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A millimetre-size superhydrophobic sphere impacting on the free surface of a quiescent
bath can be propelled back into the air by capillary effects and dynamic fluid forces,
whilst transferring part of its energy to the fluid. We report the findings of a thorough
investigation of this phenomenon, involving different approaches. Over the range from
minimum impact velocities required to produce rebounds to impact velocities that cause
the sinking of the solid sphere, we focus on the dependence of the coefficient of restitution,
contact time and maximum surface deflection on the different physical parameters of the
problem. Experiments, simulations and asymptotic analysis reveal trends in the rebound
metrics, uncover new phenomena at both ends of the Weber number spectrum, and
collapse the data. Direct numerical simulations using a pseudo-solid sphere successfully
reproduce experimental data whilst also providing insight into flow quantities that are
challenging to determine from experiments. A model based on matching the motion of a
perfectly hydrophobic impactor to a linearised fluid free surface is validated against direct
numerical simulations and used in the low-Weber-number regime. The hierarchical and
cross-validated models in this study allow us to explore the entirety of our target parameter
space within a challenging multi-scale system.
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1. Introduction

Free-surface impacts have been the subject of rigorous scientific study since the pioneering
work of Worthington (1882, 1897). Interest in this area of study was fuelled by military
and engineering applications related to alighting of aeroplanes on water and water entry of
projectiles. Consequently, a substantial amount of effort has been devoted to the study of
the high-Weber-number limit (Von Karman 1929; Richardson 1948; Howison, Ockendon
& Wilson 1991; Howison, Ockendon & Oliver 2002), for which capillary effects can
be safely disregarded. Moreover, several advances in these inertia-dominated regimes
followed the introduction of the Wagner model (Wagner 1932), which describes the early
stages of impact of a blunt body onto the free surface of a bath of incompressible, ideal
fluid.

Studies covering moderate Weber number regimes have focused on cavity formation and
cavity pinch-off upon surface penetration of projectiles (Duclaux et al. 2007; Aristoff &
Bush 2009; Truscott, Epps & Belden 2014), jet formation at the initial stages of impact
(Thoroddsen et al. 2004) and forces in the early stages of impact (Moghisi & Squire
1981). More recently, the study of regimes for which the impact is dominated by capillary
effects has been motivated by biological and biomimicry applications (Bush & Hu 2006;
Hu et al. 2010; Koh et al. 2015). In these cases, impacts that do not break through the
surface are particularly relevant to the study of water-walking mechanisms (Yang et al.
2016). Inspired by water-walking insects, numerous biomimetic robots have been proposed
for use in autonomous environmental exploration and monitoring (Bush & Hu 2006; Hu
et al. 2010; Yuan & Cho 2012; Zhao et al. 2012; Koh et al. 2015; Yang et al. 2016; Chen
et al. 2018b; Kwak & Bae 2018). Dynamic particle motion with capillary effects is also
fundamental to a number of industrial processes including self-assembly of particles at
interfaces (Whitesides & Boncheva 2002; Whitesides & Grzybowski 2002), wet scrubbing
and deposition for removal of particulates from gases (Jaworek et al. 2006; Wang, Song
& Yao 2015), mineral flotation for material processing (Ueda et al. 2010; Liu, Evans &
He 2016) and particle deposition techniques for rapid manufacturing (Haley, Schoenung
& Lavernia 2019).

Vella & Metcalfe (2007) addressed these capillary-dominated impacts and described
conditions for the sinking of a cylinder in a two-dimensional fluid. Lee & Kim (2008)
considered the axisymmetric case of a superhydrophobic sphere impacting a fluid interface
and they developed scaling laws to predict the transitions between the regimes in which
the impactors stick to, bounce off and penetrate through the surface. In the same work
they presented a mathematical model that can capture the initial and final stages of the
rebound of a superhydrophobic sphere, though it was not possible to use this model to
capture the transition between these two stages. Furthermore, only limited experimental
data was provided beyond a regime diagram, rendering comprehensive comparison with
more advanced dynamical models inviable.

Since the work of Lee & Kim, there have been other follow-up works on the topic such as
Wang et al. (2015), Ji, Song & Yao (2017) and Galeano-Rios, Milewski & Vanden-Broeck
(2017), including a 2018 study by Chen et al. (2018a), which extended the bouncing and
penetration criteria developed by Lee & Kim to include the wettability of the particle.
Galeano-Rios et al. (2017) introduced the kinematic match (KM) formulation of the impact
problem, which they used to capture all stages of impact and rebound of a non-wetting
sphere onto the free surface of a bath. Their impact model is based on the linearisation of
the free-surface equations and is free of any form of fitting parameters. In the mentioned
article and in Galeano-Rios, Milewski & Vanden-Broeck (2019), the method is also used
to model sub-millimetre diameter droplets that bounce repeatedly on the free surface of a
vibrating bath yielding remarkably good agreement with experimental results.
912 A17-2
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From a numerical standpoint, the study of impact problems is a highly challenging
endeavour due to the multi-scale nature of the events in both time and space. In a
recent review, Josserand & Thoroddsen (2016) provide a comprehensive discussion into
the richness of even the most fundamental of questions. In both low- and high-speed
contexts, sub-micron level details may be pertinent to the dynamics of systems which are
centimetre-sized or more. Rapidly changing interfacial locations, which may even result
in topological transitions (coalescence, secondary jet formation and splashing), require
carefully designed algorithms capable of capturing such changes in an accurate and stable
manner. Furthermore, the effect of the ambient gas is non-negligible in many such cases
if the full dynamics is to be successfully captured for both qualitative and quantitative
assessment.

Over the past two decades, improvements at the algorithmic level, as well as increases in
computing power (parallelisation capabilities in particular), have resulted in a number of
success stories in this area. These improvements have led to insights into the key metrics
involved in drop impact onto solid surfaces (such as film thickness, maximum spread
and underlying structures; see, e.g. Eggers et al. 2010; Philippi, Lagrée & Antkowiak
2016; Wildeman et al. 2016), to access into new regimes, and have even guided and
complemented data retrieval for new experimental techniques (Visser et al. 2015). While
some of the difficulties, e.g. those related to contact line dynamics, are avoided in
liquid–liquid impact scenarios, many of the inherent challenges remain the same. The
deformation of the impactor and identification of thresholds for splash jet formation has
been the subject of much attention (Josserand & Zaleski 2003; Josserand, Ray & Zaleski
2016), while the dynamics inside the impinging liquids gives rise to exciting structures,
as indicated by initial numerical investigations (Thoraval et al. 2012). Finally, employing
direct numerical simulations has recently allowed comparisons to Wagner theory in
suitable regimes (Cimpeanu & Moore 2018; Moore et al. 2020), providing a strong toolkit
for establishing predictive capabilities of analytical formulations and bridging the gap
towards direct experimental comparisons and applications.

One highly relevant detail in the present context is the nature of the sphere surface.
The superhydrophobic coating is desirable in terms of producing solid rebound behaviour
over the largest parameter space. The ‘converse’ problem of liquid droplets impacting
superhydrophobic surfaces has been widely studied from the fundamental perspective in
order to understand both bouncing and splashing-related effects (Richard & Quéré 2000;
Bartolo et al. 2006; Biance et al. 2006; Reyssat et al. 2006). Many of these studies on
droplet impacts have been motivated by elucidating the underlying physics and guiding
designs in applications pertaining to self-cleaning (Liu et al. 2014), structure-induced
patterning (Schutzius et al. 2014; Lee, Chang & Kim 2010) and even aerodynamic (icing
prevention) contexts (Yeong et al. 2014; Peng, Chen & Tiwari 2018). In the context at
hand, the superhydrophobic coating around the impacting sphere is used to ensure a large
contact angle and low contact-angle hysteresis. Our assumption of perfect hydrophobicity
also has the added advantage of (comparatively) simplified contact line dynamics for the
associated theoretical investigations.

