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Abstract
The previous Emerging Trends article (Church et al., 2021.Natural Language Engineering 27(5), 631–645.)
introduced deep nets to poets. Poets is an imperfect metaphor, intended as a gesture toward inclusion. The
future for deep nets will benefit by reaching out to a broad audience of potential users, including people
with little or no programming skills, and little interest in training models. That paper focused on inference,
the use of pre-trainedmodels, as is, without fine-tuning. The goal of this paper is to make fine-tuning more
accessible to a broader audience. Since fine-tuning is more challenging than inference, the examples in this
paper will require modest programming skills, as well as access to a GPU. Fine-tuning starts with a general
purpose base (foundation) model and uses a small training set of labeled data to produce a model for a
specific downstream application. There are many examples of fine-tuning in natural language processing
(question answering (SQuAD) and GLUE benchmark), as well as vision and speech.
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1. Introduction
This paper will show how to use fine-tuning on a few benchmarks such as SQuAD and GLUE,
as well as a task based on ImageNet. In our previous Emerging Trends article on inference
(Church et al. 2021), we posted code on GitHub1 because code in blogs and hubs tends to be
too demanding for the target audience (poets). This paper will discuss code on PaddleHub2 and
HuggingFaceHub,3 since these examples are very well done, and the target audience for this paper
is more advanced (and less inclusive).

Finally, we will end on a cautionary note. Based on the success of fine-tuning on a number of
benchmarks, one might come away with the impression that fine-tuning is all we need. However,
we believe the glass is half-full: while there is much that can be done with fine-tuning, there is
always more to do. Fine-tuning has become popular recently, largely because it works so well on
so many of our most popular benchmarks. But the success of fine-tuning can also be interpreted
as a criticism of these benchmarks. Many of these benchmarks tend to focus too much on tasks
that are ideal for fine-tuning, and not enough on opportunities for improvement.

1https://github.com/kwchurch/deepnet_examples.
2https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.1/demo.
3https://github.com/huggingface/transformers/tree/master/examples/pytorch.
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Table 1. Base models are large in two respects: model size and training data

Pre-trained (foundation) model Parameters Training data

ResNet-50 (He et al. 2016) 23M 14M images from ImageNet
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VT (Wu et al. 2020) 11.7–21.9M 14M images from ImageNet
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wav2vec (Baevski et al. 2020) 95–317M 960 hours from LibriSpeech
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BERT (Devlin et al. 2019) 110–340M 3.3B words from Books/Wiki
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ERNIE 2.0 (Sun et al. 2020) 110–340M 7.9B en+ 15B zh tokens
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ERNIE 3.0 (Sun et al. 2021) 10B 375B tokens of text, as well as knowledge graph
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa (Liu et al. 2019) 110M 160GBs of text
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPT-2 (Radford et al. 2019) 1.5B 40GBs of text
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPT-3 (Brown et al. 2020) 125M–175B 1TB from Common Crawl, Books and Wikipedia
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XLM-RoBERTa (Conneau et al. 2020) 12–16B 2.5TBs frommany languages

1.1 Pre-training, fine-tuning, and inference
Much of the recent literature in deep nets involves three processes:

1. Pre-training base (foundation) models

• Language: BERT (Devlin et al. 2019), ERNIE (Sun et al. 2020; Sun et al. 2021)
• Speech: wav2vec4 (Baevski et al. 2020)
• Vision: ResNet (He et al. 2016), VIT (Wu et al. 2020)

2. Fine-tuning (this paper)
3. Inference (Church et al. 2021).

There will be relatively little discussion of inference in this paper since that topic was covered
in our previous article, except to point out that inference is the least demanding of the three tasks,
in terms of both programming skills and computational resources. Inference takes a fine-tuned
model as input, as well as features, x, for a novel input, and outputs a predicted label, ŷ. The exam-
ples discussed in footnote 1 are short (10–100 lines of code) and easy to read. They cover a wide
range of use cases in natural language processing (sentiment analysis, named entity recognition,
question answering (QA/SQuAD), machine translation), as well as use cases in vision and speech.
From a commercial perspective, inference is probably more profitable than training.

The literature, however, focuses on training, because training is more challenging than
inference. The terminology is still in a state of flux. Base models are sometimes referred to as pre-
trained models (PTMs) (Han et al. 2021) or Foundation Models (Bommasani et al. 2021). These
models are typically pre-trained on large quantities of data, often without annotations/labels, as
shown in Tables 1–2.

