crystallization of those
Ni-rich olivines. There is therefore no need for eclogites or pyrox-
enite in the generation of Dali picrites.

5.b. Estimation of mantle potential temperature

Based on the temperature-dependent behaviour of Al between
coexisting olivine and Cr-spinel, the newly established Al-in-
olivine thermometer proposed by Wan et al. (2008) and Coogan
et al. (2014) can be used to estimate the olivine crystallization tem-
perature. Compared with the traditional olivine-melt equilibrium
thermometer, Al-in-olivine thermometer has the advantage of
being independent of crystallization pressure, parental melt com-
position, oxygen fugacity and water content (Wan et al. 2008;
Coogan et al. 2014). In addition, Al is expected to diffuse much
more slowly through the olivine lattice than Mg and Fe, so the ini-
tial composition of the olivine-spinel pair is preserved (Spandler &
O’Neill, 2010). It is therefore much more useful and convenient for
us to determine the crystallization temperature of olivines in Dali
picrites. The experimental results provided by Wan et al. (2008)
and Coogan et al. (2014) suggested a restricted range for this ther-
mometer; only Cr-spinel with Cr no. of 0-0.69 (Cr/(Cr + Al), mol)
can be used for a reliable result from the Al-in-ol thermometer.
The spinels in this study exhibit Cr no. values in the range of
0.570-0.685, all within the calibration range of the thermometer.
We can therefore use these olivine and Cr-spinel composition data
to estimate the crystallization temperature of olivines (°C), and the
thermometer calibration equation is expressed:

To-l = 273.15 4 10 000/[0.575 + (0.884 x Crno.) — 0.897
x In(Al,0;° /AL O;%)].

The calculated temperature for Dali picrites ranges from 1221
to 1491°C (by EPMA data, online Supplementary Table Slc).
Accordingly, we also calculated the uncertainty of the thermometer
by error propagation, and the calculated 26 error ranged from + 57
to £ 65°C (online Supplementary Table S1c). The maximum crys-
tallization temperature is estimated as 1491 + 65°C (Fig. 7), which
constrains the liquidus temperature to T > 1491°C. When
compared with olivine crystallization temperatures reported from
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Table 1. The highest-reported olivine-spinel equilibrium temperature and the
Fo values for the host olivines. Data sources: MORB, Gorgona, SE Greenland,
Baffin Island and Madagascar: Coogan et al. (2014); Karoo: Heinonen et al.
(2015); Etendeka: Jennings et al. (2019); ELIP: Xu & Liu (2016); Iceland:
Matthews et al. (2016).

Type Province Fo T (°C)
MORB = 89 1270
Iceland - 90.7 1399
LIP ELIP (Dali picrites in this study) 89.4 1491
ELIP (reported by Xu & Liu, 2016) 88.3 1440
Karoo 91.7 1481
Etendeka 92.9 1511
Madagascar 91.8 1485
Gorgona 91.7 1434
SE Greenland 89.8 1353
Baffin Island 90.8 1408

other plume-related settings, such as continental flood basalts or
other LIPs, the hottest Dali olivine-spinel crystallization temper-
atures are c. 50°C higher than the maximum olivine crystallization
temperatures for ELIP samples from Yongsheng, Binchuan and
Dali estimated by Xu & Liu (2016) (1440 * 63°C). The samples
of Dali picrite for this study were collected from a road-cut section
located close to the Dali sections where Xu & Liu (2016) collected
their samples, and the higher crystallization temperature estimated
in Dali picrites might be attributed to their higher Fo value of
the host olivine than the samples of Xu & Liu (2016). For compari-
son, the highest Dali picrite olivine crystallization temperature is
1491°C, which is similar to the highest olivine crystallization tem-
perature estimated for Karoo, Madagascar and Etendeka, but about
100°C higher than those estimated for Iceland and SE Greenland
(Coogan et al. 2014; Heinonen et al. 2015; Xu & Liu, 2016;
Matthews et al. 2016; Jennings et al. 2019; Table 1). This temper-
ature is about 200°C higher than the maximum crystallization
temperature of MORB (1270°C) calculated by the same thermom-
eter (Coogan et al. 2014), and provides robust evidence for a
pronounced thermal anomaly in the mantle source of the Dali
picrites.