Studies in the aforementioned scenarios raise valid questions for the case of solid
spheres rebounding off the free surface of a bath, considered here. For instance, in Biance
et al. (2006) it has been shown that for droplets bouncing off of a solid, the coefficient
of restitution is a non-monotonic function of the Weber number. Specifically, it increases
with Weber in the low-Weber-number regime, and it reverses its behaviour in the moderate
to high-Weber-number range. It is not known whether this behaviour is reproduced in
the converse system. Another question is whether the criterion for bouncing off the
surface versus oscillating without detaching from it, and the criterion for sinking that
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were presented by Lee & Kim (2008) holds for densities and Bond numbers outside the
range they reported. Furthermore, in some related problems (e.g. Gilet & Bush 2009b),
it has been shown that scaling based on a linear spring model is sufficient to rationalise
a collapse of the relevant rebound metrics for a wide range of rebounds. The question
of whether a similar collapse, on the basis of a linear model, is possible in the system
considered herein is of interest.

In the following sections we address these and other related questions. We present
a combined experimental, numerical and theoretical investigation focusing on the
dependence of contact time, maximum penetration depth and coefficient of restitution
on the different impact parameters. We show that direct numerical simulations of
pseudo-solid spheres impacting a fluid bath are able to accurately capture all features
observed in our experimental studies and act as a bridge between experiments and
modelling efforts. In view of the above, we show that the KM method produces results
that are in full agreement with data obtained via direct numerical simulation (DNS)
for impacts in which the modelling assumptions remain valid. Furthermore, we use the
KM to explore the low-Weber-number limits in which we identify impact velocities that
maximise the fraction of the initial energy that is recovered by the impactor. Finally, we
use asymptotic analysis to produce a nonlinear spring model, which we use to rationalise
and interpret the maximum penetration depth and contact time data amalgamated from the
three approaches.

2. Experimental methods

2.1. Experimental set-up
The experimental set-up is depicted in figure 1. In each trial, spheres were dropped from
a mechanical iris that could be height adjusted by a system of custom linear stages.
A two-stage system was custom designed and fabricated to allow for three degrees of
freedom for the iris position above the water bath (vertical and horizontal stages provide
two degrees of freedom, and the threaded rod that held the iris provided a third). The
sphere was dropped approximately 2 cm from the panel closer to the camera, 3.5 cm from
each of the side walls of the bath, 5 cm from the back wall panel and 7 cm from the bottom
of the bath. These distances were chosen such that the boundaries of the bath would not
interfere with the dynamics near impact. This was confirmed experimentally by increasing
the distance of impact from the front panel until the rebound metrics were not affected in a
statistically significant manner. In many cases, the influence of the reflected waves during
impact was also that the sphere did not rebound vertically (and moved in or out of the
narrow focal plane).

The water bath itself was designed to be easily filled, flushed and drained to minimise
contamination of the free surface (Kou & Saylor 2008). There are two tubes connected
directly to the bath; one that connects to a water reservoir filled with deionized water, and
the other to a syringe for fine water-height adjustments. Overflow from flushing the bath
is caught by a lip at the base of the bath and then drained by gravity through an outlet to
a waste container beneath the optical table. The 3-D printed bath can be precisely levelled
using three levelling springs and is mounted directly to an optical table. The vibration
isolation provided by the optical table ensured minimal disturbances on the free surface
prior to impact, which could interfere with the results. The bath panels were laser cut from
clear polystyrene, a material with a contact angle of approximately 90◦ (Ellison & Zisman
1954), such that a pronounced meniscus would not form and interfere with imaging at
impact. The panels were laser cut to have a line of etched dots (0.2 mm in diameter, spaced
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Figure 1. (a) Rendering of the complete experimental set-up, including the high-speed camera, water bath,
linear stages, water reservoir and backlight. (b) Closer view of the water bath and linear-stage system, viewed
from the perspective of the camera.

10 mm apart so as to not interfere with the visualisation at the impact location) at the
desired water level as a visual indicator to ensure that the water level remained consistent
between trials.

A Phantom Micro LC311 camera with a Nikon Micro 200 mm lens was used for the
video capture. The camera was mounted on a system of linear stages with three degrees
of freedom to allow for fine positioning. In particular, the camera position could be finely
adjusted along its axis such that the focus was fixed at the minimal working distance for
all experiments in order to ensure consistent (and maximal) image spatial resolution. The
lens was set at its minimal aperture (f /32), which allowed for the focus to be satisfactory
when the sphere was both above and below the water surface. The camera captured images
at 10 000 frames per second at an exposure time of 99.6 μs. The window size of images
was approximately 5 mm × 10 mm, which was captured in 256 × 512 pixels. The images
were uniformly back-lit with a 100 mm × 100 mm Phylox LED light panel. Sample image
data are shown in figure 2(a–c).

In order to maintain a large equilibrium contact angle (θc) of approximately 160◦
with very low contact-angle hysteresis (Weisensee et al. 2017), the spheres were coated
with a commercially available two-part (henceforth referred to as ‘step 1’ and ‘step 2’)
superhydrophobic spray (NeverWet). Spheres that are not coated or have a damaged
coating have significantly reduced propensity to bounce under most impact conditions.
The protocol that allowed for the application of a uniform coating is described in detail
in what follows. Approximately 10 spheres were initially distributed in a clean petri dish,
arranged so that none of the spheres were in contact with each other or the side walls of the
container. Then two rapid sprays of step 1 were applied to the spheres from approximately
30 cm away. The spheres were then left to sit for 1 min. At this point, the spheres were
redistributed on the petri dish using a small toothpick. This procedure for step 1 was then
repeated five times. The spheres were then left in a fume hood for 15 min for the step 1
coating to dry. They were then moved to a clean petri dish and left in the fume hood for at
least another 15 min. Following this procedure, the step 2 coating was applied. Ten rapid
sprays of step 2 were applied in succession. The spheres were redistributed between each
spray without external contact by gently tilting the petri dish and allowing them to roll to
new positions and orientations. They were then left to sit for approximately 5 min, and 10
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Figure 2. Rebound data for superhydrophobic spheres with radius Rs = 0.083 cm and density ρs =
2.2 g cm−3. (a–c) Sequence of images with different impact speeds V0: (a) 40.2 ± 0.7 cm s−1, (b) 53.7 ±
0.7 cm s−1, (c) 73.6 ± 0.6 cm s−1. Images are evenly spaced in time by 2 ms, corresponding to 20 frames.
(d) Trajectories of the bottom of the spheres (relative to the undisturbed free-surface height) measured for
eight different impact velocities. Shown are the average trajectories over all trials at a fixed release height with
outliers removed, as described in the text. Videos corresponding to the trials shown in (a–c) are available as
supplementary material at https://doi.org/10.1017/jfm.2020.1135.

more sprays were applied in the same manner. The spheres were then left to dry in the fume
hood for at least 12 h before being used in any experiment. This protocol allowed for the
millimetric spheres to be coated uniformly, which proved an essential step for obtaining
repeatable results. Note that applying too much coating in any given step led to the spheres
becoming overly saturated, and the resulting fluid meniscus bridging the sphere to the base
of the petri dish would dry and leave the surface with visible defects. Any such spheres
were discarded.

2.2. Experimental parameters
All spheres tested were denser than water (see table 1), with density ratios Dr =
ρs/ρ ranging from 1.2 to 3.2. These ratios were obtained by using nylon (Dr = 1.2),
polytetrafluoroethylene (Dr = 2.2), and ceramic spheres (Dr = 3.2), each coated with the
superhydrophobic NeverWet spray. Spheres of radius 0.83 mm were tested for all three
densities. Three sizes of nylon spheres were also tested, with radii 0.83 mm, 1.24 mm and
1.64 mm. Release heights were varied to achieve impact velocities from 30 to 110 cm s−1.
All values and non-dimensional parameters associated with the experiments are listed in
table 1. Note that the variable subscript ‘s’ delineates parameters that correspond to the
sphere properties.

2.3. Experimental procedure
Spheres were released from the mechanical iris at a range of heights, beginning at
approximately one centimetre above the water bath, and gradually increased until the
spheres sunk upon impact. Five spheres for each radius and density combination were
tested at each height, with three trials for each sphere, for a total of fifteen trials per
height. The water bath was flushed each time a new sphere was used (every three trials or
approximately every 5 min). If a sphere showed indications of a damaged coating or was
noticeably non-spherical due to an uneven coating, the sphere was discarded immediately
and any associated trajectories were also disregarded.