With the exception of GPT-3 and ERNIE 3.0, most PTMs in the literature can be downloaded
from hubs such as PaddleHub,5 HuggingFaceHub,6 and Fairseq7 (Ott et al. 2019).

4https://huggingface.co/blog/fine-tune-wav2vec2-english.
5https://www.paddlepaddle.org.cn/hublist.
6https://huggingface.co/transformers.
7https://github.com/pytorch/fairseq.
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Table 2. Some popular datasets for training base models

Dataset Description

Billion Word Benchmark (Chelba et al. 2013) A billion words of English
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Common Crawl (Buck, Heafield, and van Ooyen 2014) https://github.com/commoncrawl
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Book Corpus (Zhu et al. 2015) Speech with text
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ImageNet (Deng et al. 2009) 14M images, annotated with 21k classes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LibriSpeech (Panayotov et al. 2015) 960 hours of speech with text
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LJ Speech https://keithito.com/LJ-Speech-Dataset/
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AISHELL-2 (Du et al. 2018) https://protect-eu.mimecast.com/s/_t4dC0Vqq

sjz5YGswPwKH?domain=aishelltech.com

Historically, many of these hubs started with models for natural language processing, though
they are beginning to expand into other fields such as speech (SpeechBrain8 (Ravanelli et al. 2021)
and ESPnet9 (Watanabe et al. 2018; Hayashi et al. 2020; Inaguma et al. 2020; Li et al. 2021)) and
vision (VIT10 (Dosovitskiy et al. 2021; Tolstikhin et al. 2021; Steiner et al. 2021; Chen, Hsieh, and
Gong 2021)).

Base models tend to be very general and can be applied to a broad set of downstream
applications, which is necessary to make the business case work, since pre-training is expensive.

The terms, pre-training and fine-tuning, became popular following (Devlin et al. 2019), though
these terms can be found in earlier work (Howard and Ruder 2018):11

There are two steps in our framework: pre-training and fine-tuning. During pre-training,
the model is trained on unlabeled data over different pre-training tasks. For fine-tuning, the
BERT model is first initialized with the pre-trained parameters, and all of the parameters are
fine-tuned using labeled data from the downstream tasks. Each downstream task has separate
fine-tuned models, even though they are initialized with the same pre-trained parameters.
(Devlin et al. 2019)

Devlin et al. (2019) follow this discussion of pre-training and fine-tuning by introducing a run-
ning example in their Figure 1, where a large BERT base model is pre-trained on a large corpus of
unlabeled training data. Then, at fine-tuning time, the PTM is refined to produce three separate
models for three separate downstream tasks: (a) a question answering task (SQuAD), (b) a named
entity task, and (c) a task from the GLUE benchmark, MNLI, that involves textual entailment
(Dagan, Glickman, and Magnini 2005). This paper will focus on the fine-tuning proposal in
Devlin et al. (2019) and will not discuss recently proposed alternatives such as Pattern-Exploiting
Training (Schick and Schütze 2021).

The terms, fine-tuning, transfer learning, and classification/regression heads, are similar to one
another, though there are some important differences. Fine-tuning is a relatively new term com-
pared to transfer learning.12 Venues such as NeurIPS (formerly NIPS) used to be more theoretical
a decade ago. Older papers such as Pan and Yang (2009) used to provide more definitions;
more recent treatments characterize newer terms such as fine-tuning by example without formal
definitions.

8https://speechbrain.github.io/.
9https://github.com/espnet/espnet.
10https://github.com/google-research/vision_transformer.
11https://ruder.io/recent-advances-lm-fine-tuning/.
12https://ruder.io/transfer-learning/.
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In contrast to classification/regression heads, fine-tuning implies updates to many/most layers
within the model. Classification and regression heads treat the last layer of the model as input fea-
tures, X, and predict outputs, Ŷ , using classification (if gold labels, Y , are symbolic) or regression
(if gold labels, Y , are continuous).

1.2 Labeled/unlabeled training data
Fine-tuning is exciting for a number of reasons. One ofmany reasons is the combination of labeled
and unlabeled training data. There has been a long tradition in artificial intelligence (AI), dat-
ing back to semi-supervised learning (Zhu 2005) and co-training (Blum and Mitchell 1998) and
probably earlier discussions dating back to 1970s, in search of ways to combine small amounts of
labeled training data with vast quantities of unlabeled training data. In many use cases, it is pos-
sible to find vast quantities of unlabeled data. Since labeled data tend to be much harder to come
by, it is desirable to find ways to achieve high performance with as little labeled data as possible.

