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1. Introduction. Let < be a non-reflexive partial ordering defined on a 
set P. Let G(P, < ) be the undirected graph whose vertices are the elements of 
P , and whose edges (a, b) connect vertices for which either a < b or b < a. 
A graph G with vertices P for which there exists a partial ordering < such 
that G = G(P, < ) is called a comparability graph. 

In §2 we state and prove a characterization of those graphs, finite or infinite, 
which are comparability graphs. Another proof of the same characterization 
has been given in (2), and a related question examined in (6). Our proof of 
the sufficiency of the characterization yields a very simple algorithm for 
directing all the edges of a comparability graph in such a way that the resulting 
graph partially orders its vertices. 

Let 0 be any linearly ordered set. By an interval a of 0 is meant any subset 
of 0 with the same ordering as 0 and such that, for all a, b, and c, if b is between 
a and c and a and c are in a, then b is in a. Two intervals of 0 are said to inter
sect if and only if they have an element in common. 

Let / be any set of intervals on a linearly ordered set 0 and let G(0, / ) 
be the undirected graph whose vertices are the intervals in / and whose edges 
(a, (3) connect intersecting intervals a and /?. A graph G is an interval graph 
if there exists such an 0 and I for which G — G(0, I). 

In §3 we state and prove a characterization of those graphs, finite or infinite, 
which are interval graphs. This solves a problem closely related to one first 
proposed in (4), and independently in (1). A different characterization was 
given in (5). As a corollary of our result, we are able to determine for any 
interval graph G the minimum cardinality of a linearly ordered set 0 for which 
there is a set of intervals 7" such that G — G(0, I). 

All graphs considered in this paper have no edge joining a vertex to itself. 

2. Comparability graphs. By a cycle of a graph G is meant here any 
finite sequence of vertices ai, a2, . . . , ak of G such that all of the edges (au ai+i), 
1 < i < k — 1, and the edge (ak, ai) are in G, and for no vertices a and b 
and integers i,j < k, i 9^ j , is a = at = aJ} b = ai+i = a1+i or a = at = ak1 

b = ai+i = ai, A cycle is odd or even depending on whether k is odd or even. 
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Note t ha t there can exist cycles in which a vertex appears more than once. 

For example, in Figure 1, d,a, b, e, 6, c,f} c, a is a cycle with nine vertices. 

Qd 

f e 

FIGURE 1 

By a triangular chord of a cycle ai , a2, . . . , ak of G is meant any one of the 
edges (a f , f l j+ 2) , 1 < i < k — 2, or ( a ^ i , ai) or (ak,a2). For example, the 
cycle of nine vertices in Figure 1 has no tr iangular chords. 

T H E O R E M 1. A graph G is a comparability graph if and only if each odd cycle 
has at least one triangular chord. 

Proof. T h e necessity of the condition is not difficult to establish. For if an 
odd cycle ai, . . . , ak wi thout a t r iangular chord occurs in a graph G, then any 
orientat ion of the edges of G which is to part ial ly order the vertices of G mus t 
give any successive pair of edges of the cycle opposite orientat ions in the sense 
t h a t both are directed towards or away from the common vertex of the pair. 
For if (a, b) and (6, c) are edges of G while (a, c) is not, then if a —> 6 is the 
direction given to (a, b), c —> b mus t be the direction given to (6, c). For the 
direction b —> c would require, by the t ransi t iv i ty of part ial ordering, t h a t 
(a, c) also be an edge of G. Similarly also, if b —» a is the direction given to 
(a, b). But only in an even cycle can all successive pairs of edges be given 
opposite orientations. 

Several definitions and lemmas are useful for the a rgument t ha t the condi
tion of Theorem 1 is also sufficient for G to be a comparabi l i ty graph. 