High-speed video footage of each bounce was recorded and directly imported into
MATLAB. Custom image-processing software in MATLAB was used to determine the
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Capillary-scale solid rebounds

Parameter Symbol Definition Value(CGS)

Impact speed V0 — 30–110 cm s−1

Sphere radius Rs — 0.083–0.164 cm
Sphere density ρs — 1.2–3.2 g cm−3

Water density ρ — 1.00 g cm−3

Equilibrium contact angle θc — 160◦
Surface tension σ — 72 dynes cm−1

Kinematic viscosity of water ν — 0.978 cSt
Gravity constant g — 980 cm s−2

Capillary length lσ
√

σ/(ρg) 0.271 cm
Capillary time tσ

√
ρR3

s /σ 2.82–7.83 ms
Reynolds number Re V0Rs/ν 250–1225
Weber number We ρV2

0 Rs/σ 1.0–14.0
Bond number Bo ρgR2

s /σ 0.09–0.37
Froude number Fr V2

0 /(gRs) 5.60–148.76
Density ratio Dr ρs/ρ 1.2–3.2

Table 1. Relevant parameters and their characteristic values in our experimental study.

vertical trajectory of the sphere as described in what follows. First, the video data was
processed using a built-in Canny edge detection in MATLAB. The top (highest) and
bottom (lowest) edges in the image were then recorded. During the initial free fall, the
top edge corresponded to the top of the sphere, and the bottom edge corresponded to the
water surface. For the cases where the sphere passes entirely below the still air–water
interface level, the top edge in the frame became the water’s surface, and the bottom edge
corresponds to the bottom of the sphere. When the sphere then resurfaced and bounced
above the interface, the top edge corresponded again to the top of the sphere and the bottom
edge is on the disturbed air–water interface. Once the sphere landed and stopped oscillating
on the surface of the water, the top and bottom edges correspond to the top and bottom
of the sphere. In summary, the top of the sphere was tracked during the initial free fall,
the bottom was tracked when the sphere was submerged, and top of the sphere was tracked
from the rebound onward. The equilibrium resting state after the bounce was used to define
the difference between the top and bottom trajectories (i.e. the sphere diameter in pixels).
This value was then subtracted from all points in the trajectory that corresponded to the
top of the sphere, thus generating a smooth curve representing the trajectory of the bottom
point of the sphere, with z = 0 corresponding to the height of the undisturbed air–water
interface. The final trajectories were then used to generate our variables of interest in
the present work, including impact speed V0, penetration depth δ, contact time tc and
coefficient of restitution α. Sample trajectories are shown in figure 2(d). The complete set
of experimental trajectories is provided in the appendix.

There are several parameters of interest in our study, which we define in what follows.
The maximum penetration depth, δ, of a bounce is defined as the position of the bottom
of the sphere at the lowest point in the trajectory (computed relative to the undisturbed
interface height). In order to determine the contact time, tc, and coefficient of restitution, α,
a parabola was fit using a least-squares method to the incoming and outgoing trajectories,
separately, with at least 10 data points prior to impact and at least 20 data points following
rebound. The analytical form of the parabolic fit was then used to extrapolate the time at
which the sphere crosses the still air–water interface height (which corresponds to a root
of the parabolic function). The derivative of the parabolic fit function was then computed
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analytically and its value evaluated at these times in order to calculate the impact speed,
V0, and exit speed, Ve.

In the present work, contact time, tc, is defined as the time duration from which the
bottom of the sphere crosses the still air–water interface to the time the bottom of the
sphere next reaches that height. Note that, due to the nature of visualisation set-up, it was
impossible to determine precisely when the spheres lost physical contact with the fluid;
however, this always occurred before the sphere returned to the level of the free surface.
Each bounce was also characterised by its coefficient of restitution, α, which is defined
here as the negative of the normal exit velocity, Ve, divided by the normal impact velocity,
V0. This parameter ranges between 0 and 1, and is related to the momentum transfer to
the fluid bath. Outliers within each data set (generally due to accidental damage to the
sphere coating) were identified using a modified 0.02-level two-sided Thomson t-test to
determine a suitable rejection region of α (Wackerly, Mendenhall & Scheaffer 2014). In
each set of fifteen trials (five spheres, with three bounces each), this test identified at most
two outliers.

3. Direct numerical simulations

In the present section we describe the construction of a computational framework
capable of resolving the complex bouncing dynamics in this multi-scale context. Our
implementation is built as an extension of the well-known, open-source, volume-of-fluid
package Gerris (see Popinet 2003, 2009), which has been proven to be one of the most
successful tools in multi-phase computational fluid dynamics studies in recent years.
As described in the previous section, the physical process we are aiming to elucidate is
highly non-trivial due, in no small part, to significant nonlinear effects and liquid surface
deformations.

Before outlining the numerical set-up as a whole, a particularly meaningful detail relates
to our treatment of the coated spheres. The specific surface features on the sphere present
in the experiment pose a formidable challenge and require much finer resolution than a
full DNS framework is capable of resolving, even with the very high end of modern day
computing resources. Resolution of these fine-scale features would arguably also require
additional physics and the formulation of a hybrid model containing sub-continuum effects
(see, e.g. Chubynsky et al. 2020), which are beyond the scope of the present work.
Furthermore, the quadtree/octree multi-grid setting in Gerris makes true fluid–structure
interaction very difficult to embed accurately. Therefore, a simplification was adopted
instead: the solid spheres are computationally modelled as highly viscous liquid drops
(250 times the viscosity of water at room temperature) with very large surface tension
coefficients (20 times the air–water value). These simulations are implemented using two
distinct height functions (level set definitions of interfaces) to avoid coalescence, and
were found to represent a viable compromise from both numerical stiffness and physical
behaviour perspectives. We have studied this approximation extensively (see also figure 5)
and have pushed the set-up as close to a true solid as possible, whilst retaining reasonable
run times given that the disparity in physical properties causes significant slowdown in
terms of convergence. A quantitative study on the deformation of this ‘pseudo-solid’ has
revealed deviations of less than 5 % in even the most challenging of scenarios. As is to be
anticipated, a flattening of the sphere occurs on impact in the vertical direction, with mass
conservation thus leading to an elongation of the impactor at the equator into an oblate
ellipsoidal shape. Given the large imposed surface tension coefficient, the pseudo-solid
relaxes to a spherical shape as soon as the impactor has left the pool surface. Whilst this
effect is consistently observed across all DNS realisations, we have made significant efforts
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in ensuring that variations in the mentioned pseudo-solid geometrical parameters no longer
affect the dynamics at the prescribed resolution levels, and are thus a viable platform
for understanding mechanistic features of the studied system. Apart from the observed
qualitative behaviour and comprehensive validation studies performed, this approach is
also confirmed quantitatively versus another model and experimental data in § 5. We
thus underline the rather remarkable feature that the behaviour we describe appears to
be independent of the microscopic details of contact with the superhydrophobic surface.
This pseudo-solid approach however is not a good model for experiments on spheres with
smaller contact angles, which exhibit notably different behaviour in the experiment. This
experimentally observed sensitivity to the wetting behaviour suggests that a contact line
exists during impact, and that a continuous air layer is not maintained during impact as is
the case for rebounding droplets (Couder et al. 2005).

Our set-up for investigating this challenging multi-fluid system is shown in figure 3.
Together with second-order accuracy in both time and space, the adaptive mesh refinement
and parallelisation capabilities make a difficult setting tractable. We assume axisymmetry
and build a domain sufficiently large to avoid reflections and artifacts from the side walls.
This constraint sets the maximum length scale captured, which is fixed at 20 impactor radii
(typically Rs ≈ 1 mm) for all realisations that follow. The smallest length scale to capture
is arguably the variation in physical quantities across the gas film between the impacting
body and the liquid pool, which in the past has been reported at O(10) μm for droplet
impacts (Couder et al. 2005). This translates to at least three orders of magnitude being
required, thus leading to a maximum grid refinement of level 12 (translating to 212 cells
per dimension), with the minimum cell size spanning approximately 4 μm. This means
that there are at least 200 grid cells per impactor radius and that quantities across the gas
film are allowed at least 3–4 cells to manifest any meaningful variation.