Labeled data tend to be expensive in a number of respects: money, time, grief, unreliable labels,
and unfair labor practices. It has become standard practice to use Amazon Mechanical Turk to
label data (Callison-Burch 2009; Finin et al. 2010; Pavlick et al. 2014; Nangia and Bowman 2019),
though there are many concerns with this practice, including questions about the so-called “gig
economy” and invisible labor (Hara et al. 2018).13,14

In language applications, pre-training typically uses unlabeled data and fine-tuning uses labeled
data. In vision and speech, both pre-training and fine-tuning are based on labeled data, though
the labels for pre-training may be quite different from the labels for fine-tuning. In Section 2.1,
for example, we will discuss a vision classification task where pre-training uses 1000 classes from
ImageNet and fine-tuning uses 5 different classes (flowers). It is amazing that fine-tuning works
as well as it does, even when fine-tuning is given a surprisingly small training set of flowers. It
appears that fine-tuning is “unreasonably effective” in transferring knowledge from pre-trained
base models (ResNet for ImageNet) to novel tasks (flower classification).

It is common to refer to training with labels as supervised learning and training without labels
as unsupervised learning. Supervised methods are provided both input features, x, and output
labels, y, at training time, whereas unsupervised methods are given x but not y. In both cases, the
task is to learn a model that can be applied to novel inputs to predict labels, ŷ, at inference time.
Evaluations compare the predicted labels, ŷ, to gold labels, y, in a held out test set.

1.3 Balance, samples, and populations of interest
Fine-tuning offers a promising way to deal with various realities. Domain shift happens. It is very
likely that a real user will ask a real product to do something that is very different from the training
data. It is also likely that PTMs will need to be updated periodically, as the world changes.

Of course, it would be better to pre-train on more relevant data in the first place. In practice,
the data for pre-training tend to be more catch-as-catch-can than a balanced corpus. Balance is
taken more seriously in lexicography than machine learning:

It was also believed that quality (balance) mattered, but there were few, if any, empirical
studies to justify such beliefs. It was extremely controversial when engineers such as Mercer
questioned these deeply held beliefs in 198515 with: “there is no data like more data.” Most
people working on corpus-based methods in lexicography were deeply committed to balance
as a matter of faith, and were deeply troubled by Mercer’s heresy. (Church and Bian 2021)

13https://nips.cc/virtual/2020/public/invited_16164.html.
14https://www.youtube.com/watch?v=o5zg57nKqGE.
15http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf.
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In contrast to datasets such as those in Table 2, lexicographers prefer balanced corpora such
as the Brown Corpus (Kučera and Francis 1967; Francis and Kučera 1979; Francis and Kučera
1982) and British National Corpus16 (BNC) (Aston and Burnard 1998; Burnard 2002). The Brown
Corpus was designed to be a sample of contemporary American English. The BNC is similar but
for British English. The BNC is also larger andmore recent, though neither the Brown Corpus nor
BNC would be considered large or recent by modern standards. The Brown Corpus contains 1M
words from the 1960s, and the BNC contains 100M words from the 1990s.

There is some evidence from psycholinguistics supporting both sides of the debate between
balance and catch-as-catch-can; correlations of corpus statistics and psycholinguistic norms tend
to improve with quality (balance) as well as quantity (corpus size) (Rapp 2014a; Rapp 2014b).

Fine-tuning could be viewed as a mechanism to correct for mismatches between training data
and the population of interest. We tend to think of the test data as the population of interest, but
actually, what really matters is the data that will be seen at inference time. Evaluations assume that
the test set is representative of what real users will use the system for, but that may or may not
be the case. In practice, the test set is often very similar to the training set, probably more similar
than either are to what real users are likely to expect from a real product. This is especially likely to
be the case if test sets and training sets are collected before the product is shipped, and the world
changes after the product ships and before users have a chance to use the product.

It is important to match test and training data as much as possible to application scenarios.
Consider medical applications and BioBERT (Lee et al. 2020). BioBERT is more effective than
BERT on a number of medical benchmarks, probably because BioBERT was trained on data17
that are more appropriate for those use cases.

In short, it is often worth the effort to train on data that are as representative as possible to the
population of interest, namely inputs that likely to be seen at inference time.

