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Abstract

We describe how the quadratic Chabauty method may be applied to determine the set
of rational points on modular curves of genus g > 1 whose Jacobians have Mordell–Weil
rank g. This extends our previous work on the split Cartan curve of level 13 and allows
us to consider modular curves that may have few known rational points or non-trivial
local height contributions at primes of bad reduction. We illustrate our algorithms with
a number of examples where we determine the set of rational points on several modular
curves of genus 2 and 3: this includes Atkin–Lehner quotients X+

0 (N) of prime level N ,
the curve XS4(13), as well as a few other curves relevant to Mazur’s Program B. We
also compute the set of rational points on the genus 6 non-split Cartan modular curve
X+

ns(17).

1. Introduction

In this paper, we describe the current state of quadratic Chabauty-based algorithms for the
resolution of Diophantine equations arising from modular curves. Here we consider the usual
modular curves associated to congruence subgroups of SL2(Z), as well as Atkin–Lehner quotients
thereof.

Recall the motivating question of the subject. Let E be an elliptic curve over a number
field K. What are the possible ways for the Galois group Gal(K/K) to act on the group of
torsion points of E? Equivalently, what are the conjugacy classes of subgroups of GL2(Z/NZ)
arising as images of the mod N Galois representation ρE,N?

By a theorem of Serre [Ser72], if E is an elliptic curve without complex multiplication, then for
all primes N � 0, the representation ρE,N is surjective. Serre’s uniformity question [Ser72] asks
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whether this can be made uniform over Q: is there an N0 such that, for all primes N > N0, if E/Q
is an elliptic curve without complex multiplication, then ρE,N is surjective? By a classification
of maximal subgroups of GL2(Z/NZ), this amounts to determining elliptic curves whose mod
N Galois representation is contained in a Borel subgroup, the normaliser of a split Cartan
subgroup, the normaliser of a non-split Cartan subgroup, or an ‘exceptional’ subgroup (such
that the projective image is S4, A4, or A5).

Mazur’s Program B [Maz77] asks for all of the possible Galois actions on torsion subgroups of
elliptic curves without complex multiplication. This question includes Serre’s uniformity question
but is more general. From a Diophantine perspective, it roughly amounts to determining the
rational points on all modular curves.

Rouse and Zureick-Brown [RZB15] settled this in the context of 2-primary torsion and very
recently, with Sutherland [RSZB22], studied this in the context of �-primary torsion for other
primes �. For each prime, this produces a finite number of curves, the determination of whose
rational points would resolve the �-primary part of Mazur’s question. In §§ 5.1 and 5.3 we compute
the rational points on four modular curves XS4(13), X+

ns(17), X11 and X15 arising in Mazur’s
Program B. In particular, we prove the following theorem.

Theorem 1.1. We have #XS4(13)(Q) = 4. One of these points is a complex multiplication
(CM) point, corresponding to discriminant D = −3. The other three are exceptional, with
corresponding j-invariants listed in § 5.1.

Here we call a non-cuspidal rational point exceptional if it does not correspond to an elliptic
curve with complex multiplication. The curve XS4(13) has genus 3. This completes the classifica-
tion of elliptic curves E/Q and prime level N > 0 such that ρE,N is contained in an exceptional
subgroup.

We also determine the rational points on X+
ns(17), the non-split Cartan modular curve of

level 17, which is a genus 6 curve.

Theorem 1.2. We have #X+
ns(17)(Q) = 7 and all of these points are CM, corresponding to

discriminants −3,−7,−11, −12,−27,−28,−163.

Theorems 1.1 and 1.2 complete the classification of the possible 13-adic and 17-adic images
of Galois.

Moving beyond torsion points of elliptic curves over Q, another interesting problem in the
Diophantine geometry of modular curves is the determination of the set of rational points on
the Atkin–Lehner quotient

X+
0 (N) := X0(N)/〈wN 〉

of the modular curve X0(N). In [Gal02], Galbraith asks whether, for all primes N � 0, the
only rational points on X+

0 (N) are cusps or CM points. From a moduli perspective, this
amounts to finding quadratic Q-curves that are N -isogenous to their conjugates. Dogra and
Le Fourn [DLF21] proved that the quadratic Chabauty set X+

0 (N)(Qp)2 is finite whenever the
genus of X+

0 (N) is greater than 1. Hence, it is natural to ask whether the methods of this paper
can be used to give an algorithm for computing X+

0 (N)(Qp)2 for any N . In fact, in the range of
N we consider, finiteness of X+

0 (N)(Qp)2 follows from a criterion appearing in earlier work of
Siksek [Sik17]. Our computations described in § 5.2 prove the following result.

Theorem 1.3. The only prime values N such that the curve X+
0 (N) is of genus 2 or 3 and has

an exceptional rational point are N = 73, 103, 191. In particular, for prime N , there are no
exceptional rational points on curves X+

0 (N) of genus 3.
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All rational points in Theorem 1.3 have already been found by Galbraith [Gal99].

Remark 1.4. These computations were recently extended significantly by Adžaga, Arul, Beneish,
Chen, Chidambaram, Keller and Wen [AAB+21]. They use the quadratic Chabauty method
described in this paper to determine the set of rational points on all curves X+

0 (N) of genus 4, 5
and 6 and prime level N . Arul and Müller [AM23] also compute the rational points on X+

0 (125)
using the same method. Adžaga, Chidambaram, Keller and Padurariu [ACKP22] use several tech-
niques, including quadratic Chabauty, to determine the set of rational points on the hyperelliptic
Atkin–Lehner star quotient curves X∗

0 (N).

Going further, one may wonder what the potential applications of these algorithms are to
non-modular curves. The main stumbling block in attempting such a generalisation is our running
assumption on the Mordell–Weil rank and Picard number of the Jacobian (see § 2.1). Since a
generic curve has Picard number 1, it is not clear how often one should expect a genus g curve with
Mordell–Weil rank g to satisfy the quadratic Chabauty hypothesis. Nevertheless, there are other
interesting curves where one would expect to get some mileage out of such algorithms. The most
obvious examples are (Atkin–Lehner quotients of) Shimura curves. In particular, determining
the set of rational points on the (infinitely many) curves XD/〈wD〉, in the notation of Parent
and Yafaev [PY07], would resolve a conjecture of Clark [Cla03] (Parent and Yafaev determine
the rational points for an infinite family of Shimura curves whose Jacobian contains a rank zero
isogeny factor).