The mesh adaptivity criteria used are stringent and based on changes in the magnitude
of velocity components, vorticity and interfacial locations in the domain. The strategy was
developed to ensure sufficient accuracy, as well as an accessible run time for extensive
parameter studies for future comparisons. This resolution translates to O(105) cells for the
most challenging settings and a typical run time of 500 CPU hours per run, with local
high performance computing facilities equipped to handle realisations on 1–16 CPUs. We
have conducted extensive validation studies, using metrics related to interfacial shapes (in
particular, tracking maximum depth, gas film thickness and impactor radii) to establish
convergence before any direct comparisons with our other approaches.

Using a non-dimensionalisation based on the sphere radius and initial impact velocity as
reference scales, with the arising dimensionless groups presented further on as (4.1a–d),
we consider 50 time units (the equivalent of O(0.1) s), which has proven sufficient
to capture 2–3 rebounds for each parameter setting. The example expanded upon in
the present section underlying each of figures 3–5 is described by sphere radius Rs =
0.083 mm, density ρs = 2.2 g cm−3 and impact speed V0 = 56.67 cm s−1 and represents
a typical test scenario in this context, as illustrated in figure 4. Part of its evolution
(concentrating on the first bounce) is also presented as video supplementary material.

The developed computational framework is used to study regimes and uncover a host
of details at length- and time-scales beyond the reach of other approaches. The inclusion
of the effect of the ambient gas and fully nonlinear formulation provides a comprehensive
resolution of the studied dynamics, while the ability to inspect the flow field in a precise
manner leads to a constructive interplay with other methodologies. However, such an
approach, even with considerable efforts in terms of parallelisation and overall efficiency,
is nevertheless extremely expensive. The resources required (computing power and
ultimately time) make the usage of carefully resolved numerical simulations prohibitive
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Ambient gas

(a)

Liquid pool

(b)

Impactor

Figure 3. Axisymmetric simulation domain of size 20Rs × 20Rs, with Rs denoting the impactor radius. The
inset illustrates the adaptive mesh refinement strategy, with changes in vorticity (shown as background colour)
and interfacial locations used as primary criteria. A video corresponding to this particular case (expanded on
in figures 4 and 5 as well) is available as supplementary material.

–1 1 –0.3 0.3 –0.3 0.3 

(a) (b) (c)

Figure 4. Typical bouncing behaviour as observed in the direct numerical simulations for a case described by
sphere radius Rs = 0.83 mm, density ρs = 2.2 g cm−3 and impact speed V0 = 56.67 cm s−1. The background
colour represents the dimensionless vertical velocity field, with the relevant interfaces also highlighted in black.
The three illustrated instances represent, in dimensionless time units: (a) t ≈ 1.0, as the impactor touches the
surface, (b) t ≈ 4.5, as the impactor reaches its maximum depth and (c) t ≈ 10.0, as the impactor leaves the
surface for its first bounce.

for certain applications; such as many body impacts or longer time dynamics (as in the
case of periodic bouncing). In what follows we elaborate on a simpler model, which in
the low-Weber-number regime provides an efficient alternative while also resolving the
impact and the wave motion in the bath.

4. Linearised quasi-potential fluid model

An alternative fluid model that is considerably less computationally intensive is now
described. The model forgoes the gas layer, assumes a near inviscid bath, small
free-surface slopes and hydrophobicity ab initio. What follows is a brief summary of the
method in Galeano-Rios et al. (2017). Consider a bath of incompressible fluid of infinite
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1.2

(b)(a)

1.1

1.0

0.9

g

0.8
0 10 20

Center of mass → equator

Center of mass → top

Center of mass → bottom

Initial radius

t

y
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Figure 5. Pseudo-solid deformation study for a representative test case described by an impacting sphere of
radius Rs = 0.83 mm, ρs = 2.2 g cm−3 and V0 = 56.67 cm s−1. (a) Sketch of measured segments as distances
from the centre of mass of the impactor to its relevant extremities. (b) Segment size evolution as a function of
dimensionless time, compared with a reference undeformed y = 1 radius, indicated here with a dashed line.

depth and unbounded lateral extension. The fluid has density ρ, kinematic viscosity ν and
surface tension coefficient σ . Imposing axisymmetry, we introduce cylindrical coordinates
(r, θ, z), with the origin at the point of first contact of the sphere with the free surface, and
the z-axis pointing vertically upwards. We define functions η(r, t), ϕ(r, z, t) and ps(r, t)
as the free-surface elevation, a velocity potential and the pressure on the free surface,
respectively. The impacting sphere has a density ρs and at time t = 0 is in imminent contact
with the free surface whilst moving downward with speed V0.

Taking Rs, V0 and ρ as the characteristic length, velocity and density, respectively,
results in the dimensionless numbers

Re = RsV0/ν, Fr = V2
0/(g Rs), We = ρ V2

0 Rs/σ, Dr = ρs/ρ; (4.1a–d)

i.e. Reynolds number, Froude number, Weber number and density ratio. We note that Fr =
We/Bo, where Bo = ρgR2

s /σ is the Bond number.
Defining φ(r, t) = ϕ(r, 0, t) and using the linearised quasi-potential formulation for the

fluid flow, i.e.

Δϕ = 0, z ≤ 0, (4.2)

∂tη = 2
Re

ΔHη + ∂zϕ, z = 0, (4.3)

∂tφ = − 1
Fr

η + 1
We

κ [η] + 2
Re

ΔHφ − ps, z = 0, (4.4)

subject to

η → 0 when r → ∞; ϕ → 0, |∇ϕ| → 0 when (r, z) → ∞, (4.5a,b)

where ΔH = ∂rr + (1/r)∂r and κ is twice the mean curvature operator with the convention
that convex functions have positive curvature. The system given by (4.2)–(4.4) can
be reduced to two equations defined on the free surface by the introduction of a
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Dirichlet-to-Neumann transform, which is denoted by N and defined on a set of suitably
smooth functions of the plane. It is given by the singular integral representation detailed
in Galeano-Rios et al. (2017) and is such that, for any given time t,

N(φ)(r, t) = ∂zϕ(r, z = 0, t). (4.6)

The free-surface evolution is thus given by

∂tη = 2
Re

ΔHη + Nφ, z = 0, (4.7)

∂tφ = − 1
Fr

η + 1
We

κ [η] + 2
Re

ΔHφ − ps, z = 0. (4.8)

4.1. Motion of the sphere and the natural constraints
Defining a contact surface, S(t), on the sphere, where the surface of the fluid bath coincides
with that of the solid sphere, we introduce a contact area, A(t), which is the orthogonal
projection of S(t) onto the (r, θ)-plane. Assuming that A(t) is a disc of radius rc(t), we
impose that ps = 0 everywhere outside A(t). The motion of the south pole of the sphere
h(t) is thus governed by

d2h
dt2

= − 1
Fr

+ 3
4πDr

∫
A(t)

ps dA(t). (4.9)

The function ps couples equations (4.8) and (4.9).
Equations (4.7)–(4.9) must be solved subject to the constraints

η(r, t) = h(t) + zs(r), r ≤ rc(t), (4.10)

η(r, t) < h(t) + zs(r), r > rc(t), (4.11)

where zs(r) is given by the bottom half of the sphere (whose centre is on the r = 0
vertical) for r ≤ Rs, and zs = ∞ otherwise. Finally, we impose that the solid is perfectly
hydrophobic and, therefore, the contact angle is always of π, which yields the final
constraint

∂rη(r = rc(t), t) = ∂rzs(r = rc(t)). (4.12)

4.2. The kinematic match
The KM method, presented in Galeano-Rios et al. (2017) and Galeano-Rios et al. (2019),
introduces an algorithm to solve all stages of a collision, in which the impactor does
not break through the free surface. Moreover, the method predicts the evolution of the
contact area, and the pressure distribution within it, whilst imposing only first principles
and the natural geometric and kinematic constraints. The algorithm is built on the idea
that, when one imposes a given contact area evolution, (4.7)–(4.10) form a closed system.
One can then iterate on the geometry of the contact area, solving the system (4.7)–(4.10)
at each iteration and assessing the iteration result by checking the remaining equations of
the system, i.e. (4.11) and (4.12). The numerical implementation of the method uses an
adaptive time step to satisfy a constraint on the time step size that is necessary to capture
the motion of the boundary of the pressed area. For all simulations here, we adopt the
domain D = {(r, t); 0 ≤ r ≤ 50Rs, 0 ≤ t ≤ T} and we discretise the spatial domain using
a regular mesh, with an internode distance of Rs/50.