1.4 Amortizing large upfront pre-training costs over many apps
Factoring the training task into pre-training and fine-tuning makes it possible to amortize large
upfront investments in pre-training over many use cases. The business case for factoring is
attractive because fine-tuning is relatively inexpensive compared to pre-training.

PTMs are somewhat similar to general purpose CPU chips. In the early days of Intel, they had a
number of customers that wanted special purpose chips. Rather than designing a different custom
chip for each customer, Intel invested in general purpose technology that could be customized as
needed for many different use cases. In retrospect, the wisdom of general purpose solutions seems
self-evident, though it was far from obvious at the time (Faggin 2009).

1.5 Costs
This paper will focus on fine-tuning, which is more demanding than inference but less demanding
than pre-training base models, in terms of both programming prerequisites and computational
resources. As for computational resources, inference can be done without GPUs, fine-tuning
requires at least one GPU, and pre-training is typically performed on a large cluster of GPUs.
As for speed, inference takes seconds/minutes, fine-tuning takes hours, and pre-training takes
days/weeks.

Costs tend to increase with both the size of the model and the size of the data. Current base
models are large in both respects, as shown in Tables 1–2. Going forward, we can expect base
models to become even larger in the future (Hestness et al. 2017; Kaplan et al. 2020).

16http://www.natcorp.ox.ac.uk/.
17https://pubmed.ncbi.nlm.nih.gov/.
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Most base models in the literature were trained in well-funded industrial laboratories that have
access to large GPU clusters, and large datasets. Training base models may be too expensive for
universities and start-up companies as discussed in Section 1.3 of Bommasani et al. (2021):18

[R]esearch on building foundation [base] models themselves has occurred almost exclusively
in industry — big tech companies such as Google, Facebook, Microsoft, or Huawei

The cost of training base models came up several times at a recent Stanford Workshop on
Foundation Models;19,20 academics may not have the means to train base models, especially if
costs continue to escalate.

In addition to concerns in academia, there are also concerns with costs in industry. Larger
models are expensive to run in the cloud, and infeasible at the edge (in a phone). These concerns
have motivated work on compression methods (Hinton, Vinyals, and Dean 2015; Howard et al.
2017; Cheng et al. 2017; Gupta and Agrawal 2020; Su et al. 2021). These methods compress a
large model down to a smaller one. In hubs, these smaller models are often labeled as tiny and/or
mobile. It appears that the best way to train a tiny mobile model is to train a large model and then
compress it. One might have thought that one could get to a better place directly, by training the
tiny model in the obvious way, but experience suggests that indirect route via a larger model is
more effective than the direct route.

Compressionmethods may also play an important role for energy policies and global warming.
There has been some concern about energy consumption during training (Strubell, Ganesh, and
McCallum 2019), but actually, energy consumption during training is relatively small compared to
energy consumption at inference time. If a billion users use your speech recognition model every
day for a few years, then the one-time upfront investments to train the model are a round-off error
compared to the recurring costs of running the model in production. Assuming that energy costs
(and all other costs) scale with the size of the model, then the size of the model in production is
far more important than the size of the model during training. Thus, we should not feel too guilty
about training a large model, as long as we compress the model before we ship it to a billion users.

1.6 Further reading
It is hard to keep up with all the recent progress. Performance on benchmarks keeps going up and
up and up. Many of the papers are very recent. In addition to the papers cited in this paper, an
excellent overview of recent progress can be found here.21 There are also many excellent blogs,
tutorials, and surveys on fine-tuning and pre-training22,23,24 (Ruder et al. 2019; Han et al. 2021).

2. Examples of fine-tuning
This section will discuss three examples of fine-tuning. Code is based on PaddleHub and
HuggingFaceHub.

2.1 Flowers: An example of fine-tuning
As mentioned in Section 1.2, fine-tuning is “unreasonably effective” in transferring knowledge
from pre-trained base models (ResNet for ImageNet) to novel tasks (flower classification). This

18https://crfm.stanford.edu/workshop.html.
19https://crfm.stanford.edu/workshop.html.
20https://youtu.be/RLrjKGN89Fc?t=818.
21https://github.com/thunlp/PLMpapers.
22http://tiny.cc/NAACLTransfer.
23https://www.tensorflow.org/tutorials/images/transfer_learning.
24https://keras.io/guides/transfer_learning/.
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(a) (b) (c)

(d) (e)
(f)

Figure 1. Some pictures of flowers with labels.

subsection will discuss a simplified version the 102 Category Flower Dataset25 (Nilsback and
Zisserman 2008). Performance on that task continues to improve.26 Top performing systems
(Kolesnikov et al. 2020) are using fine-tuning, as well as more data and more ideas. The simplified
version uses 5 classes as opposed to 102.