2. Quadratic Chabauty: theory

We give a brief overview of the quadratic Chabauty method. A more complete exposition
can be found in [BBB+21], and we refer the reader to [BD18, BDM+19] for more precise
details and proofs. Our description is in terms of Galois representations and filtered φ-modules,
but we note that recently Edixhoven and Lido [EL23] gave a geometric version of quadratic
Chabauty, which they used to determine the set of rational points on the bielliptic modular curve
X0(129)/〈w3, w43〉 of genus 2. Duque-Rosero, Hashimoto and Spelier [DRHS22] have related
this approach to that presented here and used this to give algorithms for geometric quadratic
Chabauty for hyperelliptic curves. Besser, Müller and Srinivasan [BMS21] have also given an
alternative approach to the quadratic Chabauty method based on a new construction of p-adic
heights on abelian varieties via p-adic Arakelov theory.

An early version of the method appeared in work of Kim [Kim10, BKK11], where Massey
products were used to construct a locally analytic function, vanishing on the set of integral points
of an elliptic curve of rank 1. These functions were interpreted as height functions, extending the
method, in Balakrishnan and Besser [BB15] and Balakrishnan, Besser and Müller [BBM16]. It
was extended to its current form in Balakrishnan and Dogra [BD18], where a systematic use of
Nekovář’s theory of p-adic heights suggested a streamlined approach towards a very general class
of curves allowing an abundance of geometric correspondences. It was carried out to determine
the set of rational points on X+

s (13), the split Cartan curve of level 13, in [BDM+19].

Remark. This method fits into the vastly more general framework developed by Kim [Kim05,
Kim09], elaborating on the idea of studying rational points on curves through path torsors of
the étale fundamental group, suggested by Grothendieck’s section conjecture. The approach
discussed here represents an effective way to make this theory computable and applicable to a
variety of examples. It is, however, important to note that different quotients of the fundamental
group have been successfully used for this purpose (see, for instance, [BD21]). Finally, although
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we restrict our attention to the base field Q, suitable versions exist over number fields (see [BD18,
BD21, BBBM21]).

2.1 Rational points and global heights
Consider a smooth projective curve XQ of genus g ≥ 2 whose Jacobian J has rank r = g. We
also assume that the abelian logarithm induces an isomorphism

log : J(Q) ⊗ Qp → H0(XQp , Ω
1)∨ (2.1)

and that X(Q) is non-empty, so we may choose a base point b in X(Q). Suppose that the
Néron–Severi rank rkZNS(J) is at least 2, so that there exists a non-trivial class

Z ∈ Ker
(
NS(J) −→ NS(X) 	 Z

)
.

As explained in Balakrishnan and Dogra [BD18, Lemma 3.2], we can attach to any such choice
of Z a suitable quotient UZ of the Qp-pro-unipotent fundamental group of XQ̄, which, via a
twisting construction by path torsors, gives rise to a certain family of Galois representations,

X(K) −→ {GK → GL2g+2(Qp)} / ∼
x �−→ A(x) := AZ(b, x),

where K ∈ {Q,Qp} and GK is the absolute Galois group of K. We refer the reader to [BD18,
§ 5.1] for the details of this construction (in particular, for the equivalence relation), and merely
recall here that with respect to a suitable choice of basis, the representation A(x) is lower
triangular, of the form

g ∈ GK �−→
⎛
⎝ 1

α(g) ρV (g)
γ(g) β(g) χp(g)

⎞
⎠ , (2.2)

where
ρV : GK −→ GL2g(Qp)

is a frame for the Galois action on the p-adic étale homology V = H1
ét(XK ,Qp)∨, and χp : GK →

Q×
p is the p-adic cyclotomic character. Representations of this form, which admit a GK-stable

filtration with graded pieces Qp(1), V,Qp, are referred to as mixed extensions (see [BDM+19,
§ 3.1]).

The theory of p-adic heights due to Nekovář [Nek93, § 2] attaches to any mixed extension
M a p-adic height h(M). When applied to the family of mixed extensions A(x), this results in
a map

h : X(Q) −→ Qp.

The algebraic properties of this map lie at the heart of the quadratic Chabauty method. Most
notably, the method relies on the following two facts.

− The p-adic height is a bilinear function of the pair of cohomology classes ([α], [β]) associated
to the vectors appearing in (2.2).

− It decomposes as a sum of local height functions hv defined locally at every finite place v.

2.2 Local decomposition
We now discuss in more detail the decomposition of the global p-adic height h described above,
as a sum of local height functions

hv : X(Qv) −→ Qp.
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The nature of these local height functions is as follows.

(i) The case v �= p. It follows from Kim and Tamagawa [KT08, Corollary 0.2] that the function
hv has finite image, in the sense that there exists a finite set Υv such that

hv : X(Qv) −→ Υv ⊂ Qp.

(ii) The case v = p. The map hp is locally analytic and has a simple description in terms of
linear algebra data of the filtered φ-module

M(x) :=
(
A(x) ⊗Qp Bcrys

)GQp ,

where Bcrys is Fontaine’s crystalline period ring. A crucial point in the method of quadratic
Chabauty is that the definition of the family of Galois representations A(x) comes from a
motivic quotient of the fundamental group of X, and non-abelian p-adic Hodge theory yields
an analogous de Rham realisation in the form of a filtered connection (M ,∇) on X with a
Frobenius structure, together with an isomorphism of filtered φ-modules

x∗M 	 M(x)

(see [BDM+19, § 5]). We have a pair of elements π1(M(x)) and π2(M(x))∨(1) of H0(XQp , Ω)∨

associated to the filtered φ-module M(x), via the isomorphism

Ext1Fil,φ(Qp, H1
dR(XQp)

∨) 	 H0(XQp , Ω)∨.

2.3 Finiteness
The decomposition h =

∑
v hv can be used to leverage the bilinear nature of h against the

properties of the functions hv. By (1) in § 2.2, we know that there exists a finite set Υ = ΥZ ⊂ Qp

such that

h(x) − hp(x) ∈ Υ (2.3)

for any x in X(Q). In § 3, we describe how the terms in this equation may be computed
explicitly.

− The set Υ is given by {∑v εv : εv ∈ Υv}, where the sum is over primes of bad reduction, and
Υv is the set of values of hv(x) for x ∈ X(Qv). For v �= p, the map hv is made more explicit
in § 3.1 using the results of Betts and Dogra [BD19] to compute Υv when a regular semi-
stable model X is known. The map hv factors through the reduction map to the irreducible
components of the special fibre of X .