912 A17-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1135


Capillary-scale solid rebounds

The domain size was chosen to prevent waves from being reflected off the boundary
back toward the impact location during contact, thus ensuring that the rebound is not
affected by the finite size of the numerical domain. To find an adequate domain size we
ran a preliminary KM simulation to find the contact time and compare it to the time a
capillary-gravity wave, whose wavelength is equal to the radius of the sphere, would have
returned from the boundary. The domain size in the KM (radius of 50Rs) is chosen so as
to satisfy this condition for all impact times with a ‘safety factor’ of four. Additionally, we
can verify that no waves are observed returning towards the impactor before lift-off. The
information from the KM is also used to calibrate the domain size for the DNS, though in
that case, due to the computational cost involved, we used a safety factor of 1.6 (a domain
radius of 20Rs).

The programs needed to produce the linearised free-surface simulations are made
available as supplementary material.

4.3. Small surface gradient regime
The aforementioned implementation of the KM includes the assumption that the
free-surface gradient is small. This approximation significantly simplifies the calculation
of a rebound (at the cost of a loss of accuracy in the higher-Weber-number regime),
allowing it to be carried out in the order of tens of minutes in standard current laptop
computers. Consequently, the implementation of the KM method here presented is better
suited to efficiently study the low-Weber-number regime.

The KM is also useful in the study of small rebounds for which the sphere’s south
pole may not return to the height of the initial contact. In this range, one needs to
directly observe lift-off to assess the coefficient of restitution, which is more challenging
in experiments. This regime is also accessible to direct numerical simulations, which we
use to validate the KM predictions. However, these DNS calculations have run times of
the order of days even when using computer clusters. Moreover, the typically small size of
spheres for which these weak rebounds are observed produces very short and, therefore,
fast, capillary waves that require a considerably extended numerical domain to rule out any
influence that waves could otherwise have on the rebound if allowed to reach the boundary
of the domain and, therefore, be reflected back and arrive at the vicinity of the impact
point. This requirement further increases the computational cost of the direct numerical
simulations. In these cases, though the need for a large numerical domain is also present
when using the KM, scaling it up is much less costly since the numerical fluid domain is
one dimensional.

In practice, we limit the use of the KM method on the linearised free-surface model to
the cases where the maximum surface slope (a standard measure of nonlinearity in water
waves) is no greater than 1 ( ‖∇η‖∞ ≤ 1) over the full simulation of the rebound.

5. Experimental results and model predictions

5.1. Trajectories and waves
A comparison between the trajectories obtained in the small surface gradient regime is
presented in figure 6. Figure 6(a) corresponds to one case for which we have experimental,
DNS and KM trajectories for the sphere. Figure 6(b) shows the comparison between DNS
and KM for a weaker impact, for which there is no experimental data. We highlight that the
disagreement between DNS and KM is of the order of the predicted droplet deformation
in the pseudo-solid sphere used in direct numerical simulations. In this figure we have
exceptionally included the evolution of a second impact, as a way to show that the methods
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(a) (b)Rs = 0.83 mm, ρs = 1.2 g cm–3, V0 = 34.45 cm s–1 Rs = 0.83 mm, ρs = 0.25 g cm–3, V0 = 20 cm s–1
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Free surface (DNS)
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Figure 6. Comparison of predicted and measured trajectories. Panel (a) shows the resulting trajectory of the
centre of mass in experiments (Exp) versus those obtained via DNS and KM calculations. The width of the
shaded region that describe the experimental results enclose one standard deviation above and below the mean
experimental trajectory. Panel (b) compares the results of the two numerical methods in the low-Weber-number
regime, which is not accessible in the present experiments. Both panels also include the free-surface elevation
at the centre of the bath, i.e. directly below the south pole of the sphere (the impact point), as obtained from
DNS and KM simulations. Videos of the KM simulation for the case in panel (a) are available as supplementary
material.

employed here are able to capture successive impacts, though these are not the focus of
the present work. The second impact is made evident in the corner that is present in the
curve that tracks the free-surface elevation directly below the south pole of the sphere as
a function of time. All experimental and DNS trajectories for different spheres and impact
velocities are presented in the appendix.

An example of a comparison between experimental results and model predictions for the
interface shape is provided in figure 7. Four snapshots of the impact reported in figure 6(a)
are chosen. Initial stages of the impact, figure 7(a), show a slight better agreement of the
KM; this effect is expected as a consequence of the deformability of the pseudo-solid
sphere in our direct numerical simulations. However; in later stages of the rebound,
figure 7(c), the DNS better captures the interface deflection.

The agreement observed in figures 6 and 7 suggest that the role of the flow within the
air layer is not dominant in this system for low Weber numbers, as we are able to capture
the experimental dynamics with both the air-layer modelling DNS, and the linearised
modelling that completely ignores the role of air flow.

Figure 8 shows the model’s predicted evolution of the pressure field as the pressed
area expands (figure 8a), and the subsequent contraction of the pressed area as lift-off
approaches (figure 8b). Note that the time scales of figure 8(a) are much faster than
those of figure 8(b). The pressure profiles are consistent with those previously observed
but unreported in Galeano-Rios et al. (2017, 2019), where the initial spike in pressure is
followed by an approximately constant pressure distribution with a peak at the boundary of
the pressed area. This model predicts that the peak is most pronounced in the early impact
times.

5.2. Rebound metrics
We consider three different output parameters for the rebounds, namely, contact time (tc),
coefficient of restitution (α) and maximum surface deflection (δ). As mentioned in § 2.3,
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Figure 7. Surface profile predictions superimposed onto experimental high-speed camera images for
Rs = 0.83 mm, ρs = 1.2 gr cm−3 and V0 = 34.45 cm s−1.
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Figure 8. Evolution of pressure distribution as predicted by the linearised model. Panel (a) shows the pressure
distributions as the pressed area expands following impact, and panel (b) shows the pressure distribution as
the pressed area contracts before lift-off (Rs = 0.83 mm, ρs = 1.2 g cm−3, V0 = 34.45 cm s−1). The black
horizontal line indicates the contribution of surface tension to the pressure distribution and, thus, serves as a
reference level.

given the experimental difficulty to accurately determine the time of surface detachment
of the sphere, contact time, tc, is defined as the interval between the two instances when
the south pole of the sphere crosses level z = 0 and the coefficient of restitution, α, is
defined as minus the ratio of the vertical velocities at those times.

Figures 9(a) and 9(d) show that, for a given sphere (i.e. radius and density fixed,
respectively), contact time is only weakly dependent on impact velocity. The increase in
contact time near the sinking threshold is presumably due to the highly nonlinear surface
deformations observed in this regime. This particular trend is apparent in the experimental
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Figure 9. Comparison of the contact time, coefficient of restitution and maximum penetration depth in
experiments (�), DNS (�) and KM (×). The width and height of rectangular markers correspond to one
standard deviation above and below the mean experimental values. All relevant parameters and notation are
provided in table 1.
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Figure 10. Two behaviours observed in experiment for nearly identical impact velocities for identical spheres
with radius Rs = 1.24 mm and density ρs = 1.2 g cm−3, just before the sinking threshold. (a) Standard
rebound, V0 = 86.7 ± 1.7 cm s−1. (b) ‘Resurrection’ phenomenon where cavity pinches off yet the sphere
eventually resurfaces and rebounds completely, V0 = 87.4 ± 3.5 cm s−1. Images are evenly spaced in time by
4.8 ms, corresponding to 48 frames. (c) Trajectories associated with the images shown in parts (a,b). Videos
corresponding to the trials shown in (a,b) are available as supplementary material.