There are a number of tutorials that explain how to fine-tune a base model to classify flowers.27
We have posted some code for this example on GitHub.28 Our code is based on an example from
PaddleHub.29

These examples start with ResNet30 (He et al. 2016) as a pre-trained base model. The base
model was trained on 14M images and 1000 classes from ImageNet (Deng et al. 2009). The
fine-tuning task is to modify the base model to recognize 5 types of flowers instead of the 1000
ImageNet classes. The 5 flower classes are: rose, tulip, daisy, sunflower, and dandelion. Six examples
of flowers and class labels are shown in Figure 1.

For fine-tuning, we are given a training set and a validation set. Both sets consist of pictures of
flowers, x, labeled with the 5 classes, y. There are 2915 flowers in the training set, and 383 flowers in
the validation set. The validation set is used to measure error. That is, after fine-tuning, the model
is given a picture from the validation set, x, and asked to predict a label, ŷ. These predictions, ŷ,
are compared with gold labels, y, to produce a score.

At inference/evaluation time, we are given a novel picture, x, and a set of possible class
labels such as the 5 classes of flowers. The model predicts a label, ŷ, one of the class labels.

25https://www.robots.ox.ac.uk/vgg/data/flowers/102/.
26https://paperswithcode.com/sota/fine-grained-image-classification-on-oxford.
27https://www.tensorflow.org/hub/tutorials/image_feature_vector#the_flowers_dataset.
28https://github.com/kwchurch/deepnet_examples/tree/main/fine-tuning/examples/PaddleHub/image_classification.
29https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.1/demo/image_classification.
30https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33.
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Before fine-tuning, the model is performing at chance since the ImageNet uses different classes.
After fine-tuning, the model is considerably better than chance, though far from state of the art
(SOTA).

Fine-tuning is just one of many tools in the toolbox. If one wants to top the leaderboard, one
needs an “unfair advantage,” something better than what the competition is likely to do. Since
fine-tuning is now well established within the literature, one should assume that the competition
is likely to do that. One is unlikely to do much better than the competition (or much worse than
the competition) if one uses obvious methods (such as fine-tuning) in obvious ways.

2.2 SQuAD: Another example of fine-tuning
SQuAD 1.1 (Stanford Question Answering Dataset) (Rajpurkar et al. 2016) and SQuAD 2.0
(Rajpurkar, Jia, and Liang 2018) are a popular benchmark for question answering (Q&A). Several
solutions are posted on GitHub.31 These are all very short (less than 40 lines) and easy to read.
There are many blogs32 and videos discussing inference with BERT-like models that have been
fine-tuned for SQuAD. This video has 32k views on YouTube.33 The large number of views makes
it clear that many people want to know how to do this.

What is the SQuAD task? The inputs, x, are questions and short documents (containing no
more than 512 subword tokens). Outputs, y, are answers. By construction, answers are spans,
substrings of the input documents. For example:

• Input Document: The American Football Conference (AFC) champion Denver Broncos
defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn
their third Super Bowl title.

• Input Question:What does AFC stand for?
• Output Gold Answer: American Football Conference

The solutions above download a model that has already been fine-tuned for SQuAD. Suppose
we want to fine-tune our own model. How can we do that? We have posted a short shell script on
GitHub34 based on an example from HuggingFaceHub.35 HuggingFaceHub’s page reports F1 of
88.52 and exact_match accuracy of 81.22. We ran our shell script five times and obtained slightly
worse results: F1 of 88.45± 0.020, and exact_match of 81.2± 0.055. Standard deviations are small
but non-zero, because results vary slightly from one run to another. If you run these scripts, your
results are likely to be similar, though not exactly the same as what is reported here.

Our script is borrowed from the first (and simplest) solution on the HuggingFaceHub page in
footnote35. That page provides a number of variations of this solution. The last solution on that
page is considerably better in terms of F1 (93.52). There are a number of factors that contribute
to these improvements, including: (a) better pre-trained base models, (b) better hyperparameters,
and (c) more GPUs.

Table 3 shows the numbers reported above, as well as one more row for the SOTA solu-
tion (Yamada et al. 2020) from two leaderboards: (a) SQuAD 1.136 and (b) papers with code.37

31https://github.com/kwchurch/deepnet_examples/blob/main/pretrained/examples/PaddleNLP/inference/question_
answering/.