As for the mantle potential temperature (Tp), there is a simple
method for evaluating Tp of a peridotite source from the olivine
crystallization temperature. It is generally considered that progres-
sively ascending melts are nearly adiabatic before olivine begins to
crystallize. Because of the enthalpy of melting and adiabatic cool-
ing, Tp should be higher than the maximum crystallization temper-
ature. In order to calculate Tp of the Dali picrites, a temperature
correction for melt generation and adiabatic cooling is required
(Putirka et al. 2007; Herzberg & Asimow, 2015; Matthews et al.
2016; Jennings et al. 2019). Putirka et al. (2007) and Herzberg &
Asimow (2015) assumed a simple two-step approach to calculate
the mantle potential temperature from the crystallization temper-
ature: first, correct back to the liquidus temperature at 1 atm along
an adiabat, then correct the temperature which dropped through
melting and crystallizing at 1 atm.

The water content of magma also needs to be taken into con-
sideration, due to its potential effect on the T, calculation. As
reported by Liu et al. (2017), the H,O contents in Dali picrites
were calculated to be 2-4 wt% based on the study on
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clinopyroxene-melt equilibrium. However, considering that the
crystallization of olivine and spinel usually occurs earlier than that
of clinopyroxene, an increase of H,O in the residual melts can be
expected, and the reported H,O contents might be an overestimate.
As our samples lack other hydrous primary minerals (e.g. amphib-
ole, mica) and the basalts coexisting with Dali picrites (Fig. 2a) con-
tain large amounts of plagioclase phenocrysts (Fig. 2d), we propose
that the water content of our Dali pictrite samples was probably
relatively low.

Based on experimental data, Herzberg & Asimow (2015)
defined the effect of pressure on increasing olivine liquidus tem-
perature as:

T, o/lig — T(p)ol/liq — 54P + 2P?

where T,°/14 (°C) is the olivine liquidus temperature at a pressure
of 1 atm and T(P)°/ (°C) is the olivine liquidus temperature at
pressure P in gigapascals. Tao et al. (2015) suggested that the
olivine crystallization pressure is ¢. 1 GPa, and the liquidus
temperature T(P)°/4 is constrained to >1491°C, resulting in
T,/ > 1439°C. The mantle potential temperature Tp is related
to the olivine liquid temperature at 1 atm (T;°"19) along the solidus
line by the equation (Herzberg & Asimow, 2015):

T, = 1.049 x T,°/%9 —[0.00019 x (T,°/19)?]
+[1.487 x 1077 x (T,°/49)3].

Using T,°/44 i the above equation, we obtain a Tp of 1559°C. We
also consider the uncertainty of the crystallization temperature
in the calculation, yielding a propagated uncertainty in Tp of
¢. +95/-90°C. We therefore infer that the mantle potential temper-
ature of the Dali picrites is > 1559 +95/-90°C, which is consistent
with previous studies (c. 1620°C; Zhang et al. 2006). For compari-
son, Matthews et al. (2016) used a similar method to calculate a
Tp of 1480 +37/-30°C for the Iceland mantle plume and
1318 +44/-32°C for the MORB from the olivine-spinel crystalli-
zation temperatures. The mantle potential temperature of the Dali
picrites is ¢. 200°C higher than that of normal MORB, and is there-
fore consistent with a plume-head origin (even if our method rep-
resents a simplification and neglects the uncertainty in water
content, oxygen fugacity and the melt fractions). The mantle
potential temperature T}, is definitely higher than the olivine crys-
tallization temperature, and T°*F'=1491°C is still much higher
than the mantle potential temperature of the normal MORB
Tp(MORB) = 1318 +44/-32°C).

6. Conclusions

1. The trace-element data of primitive olivine in Dali picrites are
consistent with a peridotite-dominated source for the primary
magma.

2. The high Ni content in olivine phenocrysts can be explained by
the relatively low KpNi®/m! during partial melting in the deep
mantle and the high KpNi?/™¢!t during crystallization in the rel-
atively shallow level. This model suggests that a significant con-
tribution from a metasomatic pyroxenite to the formation of
high-Ni olivine is not a prerequisite.

3. Based on the Al-in-olivine thermometer, we compute the maxi-
mum olivine crystallization temperature T°-*P! of 1491 + 65°C.
Since the Dali picrite was derived from a peridotite-dominated
source, the estimated mantle potential temperature Tp is > 1559
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+95/-90°C, which is ¢. 200°C higher than the mantle potential
temperature of the MORB, confirming the role of a man-
tle plume.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756820001053
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