trajectories presented in figure 2(d), where nearly all rebounding trajectories intersect one
another at a similar time, apart from the largest impact velocities, for which this tendency
visibly diverges. In fact, an entirely new exotic trajectory was observed just below the
sinking threshold velocity, an example of which is documented in figure 10. We observe
a new ‘resurrection’ mode where the particle becomes completely submerged but is left
with upward inertia following pinch-off, and ultimately completely de-wets and rebounds.
This surprising behaviour was observed in a very narrow regime of impact velocities and
only for the lowest density spheres considered in our experiments: ρs = 1.2 g cm−3. To the
best of the authors’ knowledge, this novel behaviour has not been previously reported for
particles as dense or more dense than water. Guided by experimental insight, we were able
to pinpoint and reproduce this type of dynamics computationally as well, an example of
which we summarise in figure 11. This exploration shows that the ‘resurrection’ is possible
when the sphere has initiated its upward motion before the liquid bridge is formed over its
north pole. Moreover, the small parameter window in which this peculiar phenomenon
can be observed requires a delicate balance, wherein the gentle upward motion of the
sphere overcomes the decelerating influences of both gravity and drag in order to pierce
the liquid bridge above it. We found that small variations (±0.2 cm s−1) in the impacting
velocity translate to either bouncing, if the penetration depth is sufficiently small to avoid
the sphere becoming submerged, or sinking, in case the liquid bridge is sufficiently thick to
successfully arrest the transient upward momentum of the sphere. A biological application
that has some elements in common with the phenomenon of resurrecting spheres was
reported in the work of Kim et al. (2015), in which they discuss the mechanics of plankton
jumping out of water.

Returning to the broader parameter space, we find that the coefficient of restitution in
figures 9(b) and 9(e) monotonically increases with impact speed for each sphere. The
coefficient of restitution is more sensitive to the sphere’s density than to its radius, with
higher density spheres recovering relatively more energy during impact than otherwise
equivalent lower density spheres. Curiously, for the parameters studied here, we observed
an approximate upper limit for the coefficient of restitution of around α = 0.5 in each
case which occurred just below the sinking threshold. Due to the relatively high Reynolds
numbers considered in this work, the apparent loss of sphere energy during impact is in
fact predominantly an energy transfer required to accelerate the bath fluid during impact.
In general, one can clearly observe that all trends present in the experimental curves are
captured by the DNS. In particular, in figure 9(e) we can see that smaller spheres show a
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Figure 11. ‘Resurrection’ phenomenon observed using DNS for a pseudo-solid with radius Rs = 1.24 mm
and density ρs = 1.2 g cm−3, impacting with velocity V0 = 83.6 cm s−1. Small impact velocity variations (of
±0.2 cm s−1) result in either bouncing or sinking. Lines in (a) represent the z-position of the centre of mass of
the pseudo-solid as a function of time in each of these cases, while symbols indicate representative time steps
in the flow evolution for the ‘resurrection’ dynamics (illustrated in the bottom row b panels). A video summary
contrasting these three scenarios is available as supplementary material.

higher coefficient of restitution (α) at low velocities but a lower α at high velocities. The
subtle trend is also present in the DNS results.

Lastly, the penetration depth for all cases is shown in figures 9(c) and 9( f ), which
monotonically increases with impact speed, sphere density and radius. These same trends
are closely captured by the DNS.

Experiments and DNS show good agreement on the proposed metrics (figure 9)
over the full range accessible to experiments; namely, from velocities as low as to
barely cause the rebounding sphere to recover past the initial impact height to impact
velocities that cause the sphere to break through the surface and sink. This fact strongly
suggests that, for the parameters of interest, the non-wetting, pseudo-solid impactor is
a very good approximation for the superhydrophobic sphere. As discussed in the prior
sections, the pseudo-solid approach simplifies the overall numerical model. Remarkably,
the data presented here thus suggests that the micro-scale roughness and dynamic contact
line motion appear, at most, minimally relevant to the rebound metrics observed in
experiments. All experimental and DNS trajectories that correspond to the points in
figure 9 are presented in the appendix.

There is a single experimental rebound for which the small surface slope assumption
of the KM is satisfied. This case corresponds to Rs = 0.83 mm, ρ = 1.2 g cm−3 and
V0 = 34.45 cm s−1. Kinematic match simulation results are included for this case as well
as for the same sphere with lower impact velocities in figure 9. Direct numerical simulation
results are also shown for this extension of the experimental regime. In this range of
impact velocities, simulations smoothly extend the experimental results; however, a direct
quantitative comparison is not possible with the current experimental set-up, as the south
pole of the sphere is obstructed for small rebound heights by the capillary wave field
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Capillary-scale solid rebounds

generated during the impact. Simulation results in the low Weber regime are expanded in
the following section.

5.3. Model predictions
We further explore the low-Weber-number regime, using the KM method. Specifically,
we simulate the impact of spheres with radii smaller than those within the experimental
range, densities below that of the materials tested in the experiments, and impact velocities
including those that do not cause the sphere to fully rise above the z = 0 level. Namely, we
cover the range from the weakest impact velocity that is capable of producing a rebound
to the highest impact velocity for which we satisfy ‖∇η‖∞ ≤ 1.

For this range of physical parameters, it is often the case that the bounce is so weak
that the sphere does not recover enough mechanical energy to return to the impact height,
thus rendering the definition of tc useless as a rebound metric. Instead, we define the time
between touch-down and lift-off as the pressing time, tp. For these cases, we also need to
revisit the rebound metric α.

When considering the normal impact of two rigid bodies, if one of the impacting masses
reverses its direction following the impact, the standard definition for its coefficient of
restitution α = −Uout/Uin (i.e. minus the ratio of the outgoing velocity to the incoming
velocity) can also be expressed as the square root of the ratio of its outgoing and incoming

kinetic energies α = −Uout/Uin =
√

Ek
out/Ek

in. If the impact takes place at the reference
level for potential energy, this is also the ratio of their total mechanical energies (kinetic
plus potential)

α = −Uout

Uin
=
√

Ek
out

Ek
in

=
√

Em
out

Em
in

. (5.1)

This multiplicity of interpretations is possible when the impact is localised in time and
space. In that scenario, external forces are unable to perform any work or exert any impulse
on either of the impacting bodies. This is not the case in the impacts we study. As the free
surface is allowed to deform, gravity does work and exerts an impulse on the sphere (in
particular) over the duration of contact.

Variable α was in fact chosen to be the square root of the ratio of the outgoing
mechanical energy to the incoming mechanical energy rather than minus the ratio of
velocities at the start and end of contact, which (in general) take place at different heights.
In the case when the sphere returns to the impact height, this is simply minus the ratio of
the outgoing to the incoming velocity at the reference height (neglecting any losses from
the moment the sphere lifts off to the moment when it crosses the reference level for the
second time). However, near the lower limit of impact velocities the sphere transfers more
than its initial kinetic energy to the bath. That is to say, it transfers all of the kinetic energy
it had before impact plus some of its gravitational potential energy as it pushes down on the
fluid. In these cases, though the sphere still reverses its direction of motion and detaches,
it no longer reaches the impact height, i.e. Em

out is negative, thus turning α imaginary. To
avoid introducing imaginary coefficients of restitution, we use α2 as our rebound metric
near this regime, with the understanding that a negative value for α2 corresponds to the
impactor losing more than its initial kinetic energy over the impact.

Despite α2 being a more general metric, we kept α as the parameter of choice for the
other regimes, since in the study of impacts it is much more customary to consider the
coefficient of restitution than its square.
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Figure 12. Rebound metrics for weak impacts. Cross-markers (×) correspond to KM predictions and diamond
(�) markers to DNS predictions. In these impacts, different rebound metrics were used. These are the pressing
time tp, defined as the length of the time interval over which the south pole of the sphere is in direct contact
with the fluid surface; and the squared coefficient of restitution α2, which can take negative values when the
total energy transfer during the rebound is greater than the kinetic energy of the sphere as it starts its contact
with the bath. All relevant notation and parameter values are provided in table 1.