32https://mccormickml.com/2020/03/10/question-answering-with-a-fine-tuned-BERT/
33https://www.youtube.com/watch?v=l8ZYCvgGu0o.
34https://github.com/kwchurch/deepnet_examples/tree/main/fine-tuning/examples/HuggingFaceHub/question-answering.
35https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering.
36https://rajpurkar.github.io/SQuAD-explorer/.
37https://paperswithcode.com/sota/question-answering-on-squad11.
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Table 3. Some SQuAD 1.1 results

Method F1 Exact match

HuggingFaceHub first solution 88.52 81.22
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our replication 88.45± 0.020 81.2± 0.055
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HuggingFaceHub last solution 93.52
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human performance 91.221 82.304
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SQuAD 1.1 leaderboard (Yamada et al. 2020) 95.719 90.622

Estimates for human performance from Rajpurkar et al. (2016) are posted on the SQuAD 1.1
leaderboard.

2.2.1 Alchemy, unrealistic expectations, and other concerns
The simple description of fine-tuning sounds simple, though there are many details that can make
a big difference in practice for reasons that are not well understood. NeurIPS (formerly NIPS)
used to be more rigorous and more theoretical, but these days, the practice is well ahead of the
theory. Ali Rahimi and Ben Recht suggested that “machine learning has become alchemy” in a
controversial test-of-time-award talk at NIPS-2017.38

There have been many booms and busts in AI over the decades (Church 2011). Expectations
tend to increase during booms, inevitably leading to the next bust. There can be benefits
to hyping our successes, especially in the short-term, but in the long-term, it is risky (and
counter-productive) to set unrealistic expectations.

While fine-tuning performance is impressive on the SQuAD benchmark, and may exceed
human performance in certain evaluations, we should not fool ourselves into believing that we
have accomplished more than we have:39

Microsoft researchers have created technology that uses artificial intelligence to read a doc-
ument and answer questions about it about as well as a human. . . . Ming Zhou, assistant
managing director of Microsoft Research Asia, said the SQuAD dataset results are an impor-
tant milestone, but. . . people are still much better than machines at comprehending . . .

language. . . This milestone is just a start.40

Based on successes such as SQuAD, the community may believe that modern methods based
on BERT will out-perform older rule-based systems, at least for SQuAD-like questions. However,
for special cases of SQuAD questions such as acronyms: AFC (American Football Conference),
we found that a rule-based solution, Ab3P (Sohn et al. 2008), is better than BERT (Liu et al.
2021). BERT-type models may not be the best way to capture constraints on spelling/sound such
as acronyms, puns, alliteration, rhymes, and meter (e.g., iambic pentameter).

While fine-tuning works well on simple factoid questions in SQuAD, it is not clear what will be
needed to deal with real questions in such search logs such as those in Table 4 from the DuReader
benchmark41 (He et al. 2018).

38http://www.argmin.net/2017/12/05/kitchen-sinks/.
39https://www.azquotes.com/quote/95368?ref=fooling-yourself.
40https://blogs.microsoft.com/ai/microsoft-creates-ai-can-read-document-answer-questions-well-person/.
41https://github.com/baidu/DuReader.
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Table 4. English glosses of six types of questions from Chinese search logs

Fact Opinion

Entity On which day will iPhone be released Top 10 movies of 2017
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Description Why are firetrucks red How good is Toyota Corolla
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes-No Is 39.5 degree a high fever Does learning to play go improve intelligence

Table 5. GLUE Results for Human, HuggingFaceHub and Our replication

CoLA SST-2 MRPC STS-B QQP

Hum 66.4 97.8 80.8/86.3 92.7/92.6 80.4/59.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hug 56.53 92.32 88.85/84.07 88.64/88.48 90.71/87.49
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rep 55.79 91.86 89.76/85.29 89.26/88.93 90.80/87.58

MNLI QNLI RTE WNLI

Hum 92.0/92.8 91.2 93.6 95.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hug 83.91/84.10 90.66 65.70 56.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rep 84.31 90.74 65.72 33.80

2.3 GLUE: Yet another example of fine-tuning
Our final example of fine-tuning is the GLUE benchmark (Wang et al. 2018). The benchmark
consists of 9 tasks, as shown in Table 5. There are 9 training sets and 9 test sets for each of the 9
tasks. Fine-tuning combines a base model such as BERT and a training set to produce a model.
In this way, we construct 9 models and evaluate them on the 9 test sets. The 9 tasks in the GLUE
benchmark use different metrics, as documented in the HuggingFace tutorial for fine-tuning for
GLUE.42

As for evaluation, many of the tasks score by accuracy, though some score by F1 and cor-
relation. In all cases, larger numbers are better. Performance is reported on the leaderboard.43
SuperGLUE44 (Wang et al. 2019) is an updated version of GLUE.45

Leaderboards rank systems by average performance. It may not be appropriate to average
metrics of performance based on incompatible scales: accuracy, F1, and correlation.