Two edges (a, b) and (b, c) of a graph G are said to be strongly joined if 
and only if (a, c) (£ G. A pa th ax, . . . , ak in G is a s trong pa th if and only if 
for all i, 1 < i < k — 2, (ah &Ï+2) $ G. T w o edges (a, b) and (c, d) are strongly 
connected with ends a and d if and only if there exists a s trong pa th a i , a2, 
. . . , akj where k is odd and where a\ = a, a2 = b, ak_i = c, and ak = d. T w o 
edges (a, b) and (c, d) are said to be strongly connected if and only if they are 
strongly connected with ends a and d or strongly connected with ends a and c. 

T h e justification for the apparent ly restricted definition of "s t rongly con
nected with ends" can be seen in the following simple consequences of the 
definitions. An edge (a, b) is strongly connected to itself with ends a and a 
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since a, b, a is a strong path . If a i , . . . , ak is a strong path , then so is a2, au 

. . . , ak, or ai , . . . , ak, ak-i, or a2, a i , . . . , a*, a*-!. If (a, J) and (c, d) are 
strongly connected with ends a and d, then they are also strongly connected 
with ends b and c. 

An immediate property of strong connectedness we s ta te as a lemma. 

LEMMA 1. If (a, b) and (e,f) are strongly connected with ends a and f and if 
(c, d) and (e,f) are strongly connected with ends d and f, then (a, b) and (c, d) 
are strongly connected with ends a and d. 

Under the assumption tha t every odd cycle in G has a tr iangular chord, the 
following lemmas can be established. 

LEMMA 2. No edges (a, b) and (c, d) of G are both strongly connected with ends 
a and d and strongly connected with ends a and c. 

Proof. If a, bi(= b), b2, . . . , bk{ = c), d and a, bi( = b), b2', . • . , bj'(= d), c 
were strong pa ths with k and m odd, then a, b\, b2, . . . , bk, brn'', . . . , b\ would 
be an odd cycle without any triangular chords. 

LEMMA 3. Let a, b, c be any triangle in G and let (d, e) be any edge strongly 
connected to (a, b) with ends b and e. Then one of the following three possibilities 
must occur: 

(1) (a, b) is strongly connected to (a, c) with ends b and c; 
(2) (a, b) is strongly connected to (b, c) with ends a and c; 
(3) (c, d) and (c, e) are both edges of G and (c, d) is strongly connected to (a, c) 

with ends a and d and (c, e) is strongly connected to (c, b) with ends b and e. 

Proof. Let ax = b, a2 = a, a%, . . . , afc_i = d, ak = e be a strong path with 
k odd. 

O O O—Œ O O O 
ak = e ak-\ = d dj a;_i a3 a2 = ^ d\ = b 

FIGURE 2 

Let j,j < k, be such t h a t (au c) Ç G for 1 < i < j — 1 and (a ;, c) $ G. If 
j were odd, ai , a2, a3, . . . , a^_i, a;-, a ;_i , c, dj-z, c, . . . , c, a^ c, a2, c would be a 
strong pa th with an odd number of vertices and, therefore, (a, b) and (a, c) 
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would be strongly connected with ends b and c. If j were even, a, ah #2, #3, 
. . . , a^_i, (ij, &;_!, c, cij-z, c, . . . , c, a3, t, a i , c would be a strong pa th with an 
odd number of vertices and, therefore, (a, b) and (b, c) would be strongly con
nected with ends a and c. Thus , if neither (1) nor (2) is to be the case, there 
can exist no such j . In part icular, therefore, no at can be identical with c, 

since t h a t would require t h a t (a*_2, c) not be an edge of G. Hence, we can 
assume t h a t (afc_i, c) and (ak, c) are edges of G. B u t then a i , c, a3, c, . . . , c, a^ 
and a2, c, ÛU, c, . . . , c, ak-\ are both strong pa ths with an odd number of 
vertices. Therefore, (3) mus t be the case. 

Two corollaries follow immediately from the lemma. 

COROLLARY 1. Let a, b, c be any triangle of G and let d be any vertex for which 

(c, d) is an edge strongly connected to (a, b). Then one of the possibilities (1) or 

(2) of Lemma 3 must occur. 

Proof. Since (c, d) is strongly connected to (a, b), it is strongly connected 
either with ends b and c or with ends b and d. But , in either case, possibility 
(3) would require t h a t there be an edge joining c to c. 