− The map hp may be computed using [BDM+19, §§ 4,5], where it is explained how the universal
properties of the bundle M rigidify the (known) structures on the graded pieces, enough to
allow us to compute them explicitly (see § 3.2).

− Using the isomorphism (2.1), we may view the global height as a pairing

h : H0(XQp , Ω
1)∨ ⊗ H0(XQp , Ω

1)∨ −→ Qp.

Using global information, such as an abundance of global points x ∈ X(Q) if available, we
can solve for the height pairing. This is discussed in § 3.3, where we also explain what to do
when too few rational points are available.

Via the above, the map h may be extended to a bilinear map

h : X(Qp) → Qp, x �→ h(π1(A(x)), π2(A(x))∨(1)). (2.4)
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The resulting map

ρ = h − hp : X(Qp) −→ Qp (2.5)

is known to be Zariski dense on every residue disk. We call ρ a quadratic Chabauty function, and
we write ρZ if we want to emphasise the dependence on Z. Hence (2.3) implies that X(Q) is
finite. Moreover, the computable nature of the quantities involved in (2.3), discussed at length
in the next section, allows us to explicitly determine a p-adic approximation of the finite set

{x ∈ X(Qp) : h(x) − hp(x) ∈ Υ} ⊃ X(Q).

As explained in [BD18, Proposition 5.5], this finite set contains the Chabauty–Kim set X(Qp)2. In
particular, a proof that this set equals X(Q) gives a verification of Kim’s conjecture [BDCKW18,
Conjecture 3.1] for the curve X (we refer the reader to [BDCKW18, Definition 2.7] for the
definitions of the set X(Qp)2).

3. Quadratic Chabauty: algorithms

In this section, we discuss the computation of the three ingredients outlined above:

(i) the local height function hv for v away from p, which is described in § 3.1 using the techniques
in Betts and Dogra [BD19], given a regular semi-stable model at v;

(ii) the height function hp, whose computation using the techniques of [BDM+19] is described
in § 3.2;

(iii) the determination of the global height pairing h, described in § 3.3 using rational divisors
as input in the absence of a supply of rational points on the curve.

Our contribution in this paper lies mainly in (i) and (iii), which reflect general features of the
method of quadratic Chabauty that were not needed for the curve X+

s (13) treated in [BDM+19].
In addition, we discuss some computational techniques to further automate the method of
quadratic Chabauty to work for a wide class of modular curves. This includes the Mordell–Weil
sieve, which is used to attempt to further refine the finite set of local points in the output to the
true set of rational points X(Q).

Remark 3.1. The global height depends on the choice (which we henceforth fix) of

− a non-trivial continuous idèle class character χ : A×
Q/Q× −→ Qp ramified at p;

− a splitting s : VdR/Fil0VdR −→ VdR of the Hodge filtration, where

VdR = Dcrys(V ) = H1
dR(XQp)

∨.

We also fix differentials ω0, . . . , ω2g−1 of the second kind whose classes form a symplectic basis
of H1

dR(XQp) with respect to the cup product, such that ω0, . . . , ωg−1 generate H0(XQp , Ω
1).

3.1 Local heights away from p
Let � �= p and let F be an endomorphism of J whose class Z lies in Ker

(
NS(J) → NS(X)

)
. In

[BD19], a description of the map

h� : X(Q�) −→ H1(G�, UZ) −→ H1(G�,Qp(1)) −→ Qp

associated to F and χ is given, in terms of harmonic analysis on the reduction graph in the sense
of Zhang [Zha93].

To explain the result, we introduce some notation. Over some finite extension K/Q�, the
curve X admits a regular semi-stable model Xreg/OK , and a stable model Xst/OK . Let Γreg and
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Γst denote the dual graphs of the special fibres of these models. Recall that the dual graph of
the special fibre is by definition the graph1 whose vertices are the irreducible components of the
special fibre, and whose edges are the singular points of the special fibre. The endpoints of an
edge e are defined to be the irreducible components containing the point (by semi-stability, a
singular point e lies on at most two irreducible components). By regularity, we have a reduction
map

red: X(Q�) −→ V (Γreg)

from X(Q�) to the vertices of the dual graph Γreg.
The definition is the natural one: given x ∈ X(Q�), there is a unique extension to an

OK-section x ∈ Xreg(OK). Let k be the residue field of OK . By regularity, the specialisation
of x to k lies on a unique irreducible component of Xreg,k.

We may give Γreg and Γst the structure of rationally metrised graphs (i.e. graphs whose edges
e have associated lengths �(e) ∈ Q>0) by defining the length of an edge e to be i(e)/r, where i is
the intersection multiplicity of the corresponding singular point and r is the ramification degree
of K/Q�.

Choose an orientation of the edges of Γ := Γst, so that each e ∈ E(Γ) has a source s(e) and
target t(e) in V (Γ). We define the (rational) homology of Γ, H1(Γ) ⊂ QE(Γ), to be the kernel
of the map

s − t : QE(Γ) → QV (Γ),

where QE(Γ) and QV (Γ) are the free Q-vector spaces generated by E(Γ) and V (Γ), respectively.
Define ΓQ to be the set of points on Γ whose distance from a vertex is rational.

Formally,

ΓQ =
⊔

e∈E(Γst)

{e} × ([0, �(e)] ∩ Q)/ ∼,

where the equivalence relation is that (e1, 1) ∼ (e2, 0) whenever t(e1) = s(e2). Since Xreg is
obtained from Xst by taking each singular point (corresponding to an edge e) and blowing
up i(e) times, we have an inclusion V (Γreg) ⊂ ΓQ (in the terminology of [BD19, 3.7.1], we may
view Γreg as a rational subdivision of Γst). In this way we can think of the reduction map, red,
as a map from X(K) to ΓQ (see [BD19, Definition 1.3.1]). The rationally metrised graph we
obtain is independent of the choice of extension over which X acquires stable reduction [CR91,
Proposition 2.6], and in fact there is an equivalent definition of ΓQ as the limit of the dual
graphs of special fibres of regular semi-stable models of XL over all finite extensions L of K (see
[CR93, § 2]).