At a recent ACL-2021 workshop on Benchmarking,46 John Mashey suggested replacing arith-
metic means with geometric means, based on his experience with the SPEC benchmark, an
important benchmark for measuring CPU performance over the last few decades47 (Mashey
2005).

Performance on GLUE leaderboards is currently close to human performance.48 Estimates of
human performance in Table 5 are based on Nangia and Bowman (2019).

42https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification.
43https://gluebenchmark.com/.
44https://super.gluebenchmark.com/.
45https://www.youtube.com/watch?v=1CoLguOswLo.
46https://github.com/kwchurch/Benchmarking_past_present_future/blob/master/README.md#Mashey.
47https://www.spec.org/.
48http://research.baidu.com/Blog/index-view?id=160.
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The Hug scores in Table 5 are from the URL in footnote 42. Our replication uses a short shell
script49 that also makes use of the URL in footnote 42. According to the HuggingFace docu-
mentation, all of these fine-tuning tasks can be completed in a few hours on a single GPU. Our
replications were run on a single GPU, and none of the tasks took more than a few hours.

The names of the tasks are not that useful for understanding what these tasks are measuring.
We find the instructions to the human annotators50 to be helpful for this purpose. The GLUE tasks
tend to reflect the particular interests of the researchers that created the benchmark, and may not
be as representative of the larger field of natural language processing.

2.3.1 Winograd schema
Of the 9 tasks, WNLI (Winograd Schema) is the most challenging. The most frequent label base-
line is about 65% accurate on this task. Note that both Hug and Rep in Table 5 are well below
this baseline. Following Devlin et al. (2019), many authors exclude this task because this task is so
hard, and also because this task may not be suitable for fine-tuning.

Winograd Schema was designed to be hard for machines but easy for people (Levesque, Davis,
and Morgenstern 2012). There was a Winograd Schema Challenge at IJCAI-16, where no system
did better than chance (Davis, Morgenstern, and Ortiz 2017). The fine-tuning recipe described in
this paper is no better than most-frequent-class guessing (65%). Until recently, most systems were
no better than guessing, but now, the systems at the top of the leaderboard achieve about 90%
on WNLI, closer to human performance of 96% (Nangia and Bowman 2019). It is not clear how
these systems reach that impressive level of performance, though there are a few recent papers
that provide some clues (Liu et al. 2019; Sakaguchi et al. 2020).

3. GPT-3 teaser
Recently, there has been quite a bit of excitement surrounding GPT-3. GPT-3 is a large PTM, but
unlike the other models in Table 1, GPT-3 is probably not suitable for fine-tuning. In addition,
access to GPT-3 is limited to a relatively small set of people that have been granted permission to
use the beta version of the API.

GPT-3 is amazingly fluent, but not credible enough for fact checking:

To the extent that a use case places importance on the truth of the outputs provided, it is not
a good fit for GPT-3. (Dale 2021)

Following a suggestion by Percy Liang51 at a recent workshop at Stanford,52 we gave GPT-3 the
prompt: “In 1885, Stanford University was. . .” GPT-3 produced the following:

• In 1885, Stanford University was founded by Leland and Jane Stanford in memory of their
only child, recently deceased.

• In 1887, the first successful gasoline powered automobile in the United States was manufac-
tured in Cleveland, Ohio by Charles and Frank Duryea.

• In 1887, the American Federation of Labor was founded.
• In 1887, the Salvation Army was formally incorporated in London, England.
• In 1890, the American Red Cross was established by Clara Barton.
• In 1891, the Salvation Army in the United States was founded.
• In 1892, the Boston Red Sox baseball team was established.