The results of these low-Weber-number simulations are presented in figure 12, where
we identify behaviour that is qualitatively different from what was observed in the
intermediate-Weber-number cases. We recall that in all cases shown above (see figure 9),
the α curve was always monotonic, whilst in the regime here considered, for a given sphere
radius, it is possible to find a low enough density so as to produce a maximum in the
coefficient of restitution α (or, equivalently, in α2). Similarly, for a given material density,
we find a radius that is sufficiently small, so as to produce a non-monotonic curve for α.
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C

β
H

Figure 13. Schematic diagram for the quasi-static analysis. Point C corresponds to the centre of the sphere, Ĥ
is the depth of the boundary of the contact line and β is the angle formed between the horizontal and the free
surface, where it meets the solid.

To the best of our knowledge, this is the first instance of a report of such behaviour
for rebounding impactors on the free surface of a fluid. In order to independently verify
these findings, we ran some selected cases in the direct numerical simulations. The results
are presented in the three-point curve signalled with diamond (�) markers along with the
KM results. As can be seen in figure 12, our direct numerical simulations verify the KM
predictions.

5.4. Quasi-static approximation
We use asymptotic analysis based on James (1974) to derive a spring model which is able
to collapse the curves for maximum penetration and contact time. A similar analysis has
also been presented in Cooray, Cicuta & Vella (2017). Consider a sphere resting on the free
surface of a quiescent bath. Buoyancy and surface tension effects result in a net vertical
force given by

Fz = ρgπR2
s sin2(β)Ĥ + ρgπR3

s

3
(2 − 3 cos(β) + cos3(β))︸ ︷︷ ︸

FB

+ 2πσRs sin2(β)︸ ︷︷ ︸
FT

, (5.2)

where β is the angle that the free surface makes with the horizontal direction at the
boundary of the pressed area and Ĥ is the distance from the undisturbed free surface to the
boundary of the pressed area (see figure 13). The buoyancy force, FB, is given by weight
of the volume of fluid above the spherical cap that is in contact with the free surface, and
the capillary force, FT , is given by the vertical component of the surface tension acting
along the contact line of the same spherical cap.

Taking 2πσRs as the unit of force and Rs as the unit length, non-dimensionalising (5.2)
yields

F = Fz

2πσRs
= sin2(β) + Bo

[
sin2(β)

2
H + 2 − 3 cos(β) + cos3(β)

6

]
, (5.3)

where Bo = ρgR2
s /σ is the Bond number and H = Ĥ/Rs.
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We now consider the Young–Laplace equation for this set up,

1
r
∂r

[
r∂rη

(1 + (∂rη)2)1/2

]
= Boη, (5.4)

subject to the boundary conditions

∂rηo(sin(β)) = tan(β), ηo(sin(β)) = −H, (5.5)

where H is to be determined. We perform a boundary layer analysis in the limit of Bo 	 1.
The region where curvature and surface deflection are O(1) is the ‘outer’ region (i.e.
the boundary layer is at infinity), and the equation is approximated by neglecting the
right-hand side of (5.4).

It follows that

ηo(r) = sin2(β) ln

∣∣∣∣r +
√

r2 − sin4(β)

∣∣∣∣
sin(β) (1 + cos(β))

− H. (5.6)

For the ‘inner’ solution, rescaling x = √
Bor, with x = O(1), yields

x∂xxηi(x) + ∂xηi(x) − xηi(x) = 0, (5.7)

subject to

lim
x→∞ ηi(x) = 0, (5.8)

which implies that

ηi(r) = cK0

(√
Bo r

)
, (5.9)

where K0 is the modified Bessel function of the second kind and order 0, and c is an
arbitrary constant.

In order to match the inner and outer solutions, we must consider the form of the inner
solution for small x,

ηi(r) ∼ −c

(
ln (r) + ln

(√
Bo
2

)
+ γ

)
, (5.10)

where γ is the Euler–Mascheroni constant and the form of the outer solution for large
values of r,

ηo(r) ∼ sin2(β) (ln(r) + ln(2) − ln (sin(β) (1 + cos(β)))) − H. (5.11)

Thus, we have c = − sin2(β) and

H = sin2(β) ln
4√

Boeγ sin(β) (1 + cos(β))
. (5.12)

In static equilibrium Fz is equal to the mass of the sphere, hence, Fz/(2πσRs) =
(2/3)DrBo, and a small Bo and β solution can be found with Bo ∼ β2 (at leading order).
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Thus, we expect that this will continue to hold at small We, with

H ∼ β2 ln
2√

Boeγ β
, (5.13)

and

F = β2 + Bo
(

β2

2
H
)

+ O(β4). (5.14)

From (5.14) and (5.13), we have an approximate nonlinear ‘interface spring’ stiffness
given by the expression

k = F
H

≈
(

ln
2

eγ
√

BoF

)−1

. (5.15)

This spring model is now used to estimate the static deflection of the free surface due
to the weight of the sphere (by taking F in the argument of ln(·) to be given by the
aforementioned dimensionless weight of the sphere F = 2DrBo/3), yielding

kst ≈
(

ln

√
6

eγ Bo
√

Dr

)−1

, (5.16)

and, therefore,

δst ≈ 2Bos

3

(
ln

√
6

eγ Bo
√

Dr

)
, (5.17)

where kst and δst are the stiffness and the deformation of the nonlinear spring at static
equilibrium, respectively.

Figure 14 shows the maximum surface deflection from all experimental, DNS and
linearised fluid interface model data. The vertical axis measures maximum deflection with
respect to the static deflection as estimated by the nonlinear spring derived above. On the
horizontal axis, velocity is given in units of capillary length over spring period.

The contact time for all data as a function of the period of oscillation of the spring is
illustrated in Figure 15. The clustering of the data around 0.6 suggests that contact time can
be interpreted as approximately half a period of oscillation of the spring. This is physically
reasonable, as contact can be considered to occur during the negative-deflection part of an
oscillation period.

Figures 14 and 15 include all of our experimental and simulation points, with the
exception of the simulation point for which the impactor never reaches the reference height
following impact, as it is not possible to define tc for these points.

Despite the assumptions, the collapse of the data is reasonable and suggests that the
quasi-static asymptotic analysis and ‘interface spring’ interpretation captures much of
the dominant physics of the rebound. This simple model however does not collapse the
coefficient of restitution data. This is not unexpected, as the asymptotic model does not
include the dynamic effect of energy being transferred to the surface waves on the bath,
which depend much more intricately on the physical parameters.

6. Discussion

The present work addresses a regime of impacts onto a free surface that had not hitherto
received much attention, and reveals trends for the dependence of the contact time,
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Figure 14. Collapse of the maximum surface deflection on the basis of the nonlinear spring model at
the equilibrium deflection. (a) The full set of experimental and simulated data for which the sphere returns
to the impact height. (b) The same data rescaled using the variable suggested by the boundary layer analysis.
The vertical axis on (b) is normalised using the capillary length, lσ = √

σ/ρg.
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Figure 15. Collapse of the contact time on the basis of the period of oscillation of the spring model. Panel (a)
shows the full set of experimental and simulated data for which the sphere returns to the impact height. Panel
(b) shows the same data rescaled using the variables suggested by the boundary layer analysis.

the fraction of energy recovered by the impactor and the maximum surface deformation.
Moreover, carefully controlled experiments and modelling derived from first principles
allow for the identification of new phenomena. Direct numerical simulations provide new
insight into the dynamics and flow quantities that are difficult to measure. Furthermore,
direct numerical simulations also supply information and act as a validation test bed for
the reduced-order model in appropriate regions of the parameter space that are challenging
to investigate experimentally, thus acting as a bridge between the employed methods.
Asymptotic analysis is used to derive a nonlinear spring approximation and provides a
framework for the collapse and physical interpretation of data derived from all methods.
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Our experimental study spanned the range from intermediate to high impact velocities;
namely from impact velocities that cause the droplet to barely rise past the undisturbed
free-surface height to the highest speeds for which the sphere bounces (higher velocities
cause the sphere to sink). Moreover, the peculiar phenomenon of the ‘resurrecting’ sphere
was uncovered in the experiments and captured by our DNS. Furthermore, robust trends
in the contact time, coefficient of restitution and penetration depth were established and
compared directly with direct numerical simulations, and with the linearised model in the
appropriate regime.