In [BD19, Lemma 12.1.1], a map

jΓ : ΓQ → Qp

is defined such that h� = c · jΓ ◦ red, where c is a constant. The map jΓ is defined in terms of
the Laplacian operator associated to Γst, which we now define. We say a function

ΓQ → Qp

is piecewise polynomial if on each edge it is the restriction of a polynomial function Q → Qp.
As in [BD19, Definition 7.2.2], we define the Laplacian ∇2(g) of a piecewise polynomial function

1 Here we follow the convention that graphs are allowed multiple edges between two vertices, and loops (i.e. an
edge whose endpoints are equal).
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g : ΓQ → Qp to be the formal sum

−
∑

e∈E(Γ)

g′′(xe) · e +
∑

v∈V (Γ)

( ∑
s(e)=v

g′(0) −
∑

t(e)=v

g′(1)
)
· v.

Here we write the function g restricted to the edge e as a polynomial in Qp[xe] for notational
simplicity, where xe is the inclusion from the edge e, thought of as a line segment [0, �(e)] ∩ Q,
into Q. Hence, we have

∇2(g) ∈
⊕

e∈E(Γ)

Qp[xe] · e ⊕
⊕

v∈V (Γ)

Qp · v.

The Laplacian is linear on piecewise polynomial functions, and its kernel consists of constant
functions. Thus g is uniquely determined by ∇2(g) and its value at one point.

In [BD19], an explicit construction is given of a piecewise polynomial function that corre-
sponds, via red, to the local height function we wish to compute. Recall that F is an element
of End(J) ⊗ Qp whose image in NS(J) lies in the kernel of NS(J) → NS(X), and b ∈ X(Q) is a
rational point.

Theorem 3.2 [BD19, Theorem 1.1.2, Lemma 12.1.1 and Corollary 12.1.3]. Let Γ be the dual
graph of X corresponding to a regular semi-stable model of X over OK , where K/Q� is a finite
extension. Let red: X(Q�) → V (Γ) be the reduction map. For an irreducible component Xw of
the special fibre of the regular semi-stable model, let Vp(Xw) denote the Qp-Tate module of its
Jacobian. The morphism jΓ is the unique piecewise polynomial function

jΓ : ΓQ → Qp

satisfying jΓ(red(b)) = 0 and ∇2(jΓ) = μF , where

μF :=
∑

e∈E(Γ)

1
�(e)

e∗F (π(e)) · e +
1
2

∑
w∈V (Γ)

Tr(F |Vp(Xw)) · w.

Here, the morphism π is by definition the orthogonal projection

QE(Γ) → H1(Γ,Q)

with respect to the pairing e · e′ = δee′ on QE(Γ), and e∗ is the functional QE(Γ) → Q projecting
onto the e component. Recall (e.g. [SGA7, 12.3.7]) that Vp(X) admits a GK-stable filtration

Vp(X) = W0Vp(X) ⊃ W1Vp(X) ⊃ W2Vp(X) ⊃ W3Vp(X) = 0,

and we have isomorphisms of GK-representations

grW
0 Vp(X) 	 H1(Γ) ⊗ Qp,

grW
1 Vp(X) 	

⊕
w∈V (Γ)

Vp(Xw),

grW
2 Vp(X) 	 H1(Γ)∗ ⊗ Qp(1).

The action of F on Vp(X) preserves this filtration since it is a morphism of Galois representa-
tions, and hence induces an action of F on the weight −1 part of Vp(X), which is isomorphic
to

⊕
w Vp(Xw). Although the action of F need not respect the direct sum decomposition,
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the decomposition

End
(⊕

w

Vp(Xw)
)
	

⊕
w1,w2

Hom(Vp(Xw1), Vp(Xw2))

implies that we can define Tr(F |Vp(Xw)) as the trace of the End(Vp(Xw))-component of F .
To determine the possible local heights, it suffices to compute the action of F on H1(Γ) and

on Vp(Xv). In this paper, we do not discuss methods for the algorithmic computation of the
action of F on H1(Γ), but algorithms for these computations in the case when the curve X is
hyperelliptic will be discussed in forthcoming joint work of the first, second and fifth authors
with David Corwin, Sachi Hashimoto, Benjamin Matschke, Oana Padurariu, Ciaran Schembri
and Tian Wang.

As we explain in § 5.4, one can sometimes use partial information deduced from Theorem 3.2
to determine the possible local heights without computing the action of F on H1(Γ) (e.g. if one
has enough rational points on X that are suitably independent in J(Q) and ΓQ).

Example 3.3. One example for which this strategy succeeds is the curve C188/Q defined by the
equation y2 = x5 − x4 + x3 + x2 − 2x + 1, as described in Example 5.18. This curve does not
have semi-stable reduction over Q2. Over K = Q2[

3
√

2], we find a regular semi-stable model Xreg

whose special fibre consists of two genus 1 curves that do not intersect and a genus zero curve
intersecting both of them transversely, each at a unique point. We did not manage to obtain
this information using any of the existing software packages for computing regular or semi-stable
models, such as Magma’s RegularModel or the SageMath package MCLF.2) Therefore we computed
this model by hand, using a standard (but tedious) sequence of blow-ups.

Hence, the metric graph Γreg is a line segment and the image of C188(Q2) in ΓQ consists of
three points on this line. The two edges of Γreg both have length 1/3. In this case, since Γ has
trivial homology, the function jΓ is affine linear, so it is uniquely determined by evaluating it at
two distinct points. We use this to compute the rational points on C188 in Example 5.18.

3.2 Local heights at p
We discuss the local height component

hp : X(Qp) −→ Qp,

which appeared in [BDM+19, § 5]. Recall that hp is a locally analytic function, described in
terms of the filtered φ-module M(x) discussed in § 2.2. Concretely, we may find two unipotent
isomorphisms

λ�(x) : Qp ⊕ VdR ⊕ Qp(1) ∼−→ M(x), for � ∈ {φ, Fil},
where λφ respects the Frobenius action and λFil respects the Hodge filtration, which with respect
to a suitable basis for M(x) may be represented in (1 + 2g + 1)-block matrix form as

λφ(x) =

⎛
⎝ 1 0 0

αφ 1 0
γφ βᵀ

φ 1

⎞
⎠ , λFil(x) =

⎛
⎝ 1 0 0

αFil 1 0
γFil βᵀ

Fil 1

⎞
⎠ (3.1)

(see [BDM+19, § 5.3] and [BDM+19, § 4.5], respectively). The isomorphism λφ is uniquely deter-
mined, whereas λFil is only well defined up to the stabiliser of the Hodge filtration Fil0. A suitable
choice gives αFil = 0.