COROLLARY 2. In a triangfe a, b, c of G, if (a, b) and (a, c) are strongly con
nected with ends b and, a, then (a, b) and (b, c) are strongly connected with ends 
a and c. 

Proof. Let d in Corollary 1 be taken to be a. By hypothesis (a, b) and (a, c) 
are strongly connected and hence, by Corollary 1, either (a, b) and (b, c) are 
strongly connected with ends a and c or (a, b) and (a, c) are strongly connected 
with ends b and c. But , the la t ter a l ternat ive is not possible by Lemma 2 and 
the hypothesis of the corollary, so t h a t the former a l ternat ive is necessarily 
t rue . 

T h e proof of the sufficiency for Theorem 1 will provide an algori thm for 
actually directing all the edges of a comparabi l i ty graph in such a way t h a t 
the resulting directed graph part ial ly orders its vertices. T h e description of 
the algorithm will require some further definitions involving graphs G' which 
consist of the same vertices and edges of G b u t with some of the edges directed. 

An edge (a, b) of G' is said to have a strongly determined direction b —> a, 
or a —» b, if it is strongly connected with ends a and d to a directed edge (c, d) 
of Gr with direction c —> d, or d —•» c respectively. Hence, any undirected edge 
strongly connected to a directed edge has a strongly determined direction 
which depends upon the direction assigned to the directed edge, and depends 
upon the ends of the strong pa th joining the directed edge and the undirected 
edge. 

An edge (a, b) of Gf is said to have a transit ively determined direction a —> b 
if there are directed edges (a, c) and (c, b) in G' with directions a —* c and 
c->b. 

G' is consistent if and only if there is no directed cycle; t h a t is, there is no 
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cycle ai , . . . , ak such t h a t a,\ —» a2, a2 —> a3, . . . , ak-\ —» aA, afc —» a i are the 
directions assigned to its edges. Note t ha t if an edge has two directions in G', 
then there is a directed cycle in G'. 

G' is complete with respect to strong connection if no undirected edge of G' 
has a direction strongly determined from G'. G' is complete if it is complete 
with respect to strong connection, and further no undirected edge of G' has 
a direction transit ively determined from G'. 

For any edge (a, b) of G let G (a —> b) be the graph obtained from G by 
giving the edge (a, b) the direction a —* b and by then giving any edge with 
a determined direction, whether it is already directed or not, t h a t determined 
direction. By Lemma 2 it follows t ha t no edge of G {a —» b) has two directions 
assigned to it. For any G' let G' \J G (a —> 0) be the graph obtained from G 
by giving any of its edges t ha t are directed in either G or G {a —* b) the direc
tions it has in G and G (a —> b). For some G and G {a —> b) it is, therefore, 
possible for some edges of G VJ G {a —> b) to receive two directions. 

LEMMA 4. For awy edge (e , / ) 0/ G, G(e —>/) ^ consistent and complete. 

Proof. Let F = G(e —»/). We shall show first t ha t F is complete. By defini
tion, F is complete with respect to strong connection. T o show tha t it is com
plete with respect to transit ive connections, let c, a, and b be any three vertices 
of G for which (c, a) and (a, b) are edges of G which have been assigned the 
directions c —> a and a —> & in T7. Necessarily, (c, 6) is also an edge of i7, for 
otherwise (a, c) and (a, 6) would be strongly joined and therefore each would 
have been assigned two directions, which, as we noted above, is not possible. 
Fur ther , (a, c) and (e,f) are strongly connected with ends a and / , and (a, b) 
and (e,f) are strongly connected with ends b and / , so t ha t from Lemma 1 
it follows t ha t (a, c) and (a, b) are strongly connected with ends a and b. 
By Corollary 2 to Lemma 3, therefore, {a, b) and (6, c) are strongly connected 
with ends a and c. Again, by Lemma 1, then (6, c) and (e,f) are strongly 
connected with ends c and e. Hence, the edge (0, 0) must have received the 
direction c —•» 0 in T7. 