Direct numerical simulations are able to span the full range of experiments and
reproduce the observed trends in contact time, coefficient of restitution and maximum
surface deflection, and even capture the existence of a narrow parameter window where
the new phenomenon of resurrection takes place. Our simulations also produce consistent
predictions of the trajectory of the sphere throughout the range we study, allowing for the
validation of KM results outside the experimental range. Furthermore, DNS allows us to
interrogate flow quantities of interest such as interfacial shapes, pressure and velocity field
components in all flow phases, down to a scale of O(1) μm. These will be reported in a
subsequent publication.

A linearised fluid model is used to efficiently explore the low-Weber-number limit.
Since direct numerical simulations are also used to explore the low velocity end of the
bouncing regime, these provide a source of data for validation of the linearised model.
Indeed, this model and the DNS coincide remarkably well when the linearity assumption
holds. Despite its limitations to deal with higher Weber numbers, the linearised model
remains useful, since it brings the obvious advantages of a much lower computational cost
and relative simplicity. In particular, given that small spheres cause shorter (and, therefore,
faster) capillary waves, their simulation becomes particularly costly when using DNS, as
they require that the boundary of the numerical domain be far enough away to guarantee
that waves are not being reflected and returning to influence the rebound. The linearised
model is simpler and less computationally costly than the DNS; however, it remains far
from trivial and there are a significant number of applications that could benefit from a
further reduced mass-spring-damper model to predict rebounds on the free surface. For a
given sphere radius and density, such a simplified model can be readily synthesised from
the curves for contact time, coefficient of restitution and maximum penetration depth that
are produced by the application of the KM method to the linearised fluid model presented
here, the code for which is made available as supplementary material. Furthermore, the
KM strategy (Galeano-Rios et al. 2019) is not limited to a linearised free-surface model,
nor to a fluid interface. Hence, a similar study for impacts without linearising the free
surface of the fluid, or impacts on flexible membranes and other deformable surfaces can
be considered on the basis of the same modelling principles.

Agreement between the results of the linearised model and the DNS also reveals that
flow in the air layer is unlikely to be a dominant element for rebound dynamics in the
low-Weber-number regimes. Moreover, the pressure profiles that are predicted by the KM
method are in agreement with the existing literature (Hendrix et al. 2016). Furthermore,
Hendrix et al. (2016) report that the maximum in pressure coincides with the annular
region where the air layer is thinnest. Our air-free model thus provides a clear indication
that this minimum in the width of the air layer is likely a consequence, rather than a cause,
of the profile of the pressure distribution.

Exploring the weak impact end of the rebounding regime revealed that, for light enough
spheres (in particular, lighter than the fluid), the dependence of the coefficient of restitution
on impact velocity can be qualitatively different from what is seen for denser spheres.
Specifically, the dependence of the coefficient of restitution as a function of the Weber
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number can have a local maximum in the interior of the Weber number spectrum, as
opposed to at one end of it. Likewise, for a given sphere density (even if heavier than
the fluid), we were able to observe a local maximum in the coefficient of restitution for
a sufficiently small sphere. The latter observation is particularly interesting in light of
the biological and bio-mimetic importance of surface impacts. If, for a given density and
radius, there is an optimal velocity at which to impact the free surface so as to recover
maximum energy, it is possible for some water-walking insect or mechanism to benefit
from it.

The converse problem of a droplet impactor rebounding off a solid surface has been
considered in several previous works, e.g. Anders, Roth & Frohn (1993) and Clanet
et al. (2004). The dependence of the coefficient of restitution on the Weber number has
previously been reported, e.g. Biance et al. (2006), Aussillous & Quéré (2006) and Gilet
& Bush (2012). The trend observed in these studies is similar to what is found for low
Dr and low Bo (see figure 12), wherein the higher end of the We spectrum corresponds
to a decrease in the coefficient of restitution with increasing We. Our general results have
greater similarities with the investigation of Biance et al. (2006), in which they clearly
found a growing coefficient of restitution (as a function of We) for the low We regime,
and a decreasing trend for higher We. In our work, as we gradually increase We beyond
the rebound threshold, we always find an increasing coefficient of restitution. This trend
is sustained until we observe sinking of the sphere or, for low Dr and Bo, reversal to a
decreasing behaviour.

We have found that the regime diagram reported in figure 7 of Lee & Kim (2008) does
not capture the behaviour of the simulations considered here. In particular, our experiments
and simulations consistently indicate that the scaling for the bouncing threshold reported
in the respective study is unlikely to provide a collapse. Lee & Kim (2008) propose that,
for a given density ratio Dr, the minimum We for bouncing increases as the Bo decreases.
The opposite relation is found in our work.

Our boundary layer analysis provides a nonlinear spring model, which yields a
framework for the collapse and interpretation of the maximum penetration depth and
contact time data from the three methods. Moreover, a collapse based on a linear spring
model was attempted but resulted in very limited success. This is, to some extent, in
contrast with what was found in similar systems, for example, those of droplets bouncing
on a fluid trampoline (Gilet & Bush 2009b), and it indicates that the interaction of the
impactor with the underlying flow adds significant complexity to this problem.

It is worth mentioning that other nonlinear spring models which have been successfully
used in similar (though not identical) contexts are available in the literature. In particular,
we highlight the model presented in Gilet & Bush (2009a) and Gilet & Bush (2009b). It is
also quasi-static; however, it differs from ours in that there is no fluid bulk underneath
the interface, hence, the model in question does not need to account for the effect of
hydro-static pressure. Moreover, the presence of a trampoline rim in the works of Gilet
and Bush, impose a different set of boundary conditions for their resulting Young–Laplace
equation. Other similar models include the work of Moláček & Bush (2012, 2013)
and Terwagne et al. (2013). These studies present spring models derived from energy
principles and include the storage of energy in the deformation of the impactor as a key
element in the dynamics.

Our work combines experiments, DNS, linearised free-surface models and asymptotics
to span the full range of the topic at hand. We use each of these approaches within
their respective ranges of validity and cross-compare the results where they overlap. This
articulation of different methods allowed us to uncover the general trends in rebound
metrics, collapse the curves for contact time and penetration depth, efficiently explore the
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Figure 16. Average south pole trajectories for each sphere in experiments (a,c,e,g,i) and DNS south pole
trajectories for the corresponding pseudo-spheres (b,d, f,h,j). Trajectories are colour coded by impact speed
as indicated in the legends (in cm s−1). Panels correspond to the following parameters: (a,b) ρs = 1.2 g cm−3,
Rs = 0.83 mm; (c,d) ρs = 2.2 g cm−3, Rs = 0.83 mm; (e, f ) ρs = 3.2 g cm−3, Rs = 0.83 mm; (g,h) ρs =
1.2 g cm−3, Rs = 1.24 mm; (i,j) ρs = 1.2 g cm−3, Rs = 1.64 mm.
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low-Weber-number regime with the appropriate metrics, and identify the new phenomenon
of ‘resurrecting’ spheres.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1135.
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Appendix. Trajectories

We present the average south pole trajectories for each set of physical parameters used in
the experiments. Figure 16(a,c,e,g,i) illustrates these data sets, each panel corresponding to
one hydrophobic sphere used. The corresponding figure 16(b,d, f,h,j) shows the south pole
trajectories obtained using DNS for corresponding modelled pseudo-solid spheres within
the same parameter regimes. We highlight that the choice of DNS cases was not intended
to represent a one-to-one map of the experiments; instead we aimed to cover a similar
range of impact velocities in order to verify the trends in rebound metrics, as presented in
figure 9.

In experiments the cut-off for impact velocities at the low end corresponds to rebounds
for which the sphere does not return to the initial impact height, and at the high end to
sinking of the sphere. In the DNS the lower end cut off was ignored for one sphere, in
order to provide some more trajectories for validation of the KM method used on the
linearised free-surface model. These three trajectories correspond to the lowest velocities
in figure 16(b).

Direct numerical simulation results also accurately predict the cut-off at the high end
of impact velocities. At times, the pseudo-spheres sink and coalesce slightly below the
maximum velocity for sinking of the sphere in the experiments. Indeed, figures 16(d),
16( f ) and 16(j) lack the trajectory for the highest impact velocity precisely because the
value used in the experiments caused the pseudo-sphere to sink and coalesce by falling
just slightly short of recovering and bouncing back.
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