The splitting s of the Hodge filtration (see Remark 3.1) defines idempotents s1, s2 on VdR

with images s(VdR/Fil0VdR) and Fil0VdR respectively, with respect to which the local height

2 MCLF can be used to show that there is a semi-stable model with three components, two of genus 1 and one of
genus zero. It also lists equations for their function fields, but this information does not suffice for our purposes.
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at p is
hp(x) = γφ − γFil − βᵀ

φ · s1(αφ) − βᵀ
Fil · s2(αφ) (3.2)

by [BDM+19, Equation (17)].
In [BDM+19] we outline a method to compute these quantities explicitly as functions of

the local point x in X(Qp), which exploits the existence of the connection (M ,∇) discussed in
§ 2.2. The Hodge filtration and Frobenius structures of this bundle are characterised by suitable
universal properties, discussed at length in [BDM+19, §§ 4 and 5]. We have made the algorithms
for the computation of hp more general and streamlined and have added a precision analysis in
§ 4 but have not made further contributions to this part of the method beyond what is already
contained in [BDM+19].

3.3 The global height pairing
One key step in the construction of a quadratic Chabauty function is to write the global height
pairing h in terms of a basis of the space of bilinear pairings on H0(XQp , Ω

1)∨. In [BDM+19],
we had as a working hypothesis that our curve X had sufficiently many rational points, in the
following sense. For x ∈ X(Qp), the Galois representation A(x) can be projected onto H1

f (GT , V )
(respectively, H1

f (GT , V ∗(1))), where GT is the maximal quotient of GQ unramified outside T =
{p} ∪ {bad primes for X}. With respect to the dual basis ω∗

0, . . . , ω
∗
g−1, the image is the vector

α (respectively, β) in (2.2). Both of these cohomology groups are isomorphic, under our running
assumptions, to H0(XQp , Ω

1)∨, so we obtain

π(A(x)) =
(
π1(A(x)), π2(A(x))

) ∈ H0(XQp , Ω
1)∨ × H0(XQp , Ω

1)∨.

Suppose that we can find a basis of H0(XQp , Ω
1)∨ ⊗ H0(XQp , Ω

1)∨ consisting of elements of
the form π(AZ(b, x)), where the Z are cycles on J pulling back to degree 0 cycles on X,
and the x are rational points on X. Then we can compute the coefficients of h in terms of
the dual basis by evaluating hp(AZ(b, x)) (and, if necessary, h�(AZ(b, x)) for primes � �= p).
With this choice of basis, the extension of h to a locally analytic function h : X(Qp) → Qp is
immediate.

The number of rational points required can be reduced by working with symmetric heights
that are End(J)-equivariant. By the latter we mean that h(f(x), y) = h(x, f(y)) for all f ∈
End(J), using (2.1). This holds if the splitting s of the Hodge filtration on VdR commutes with
End(J) and has the property that ker(s) is isotropic with respect to the cup product (see [Nek93,
§ 4.11] and [BD21, § 4.1]). For instance, if p is a prime of ordinary reduction for the Jacobian,
then the height associated to the unit root splitting (see Remark 3.15) is symmetric and End(J)-
equivariant. Henceforth we shall assume that s satisfies these assumptions, and we say that X
has sufficiently many rational points if the approach outlined above succeeds.

3.3.1 Heights on the Jacobian. If our curve does not have sufficiently many rational points in
the above sense, then, in light of (2.1), it is natural to solve for the height pairing using rational
points on the Jacobian. In this case, we do not have an algorithm at our disposal to compute
h using Nekovář’s construction, but we can use the equivalence between this construction and
that of Coleman and Gross [CG89], proved by Besser [Bes04]. In the case when the curve is
hyperelliptic and given by an odd-degree model over Qp (but see Remark 3.7), we can further
use the algorithm of Balakrishnan and Besser [BB12, BB21]. In the discussion that follows, we
will assume that we are in this situation. We will also assume that we know g independent points
on the Jacobian.

Recall from Remark 3.1 that we have fixed a continuous idèle class character χ : A×
Q/Q× −→

Qp ramified at p and a splitting s : VdR/Fil0VdR −→ VdR of the Hodge filtration on
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VdR = H1
dR(XQp)

∨ . The latter corresponds to a subspace W ⊂ H1
dR(XQp), complementary to

the image of H0(XQp , Ω
1). With respect to these choices, Coleman and Gross define the local

p-adic height pairing hv(D1, D2) ∈ Qp at a finite prime v for divisors D1, D2 ∈ Div0(XQv)
with disjoint support. The local pairing is bi-additive, and we have hv(D1, D2) = χv(f(D2))
if D2 = div(f) is principal. For v �= p, the pairing hv is also symmetric; hp is symmetric if and
only if W is isotropic with respect to the cup product pairing, which we will assume from now
on. Moreover, for D1, D2 ∈ Div0(X) with disjoint support, only finitely many hv(D1, D2) :=
hv(D1 ⊗ Qv, D2 ⊗ Qv) are non-zero. Therefore h :=

∑
v hv defines a symmetric bilinear pairing

h : J(Q) × J(Q) → Qp (see [CG89, § 6]).
If we have algorithms to compute the local height pairings, we can solve for the global height

pairing in terms of the basis of symmetric bilinear pairings on J(Q) ⊗ Qp defined by

gij(D, E) := 1
2(log(D)(ωi) log(E)(ωj) + log(D)(ωj) log(E)(ωi)), 0 ≤ i ≤ j ≤ g − 1. (3.3)

Since we can express π1(A(x)) and π2(A(x)) in terms of the dual basis {ω∗
i }, we can compute

gij(π(A(x))) for x ∈ X(Qp) (with the obvious abuse of notation) and extend h to a locally
analytic function h : X(Qp) → Qp.

It remains to discuss the computation of the local heights. For D1, D2 ∈ Div0(XQp) with
disjoint support, the local height is the Coleman integral certain differential with residue divisor
Res(ωD1) = D1, and cp is a constant so that c−1

p χp extends to a branch Q×
p → Qp of the p-adic

logarithm; the Coleman integral is taken with respect to this branch. The differential ωD1 is
normalised with respect to the splitting s using a homomorphism

Ψ: T (Qp)/Tl(Qp) → H1
dR(X)

from T (Qp), the group of differentials of the third kind with integer residues on X, quotiented
by Tl(Qp), the group of logarithmic differentials df

f with f ∈ Qp(X)∗, as in the algorithm below.
We restrict to degree zero divisors of the form P − Q where P, Q are non-Weierstrass points in
X(Qp) that do not reduce to a Weierstrass point in X(Fp) since we will need to compute Coleman
integrals between P, Q, and our implementation assumes that these points are in non-Weierstrass
disks and defined over Qp.