The consistency of T7 is then immediate. For, if c, a, and 0 are consecutive 
vertices of a directed cycle in F, then from c —> a and a —» 0 will follow t h a t 
(c, 0) is in G and is directed c —> 0. Hence, for any directed cycle in T7 there is 
a smaller one, and since there cannot be one with two vertices, there can be 
none a t all. 

LEMMA 5. / / G is complete and consistent and (e , / ) is any undirected edge in 
G, then G U G(e —»/) is consistent. 

Proof. Let T7 = G(e —>/). There are certainly no directed cycles of two 
vertices in G \J F since tha t would require t ha t a directed edge of F be strongly 
connected to a directed edge of G and, therefore, t ha t (e,f) be directed in G. 

Let there be a directed cycle of more than two vertices in G VJ F. Since 
both G and T7 are consistent, the cycle must have edges both (directed) in 
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G and in F. If any two consecutive edges of a directed cycle are in G', then 
since G is complete, necessarily the chord joining their ends is in G and so 
directed t h a t a smaller cycle can be found. We can, therefore, assume tha t 
there are consecutive vertices a, b, c, and d in a directed cycle such t h a t a —> b 
and c —> d are directions assigned in F and b —» £ is the direction assigned in 
G. Then (a, 6) and (c, d) are strongly connected, while (a, &) and (6, c) are 
not. Fur ther , (a, c) mus t exist; otherwise, (a, b) and (6, c) would be strongly 
joined, contradict ing a —> b in T7, b —» c in G'. From Corollary 1 of Lemma 3 
it follows t h a t (a, b) and (a, c) are strongly connected with ends b and c. 
Hence (a, c) is assigned the direction a —> c in F. Bu t this a rgument permits 
one to obtain from any directed cycle in G \J F a directed cycle in F, which 
is not possible. 

L E M M A 6. If G is consistent and complete with respect to strong connections 
and the undirected edge (a, b) has a —> b as a transitively determined direction, 
then G ' \J G {a —> b) is consistent. 

Proof. Let T = G {a —> b). We shall show first t ha t every directed edge in 
T has a transit ively determined direction in G which is the same as the direc
tion given to it in T. For, let {d, e) be any directed edge in T. We can assume 
wi thout loss in generality t h a t (a, b) and (d, e) are strongly connected with 
ends b and e. Since (a, b) is undirected in G, it is necessarily not strongly con
nected to the directed edges (a, c) and (b, c) in G', which gave (a, b) its t ran
sitively determined direction. Possibility (3) of Lemma 3 must , therefore, 
occur. But , since (a, c) and (c, b) have the directions a —> c and c —-» b in G, 
necessarily (c, d) and (c, e) have the directions d —> c and c —-> e, while (d, e) 
has the direction d —> e in T. 

But , it is therefore possible to replace any directed cycle in G' \J T by a 
directed cycle in G since each edge in the cycle which is in T can be replaced 
by the two directed edges of G which transit ively determine its direction. This 
completes the proof of Lemma 6. 

Consider now the following algorithm for assigning directions to all the 
edges of G. Initially in the algorithm G' is G. 

(1) Choose any undirected edge (a, b) of G and a direction a —> b for i t ; 
let G = G' \J G (a —> 6) and go to (2). If there is no undirected edge in G, 
then stop. 

(2) If there is an edge (a, b) of G with a transit ively determined direction 
a —> b, then let G = G U G {a —> b) and go to (2). If there is no such edge, 
then go to (1). 