49https://github.com/kwchurch/deepnet_examples/tree/main/fine-tuning/examples/HuggingFaceHub/question-answering.
50https://nyu-mll.github.io/GLUE-human-performance/.
51https://youtu.be/dG628PEN1fY?t=365.
52https://crfm.stanford.edu/workshop.html.
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• In 1893, the first Miss America Pageant was held in New York City.
• In 1895, the National Association for the Advancement of Colored People (NAACP) was
founded.

• In 1895, the National Council of Women of the United States was founded.
• In 1897, the Boston Symphony Orchestra gave its first performance.
• In 1897, the first American open tennis tournament was held at the Newport Casino in Rhode
Island.

• In 1897, the first practical typewriter was patented by Christopher Sholes.
• In 1897, the first winner of the Nobel Peace Prize was born.
• In 1899, the first automobile race was held at Narragansett Park in Cranston, Rhode Island.
• In 1900, the first automobile race was held at Narragansett Park in Cranston, Rhode Island.
• In 1900, the National Association for the Advancement of Colored People (NAACP) was
founded.

The output feels like a farce. The first few statements are reasonably plausible, especially when
the prompt matches a Wikipedia page. But the argument quickly degenerates into contradictions,
tautologies, repetitions, etc. Many of the dates are wrong. A few are off by decades.

There are concerns about bias (Abid, Farooqi, and Zou 2021). While there are plenty of awful
pages on the web, we are even more concerned about GPT-3’s tendency to (mis)-quote authors
out-of-context without attribution. Misquoting seems like a more dangerous violation of ethics
than repeating what someone actually said. GPT-3 has a tendency to make up “facts,” and say
them in a way that people might actually believe what it says.

There are quite a few blogs53 that attempt to characterize what GPT-3 “understands” and what
it does not “understand.” A number of evaluations are currently under review. One can probably
show that GPT-3 can add two small numbers,54 but when asked to add two big numbers, or to
compute more complicated expressions, it just makes up answers.

Timelines such as the one above should be in chronological order, but GPT-3 does not appear
to understand time, space, negation, etc. Given observations like these, it has been suggested that
GPT-3 might be more appropriate for generating fiction (and poetry) than nonfiction. But GPT-3
does not appear to master rhyming or meter.

There was another case where we kept asking GPT-3 to generatemore andmore output because
the argument always seemed to be just about to get to the point. But then we realized that we were
reading into the argument more than there was. The argument was never going to get to the point,
because there was no point (or even a point of view). The argument was not going anywhere. There
was no structure to the argument. In fact, it is probably a mistake to refer to output from GPT-3
as an “argument.”

As suggested in Dale (2021), GPT-3 must be good for something. It is so amazingly fluent.
One possible use case is to help language learners (and others) to write more fluent prose. With
an appropriate user interface, it should be possible to provide authors with the opportunity to
improve fluency without changing the content too much. In this way, it should be possible to
address Pascale Fung’s concerns about “safety” in her comments at the workshop mentioned in
footnote 52.

4. Conclusions
Performance on a number of leaderboards has improved dramatically because of advances in fine-
tuning. This paper described three examples of fine-tuning: (a) flowers (Section 2.1), (b) SQuAD
(Section 2.2), and (c) GLUE (Section 2.3). In all three cases, we provided a short shell script on

53https://www.gwern.net/GPT-3.
54See Figure 3.10 of Brown et al. (2020).
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GitHub.55 These scripts point to tutorials on PaddleHub and HuggingFaceHub (see footnotes
2 and 3). Our replications have performance that is close to the performance reported in the
tutorials.

There are many more use cases for fine-tuning. We have used fine-tuning in speech for clas-
sifying emotions and Alzheimer’s disease (Yuan et al. 2021b; Yuan et al. 2021a). Fine-tuning is
likely to become one of the more popular methods for an extremely wide range of use cases in
many fields including computational linguistics, speech, and vision.

That said, while the performance of fine-tuning is impressive on many benchmarks and may
exceed human performance in certain evaluations, we should not fool ourselves into believing that
we have accomplished more than we have. There are good reasons for caution, though maybe not
for the reasons suggested in Bender et al. (2021). The problem is not so much that the models are
too big, or that they are just memorizing the training data, but we are concerned about “sucking
the oxygen out of the room.” That is, while fine-tuning is addressingmany important and practical
problems that matter on many benchmarks, there are many other issues that are also important
and need to be addressed such as time, space, negation, order, and structure. Fine-tuning is a very
effective hammer because many tasks look like nails, but it is unlikely that fine-tuning is all we
need, because not all tasks look like nails.
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