Algorithm 3.4 The local height hp(D1, D2) at p of the global p-adic height [BB12].
Input:

− Hyperelliptic curve X/Qp, given by an affine model y2 = f(x), where f ∈ Zp[x] is square-free
of degree 2g + 1 > 2.

− Prime p > 2g − 1 of good reduction.
− Choice of isotropic subspace W of H1

dR(XQp), complementary to the subspace of regular
1-forms H0(XQp , Ω

1).
− Divisors D1 = P − Q, D2 = R − S, where P, Q, R, S are non-Weierstrass points in X(Qp) that

do not reduce to a Weierstrass point in X(Fp), and R, S do not lie in the residue disks of
P, Q.

Output: The local height hp(D1, D2) at p of the Coleman–Gross global p-adic height

(i) Choose ω a differential in T (Qp) with Res(ω) = D1.
(ii) Solve for the coefficients bi of Ψ(ω) =

∑2g−1
i=0 biωi ∈ H1

dR(X) by computing residues, as in
[BB12, § 5.2]. Then Ψ(ω) −∑g−1

i=0 biωi ∈ W . Let

ωD1
:= ω −

g−1∑
i=0

biωi.
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(iii) Set α := φ∗(ω) − p(ω). Use Frobenius equivariance of the map Ψ (and the matrix of
Frobenius computed with respect to the basis {ωi} of H1

dR(X)) to compute

Ψ(α) = φ∗Ψ(ω) − pΨ(ω).

(iv) Let β be a 1-form with Res(β) = (R) − (S). Compute Ψ(β).
(v) Compute

hp(D1, D2) :=
∫

D2

ωD1 =
∫ R

S

(
ω −

g−1∑
i=0

biωi

)
,

where
∫ R

S
ω =

1
1 − p

(
Ψ(α) ∪ Ψ(β) +

∑
A∈X(Cp)

ResA

(
α

∫
β

)
−
∫ S

φ(S)
ω −

∫ φ(R)

R
ω

)

(see [BB12, Remark 4.9]).

Remark 3.5. Note that in the last step above,
∫ S
φ(S) ω and

∫ φ(R)
R ω are tiny integrals, that is,

Coleman integrals between points in the same residue disk. Such integrals may be computed
merely using a uniformising parameter at any point in the residue disk. The computation∑

A∈X(Cp) ResA

(
α
∫

β
)

will, in most cases, require working over various extension of Qp to
pick up all contributions at all poles (see [BB12, Remark 4.10]).

Remark 3.6. If our hyperelliptic curve X does not admit an odd-degree model over Q, we may
choose our prime p such that X has an odd-degree model over Qp and compute local heights at
p on this model. This follows from the fact that Ψ(ϕ∗ω) = ϕ∗(Ψ(ω)) for ϕ an isomorphism of
curves and ω a differential of the third kind.

Remark 3.7. In his thesis [Gaj22], Gajović has improved Algorithm 3.4 and extended it to even-
degree models of hyperelliptic curves.

The local height at a prime � �= p is defined in terms of intersection theory. We can extend D1

and D2 to divisors D1 and D2 on a regular model of XQ�
so that both Di have trivial intersection

multiplicity with all vertical divisors; then by [CG89, Proposition 1.2], we have

h�(D1, D2) = −(D1 · D2)χp(�).

3.4 Mordell–Weil sieving
The idea of the Mordell–Weil sieve, originally due to Scharaschkin [Sch99], is to deduce infor-
mation on rational points on X via the intersection of the images of X(Fv) and J(Q) in J(Fv)
(or suitable quotients) for several primes v of good reduction. It is often applied to verify that
X(Q) = ∅, but it can also be combined with p-adic techniques to compute X(Q) when there
are rational points.

We review the basic idea, which is straightforward. Making the sieve perform well in practice
is a different matter (see [BS10] for an elaborate discussion of the issues one encounters and
detailed strategies). For ease of exposition, we assume that J(Q) is torsion-free and that we have
generators P1, . . . , Pr of J(Q). Let M > 1 be an integer and let S be a finite set of primes of
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good reduction for X. Then the diagram

X(Q) ��

��

J(Q)/MJ(Q)

αS,M

��∏
v∈S X(Fv)

βS,M

��
∏

v∈S J(Fv)/MJ(Fv)

is commutative. In the situation of interest to us, the horizontal maps are induced by our choice
of base point b ∈ X(Q).

In our work, we use the Mordell–Weil sieve in two ways. On the one hand, we apply it to
show that for a fixed prime p, a given residue disk in X(Qp) does not contain a rational point. To
this end, we set M = M ′ · p for some suitable auxiliary integer M ′, and we choose S to consist
of primes � so that gcd(#J(F�), #J(Fq)) is large for some prime divisors q | pM ′. We can then
hope that the image of the reduction of the disk under

∏
βS,M does not meet the image of the

map
∏

αS,M .
On the other hand, we use the sieve to show for fixed M > 1 that a given coset of MJ(Q) does

not contain the image of a point in X(Q) under the Abel–Jacobi map P �→ [P − b]. Suppose a
point P ∈ X(Qp) is given to finite precision pN . If P is rational, then there are integers a1, . . . , ag

such that

[P − b] = a1P1 + · · · + agPg.

Via the abelian logarithm, we compute a tuple (ã1, . . . , ãg) ∈ Z/pNZ satisfying ai ≡ ãi (mod pN )
for all i ∈ {1, . . . , g}. To show that P is not rational, it suffices to show that the corresponding
coset of pNJ(Q) does not contain the image of such a point.

In our implementation, we have not tried to optimise the interplay between quadratic
Chabauty and the Mordell–Weil sieve. Such an optimisation is discussed in [BBM17, § 7]. Let
us only note here that we may combine quadratic Chabauty information coming from several
primes, and that we can enhance that information using an auxiliary integer M ′ similar to the
above. Another account of combining quadratic Chabauty with the Mordell–Weil sieve can be
found in [BBB+21, § 6.7].

Remark 3.8. All examples in this paper satisfy r = g = rkZNS(J), resulting in at least two inde-
pendent locally analytic functions vanishing in X(Q) for the g > 2 examples. Since we expect
that their common zero set is precisely X(Q) (or that there is a geometric reason for the appear-
ance of any additional p-adic solutions), we do not expect to require the sieve. Indeed, we only
had to apply the sieve for curves of genus 2. For these examples, we always required only one
prime for the quadratic Chabauty computation; we chose this prime in such a way as to simplify
the sieving.