I t is evident t ha t G \J G(e —*/) in Lemma 4 and G U G (a —> b) in Lemma 5 
are complete with respect to strong connections. Hence, from Lemmas 4, 5, 
and 6, one sees t h a t in the finite case the algorithm will produce a part ial 
ordering of the vertices of G consonant with the edges of G. In the infinite 
case (and the a rgument embraces the finite case as well), we could part ial ly 
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order all consistent G with G < G" if a -+b in G' implies a —* b in G". This 
partially ordered set has a maximal simply ordered set, by Zorn's lemma, and 
it is easy to see t h a t the union of the G' in this simply ordered set is a GV, 
which is also consistent. If not, every edge in G has been assigned a direction 
in GV; then, using either Lemma 5 or Lemma 6, we would have a contradict ion 
of the maximali ty of GV-

COROLLARY. Let G' be G with some of its edges directed, where G satisfies the 
hypothesis of Theorem 1. A necessary and sufficient condition that it be possible 
to give all edges of G' a direction which partially orders its vertices is that the 
completion of G' with respect to all strongly determined directions has no directed 
cycle. 

For, the algorithm given above (or the use of Zorn's lemma) could have 
begun with any consistent G'. 

3. Interval graphs . If G is any graph, then Gc is the complementary graph ; 
t h a t is, Gc has the same vertices as G bu t has an edge connecting two vertices 
if and only if t ha t edge does not occur in G 

T H E O R E M 2. A graph G is an interval graph if and only if every quadrilateral 
in G has a diagonal and every odd cycle in Gc has a triangular chord. 

Proof. The necessity of the conditions is readily seen. For, let a, /?, and y 
be three intervals such tha t both a and 0 and (3 and y overlap while a and y 
do not overlap. Then, any interval overlapping both a and y must of necessity 
overlap (3. Also, if a and f$ are any two intervals t ha t do not overlap, i.e. in Gc 

an edge joins the vertices corresponding to a and /3, then we say a < (3 if 
every element of a precedes (in 0) every element of /3. This is clearly a partial 
ordering; hence Gc is a comparabil i ty graph. 

T o prove the sufficiency of the conditions, we shall show how to construct 
for any G satisfying the conditions a linearly ordered set 0 and a set of intervals 
I from 0 such tha t G = G(0, I). 

Since Gc is a comparabil i ty graph, we can by Theorem 1 assume t h a t all of 
its edges have been directed in such a way as to partially order its vertices. 
Because G satisfies the characterizing conditions, the directing of the edges of 
Gc will also be such as to satisfy the following lemma. 

LEMMA. Let a, b, c, and d be any vertices of G for which (a, b) is an edge of 
G, (c, d) is an edge of G if c ^ d, and for which (a, c) and (b, d) are edges of Gc. 
Then (a, c) and (b, d) are both directed towards or away from (a, b). 

Proof. If c —> a and b —> d are the directions assigned to the edges, then 
necessarily c ^ d, since otherwise transi t ivi ty would require t h a t (a, b) be 
an edge of Gc ra ther than of G. Also, necessarily, either (a, d) or (b, c) is an 
edge of Gc, since otherwise a, d, c, b would be a quadrilateral of G wi thout a 
diagonal. But neither (a, d) nor (6, c) can be an edge of Gc, since neither could 
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be assigned a direction which would not require by transitivity that either 
(a, b) or (c, d) be an edge of G. 

Define a complete subgraph of a graph to be a set of vertices each pair of 
which is joined by an edge, and a maximally complete subgraph to be one 
properly contained in no other complete subgraph. 

Consider now any set of maximally complete subgraphs of G such that 
every vertex and edge of G is in at least one of them. Form a graph G with 
vertices such a set of maximally complete subgraphs, and with an edge joining 
each pair of vertices of G. Every pair of maximally complete subgraphs of G 
necessarily has at least one edge of Gc connecting a vertex of one to a vertex 
of the other. Hence, each edge of G can be given one or more directions depend
ing upon the directions of edges of Gc joining the maximally complete sub
graphs of G corresponding to the ends of the edge. But, from the lemma, it is 
immediate that each edge in G receives a unique direction so that G can be 
regarded as a complete graph with every edge directed. 