3.5 Implementation and scope
We have implemented the algorithms described in this section in the computer algebra system
Magma [BCP97]. Our code is freely available at [BDM+]. It extends the code used for X+

s (13)
in [BDM+19] and can be used to recover that example. It is applied to new examples, as discussed
in § 5.

We begin by summarising our discussion so far and describe the general procedure to deter-
mine the finite set X(Qp)2 as it would apply to the modular curve X attached to a general
congruence subgroup, and Atkin–Lehner quotients thereof. In this generality, several steps can-
not be easily automated, so we discuss the extent to which our implementation has automated
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the procedure, and point out which steps require additional action from the user. See Example 5.3
for a fairly detailed worked example.

Our techniques are built on prior work of Tuitman on computing the action of Frobenius on
rigid cohomology [Tui17]. We recall some of the underlying structures present in Tuitman’s work
and a set of assumptions on these auxiliary structures.

Suppose our modular curve X/Q is given by a (possibly singular) plane model Q = 0 with
Q(x, y) ∈ Z[x, y] a polynomial that is irreducible and monic in y. Let dx and dy denote the
degrees of the morphisms x and y, respectively, from X to the projective line. Let Δ(x) ∈ Z[x]
denote the discriminant of Q with respect to the variable y. Moreover, define r(x) ∈ Z[x] to be
the square-free polynomial with the same zeros as Δ(x), in other words, r = Δ/(gcd(Δ, dΔ/dx)).

Definition 3.9. Let W 0 ∈ GLdx(Q[x, 1/r]) and W∞ ∈ GLdx(Q[x, 1/x, 1/r]) denote matrices
such that, if we denote

b0
j =

dx−1∑
i=0

W 0
i+1,j+1y

i and b∞j =
dx−1∑
i=0

W∞
i+1,j+1y

i

for all 0 ≤ j ≤ dx − 1, then

(i) [b0
0 , . . . , b0

dx−1] is an integral basis for Q(X) over Q[x],
(ii) [b∞0 , . . . , b∞dx−1] is an integral basis for Q(X) over Q[1/x],

where Q(X) denotes the function field of X. Moreover, let W ∈ GLdx(Q[x, 1/x]) denote the
change-of-basis matrix W = (W 0)−1W∞.

Assumption 3.10 [Tui17, Assumption 1].

(i) The discriminant of r(x) is contained in Z×
p .

(ii) If we denote b0
j =

∑dx−1
i=0 W 0

i+1,j+1y
i and b∞j =

∑dx−1
i=0 W∞

i+1,j+1y
i for all 0 ≤ j ≤ dx − 1, and

if we let Fp(x, y) be the field of fractions of Fp[x, y]/(Q), then:
(a) the reduction modulo p of [b0

0 , . . . , b0
dx−1] is an integral basis for Fp(x, y) over Fp[x];

(b) the reduction modulo p of [b∞0 , . . . , b∞dx−1] is an integral basis for Fp(x, y) over Fp[1/x].
(iii) W 0 ∈ GLdx(Zp[x, 1/r]) and W∞ ∈ GLdx(Zp[x, 1/x, 1/r]).
(iv) Denote

R0 = Zp[x]b0
0 + · · · + Zp[x]b0

dx−1,

R∞ = Zp[1/x]b∞0 + · · · + Zp[1/x]b∞dx−1.

For a ring R, let Rred denote the reduced ring obtained by quotienting out by the
nilradical. Then the discriminants of the finite Zp-algebras (R0/(r(x)))red and
(R∞/(1/x))red are contained in Z×

p .

Remark 3.11. These conditions imply that the curve X has good reduction at p.

Algorithm 3.12 Quadratic Chabauty for modular curves.
Input:

− A modular curve X/Q with Mordell–Weil rank r = g and rkZNS(J) > 1, and for which the
image of J(Q) in H0(XQp , Ω

1)∨ has rank g
− A covering of X by affine opens that are birational to a planar curve cut out by an equation

that is monic in one variable, has p-integral coefficients and satisfies Assumption 3.10 (see
§ 3.5.1)

− A prime p of good reduction such that the Hecke operator Tp generates End0(J)
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− For all primes � that are not of potentially good reduction, the local height functions X(Q�) →
Ker(NS(J) → NS(X))∗Qp

, computed using Theorem 3.2 (see § 3.5.3)
− A starting precision n
− A height bound B

Output: An approximation to a finite set containing the set of points X(Qp)2, computed to
precision n′ ≤ n or FAIL

(i) Compute the set X(Q)known of points in X(Q) with height bounded by B.
(ii) Compute an integral symplectic basis for H1

dR(XQ) or return FAIL.
(iii) Compute the action of Frobenius on H1

dR(XQp) using Tuitman’s algorithm [Tui16, Tui17].
Use the Eichler–Shimura relation to compute the matrix of the action of the Hecke operator
Tp on H1

dR(XQp).
(iv) Compute a splitting of the Hodge filtration that is equivariant for the action of End(J) in

the sense of § 3.3.
(v) Compute the matrices of a basis Z1, . . . , ZrkNS(J)−1 of Ker

(
NS(J) → NS(X)

)
acting on

H1
dR(XQp) (see § 3.5.2).

(vi) Let A := ∅. For each Zi, compute the associated heights:
(a) For each affine patch, do the following:

(i) Compute the functions λFil from (3.1) using [BDM+19, § 4].
(ii) Compute the functions λφ from (3.1) using [BDM+19, § 5].

(b) Solve for the height pairing, either using a large enough supply of known rational points
P1, . . . , Pn on X, if possible, or by computing the Coleman–Gross height pairing on r
independent points in J(Q) (see § 3.5.4). If this is unsuccessful, return FAIL.

(c) Compute solutions of the function(s) coming from Zi or return FAIL if there has been
too much precision loss to determine these solutions.

(d) Check that the solutions are simple. If there is a non-simple solution corresponding
to a point in X(Q)known, return FAIL. Else, add to the set A the solutions that
(simultaneously) satisfy the(se) function(s).

(vii) Return A.

Remark 3.13. We assume that we know a priori that the Mordell–Weil rank of the Jacobian is
equal to the genus of the curve. For modular curves, by Gross, Zagier, Kolyvagin and Logachev
this amounts to checking that the associated eigenforms have analytic rank 1 (see, for example,
[DLF21, § 7]). For hyperelliptic curves, it is sometimes simpler to carry out a 2-descent.