The directed graph G is transitive. For, if not, there would exist three 
maximally complete subgraphs Gi, G2, and G3 of G and six vertices (possibly 
not all distinct) a, b in d , c, d in G2, and e, f in G3 such that (6, c), (d, e), 
and (/, a) are all edges in G° and have the directions b —> c, d —» e, and / —» a 
as in Figure 3, where, if a ^ b (a, b) is an edge of G, if c ^ d (c, d) is an edge 
of G, and if e ^ f (e,f) is an edge of G. But a = b, c• = d, and e = / is not 

« p q 6 
/ \ 

/ \ 

\ / 
eO—-<- d <Z 

FIGURE 3 

possible since transitivity would be violated in Gc; assume, therefore, that a ^ b. 
We may assume that a ^ d and (a, J) is an edge of Gc, since otherwise the 
vertices a, d, e, and / would contradict the lemma. Again from the lemma it 
follows that a —» d is the direction assigned to (a, d) in Gc. From transitivity 
in Gc, therefore, it follows that (a, e) is in Gc and is directed a —•> e. But then 
the vertices a, e , / contradict the lemma. Hence, G is transitive. 

Since G is directed and transitive and since every pair of vertices in G has 
an edge joining them, it linearly orders its vertices. Let 0 be the vertices of G 
linearly ordered by (?. 

We shall say that a vertex of G is a member of an element of 0 if and only 
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if it is a vertex of the maximally complete subgraph of G corresponding to the 
element of 0. If a vertex a of G is a member of two elements G\ and G3 of 0, 
then it is a member of every element G2 of 0 lying between G\ and G3. For, if 
not, there would be a vertex b of G2 not connected to a in G and the edge 
(a, b) of Gc would have to receive two different directions since G2 lies between 
Gi and G3. Hence, for any vertex a of G, the set a(a) of all elements of 0 of 
which a is a member is an interval of 0. Let I be the set of all such intervals 
of 0. 

It is immediate that G = G(0, / ) , for the elements of 0 correspond to a set 
of maximally complete subgraphs of G which cover all the vertices and edges 
of G. Hence, two intervals a(a) and a(b) of I overlap if and only if (a, b) is 
an edge of G. 

COROLLARY. There is a set 0 of cardinality equal to the least cardinality of a 
set of maximally complete subgraphs that contain all the vertices and edges of G. 
This is the set 0 of least cardinality. 

Proof. If G = G(0, I), then the set of intervals in / containing a given 
element of 0 is a maximally complete subgraph of G. 

When G is finite and an interval graph, the only set of maximally complete 
subgraphs containing all the vertices and edges of G is the set of all maximally 
complete subgraphs. For, let 0 and / be as constructed in the proof of the 
theorem and let Gi be a maximally complete subgraph which does not corre
spond to an element of 0. The directed edges of Gc, as above, will linearly 
order 0 VJ {Gi} in such a way that if a vertex of G is a member of any two 
elements of O U {Gi}, then it is a member of all elements lying between the 
two. Hence, G\ cannot be an end-point of 0 KJ {G\} since it would be necessary 
that its immediate neighbour in OU {Gi} contain all of its vertices. But also 
Gi cannot be between two other elements G2 and G3 since there must be a vertex 
a of G\ which is not in G3 and a vertex b of Gi which is not in G2. Since the 
vertices of Gi must be contained in its immediate neighbours if they are to be 
contained in any elements of O U {Gi}, it follows that a is in G2 and b is in G3. 
But the edge (a, b) is in Gi and, hence, must be in some member G4 of 0 \J {Gi}, 
which, therefore, necessarily contains both a and b. G4 cannot be between G2 

and G3, since we assumed G2 and G3 to be immediate neighbours of G±. Yet, 
neither can G2 lie between G4 and G3, nor can G3 lie between G2 and G4, since 
the first case would imply that b is in G2, while the second case would imply 
that a is in G3. 

When G is infinite, however, and an interval graph, then a proper subset 
of the set of all maximally complete subgraphs may cover all edges and vertices 
of G. For example, consider the interval graph R arising from the set of all open 
intervals on the real line. Let 5 be the set of all maximally complete subgraphs 
of R, each of which is generated by the intervals containing a rational point. 
Then S covers all the vertices and edges of R even though the cardinality of A 
is strictly less than the cardinality of R. 
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