Remark 3.14. Note that if the algorithm fails due to a loss of precision, it may be possible to rem-
edy this by increasing the starting precision. One place where increasing precision may not work is
if the p-adic logarithm does not induce an isomorphism J(Q) ⊗ Qp 	 H0(XQp , Ω

1)∨, even though
the rank of J(Q) is g. For the Atkin–Lehner quotients X+

0 (N), the weak Birch–Swinnerton-Dyer
conjecture implies that J(Q) always generates H0(XQp , Ω

1)∨ (see [DLF21, Lemma 7]). In gen-
eral, if r = g and the Zariski closure of J(Q) is J , then a conjecture of Waldschmidt [Wal11,
Conjecture 1] (an analogue of the Leopoldt conjecture for abelian varieties) implies that the
p-adic logarithm is always an isomorphism. In theory, if one knew that J gave a counterexample
to Waldschmidt’s conjecture, and r = g, then one could simply apply the Chabauty–Coleman
method. However, a priori it could happen that J gave a counterexample but there was no way
of verifying this by a computation to finite p-adic precision. Another place where increasing
precision will not help is if there are multiple roots in step (vi)(c). However, we only expect this
to happen for geometric reasons.
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One can have r > g for the curves X+
0 (N) with N prime, even though X+

0 (N)(Qp)2 is
always finite when the genus is greater than 1 [DLF21]. However, the smallest genus for which
this happens is g = 206 (with N = 5077), so the r = g hypothesis is not the main restriction to
the scope of our algorithms for this family of curves.

Remark 3.15. In the case when p is a prime of ordinary reduction for the Jacobian, one may
take the splitting of the Hodge filtration given by the unit root subspace, that is, the unit
root eigenspace of Frobenius φ acting on H1(XQp). Given a basis {η1, . . . , η2g} of H1(XQp),
where η1, . . . , ηg are holomorphic, a basis for the unit root eigenspace mod pn is given by
{(φ∗)nηg+1, . . . , (φ∗)nη2g}.
Remark 3.16. In this paper, we do not discuss algorithms for computing the input of the local
height functions as maps from Q�-points to Qp-linear functionals on Ker(NS(J) → NS(X)).
In § 5 we give examples where this function can be non-trivial, and where X(Q) can still be
determined using quadratic Chabauty. There are two procedures we illustrate for doing this. In
§ 5.4 we calculate regular semi-stable models at bad primes and have a sufficient supply of rational
points (and sufficiently simple dual graphs) to reconstruct the functions j� from Theorem 3.2
using evaluation of p-adic local heights at known rational points. In § 5.5, although we know a
regular semi-stable model ‘abstractly’, we do not know the relation between the stable model (at
the bad prime 17) and the model we use for p-adic calculations. This, together with the relative
paucity of known rational points, makes it infeasible to apply the first procedure. Instead, we use
extra information about the action of inertia on the stable model, together with Theorem 3.2,
to identify a subspace of line bundles in Ker(NS(J) → NS(X)) for which the associated local
heights vanish.

To further determine the subset of rational points X(Q) from the finite set of points produced
by our algorithm, we carry out the Mordell–Weil sieve. In practice it may happen (see below)
that X(Q) is returned by the algorithm, but this is typically not the case when X has genus 2.

3.5.1 Affine patches. Most of the examples discussed in § 5 are either hyperelliptic curves or
smooth plane quartics. As demonstrated in § 5.5, our code is sometimes able to treat more general
examples. Our implementation was designed to take as input a plane affine patch Y : Q(x, y) = 0
of a modular curve X/Q satisfying the requirements in § 2.1 and a prime p of good reduction.
It returns all rational points on X in affine residue disks where the lift of Frobenius constructed
in [Tui16, Tui17] is defined. Note that we do not require Y to be smooth, but we need Q to be
monic with p-integral coefficients.

We can sometimes find an affine patch Y having the convenient property that all rational
points on X must be among the points returned by running our algorithm on Y . If no such Y
is found, then we need to find two suitable affine patches such that every rational point on X
is contained in at least one patch. For smooth plane quartics, our implementation includes an
algorithm that automates this process for the convenience of the user. For other curves, this step
is left to the user.

3.5.2 The Néron–Severi classes Zi. Under the assumption that Tp generates the endomor-
phism ring of the Jacobian, which we made for convenience above, one may proceed precisely as
in [BDM+19, § 6.4] to determine a non-trivial class

Z ∈ Ker
(
NS(J) −→ NS(X)

)
.
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Indeed, the matrix Ap of the Hecke operator Tp acting on H1
dR(XQp) is easily determined from

the matrix of Frobenius Fp (which is already a byproduct of the algorithms for the local height
at p), by the Eichler–Shimura relation:

Tp = Fp + pF−1
p .

Under our assumption, the matrices of the classes Zi acting on H1
dR(XQp) may then be

computed as linear combinations of powers of Ap.

Remark 3.17. This is the only part of our algorithm specific to modular curves, since it relies on
the Eichler–Shimura relation. It should, however, be noted that this is mainly a matter of con-
venience adopted for the purpose of automation. More generally, for a smooth projective curve
X/Q satisfying the assumptions of § 2.1, one could find p-adic approximations of the action of
the non-trivial classes Zi on H1

dR(XQp) using just p-adic linear algebra. Indeed, the space of cor-
respondences which are symmetric under the Rosati involution and induce endomorphisms of
trace zero on the Tate module maps under the cycle class into the intersection of the Fil1 and
φ = p subspaces of

ker
(
∧2 H1

dR(XQp)
∪−→ H2

dR(XQp)
)
. (3.4)

In fact, by the Tate conjecture, the rank of the space of (crystalline) cohomology classes of
such correspondences over Fp is equal to the dimension of the φ = p subspace of (3.4), and by
the p-adic Lefschetz-(1, 1) theorem of Berthelot and Ogus [BO83, § 3.8] such a correspondence
over Fp lifts to Qp if and only if its cycle class lies in Fil1. Note that the dimension of the
space of correspondences symmetric under the Rosati involution need not equal the dimension
of ∧2H1

dR(XQp)
φ=p ∩ Fil1, as was erroneously claimed in [BDM+19, Lemma 4.5], since the rank

of the intersection of a Z-lattice with a Qp-subspace may be less than the dimension of the
intersection with the Qp-subspace it spans. However, if one knows a set of generators of a finite
index subgroup of End(J) in advance (e.g. using algorithms for rigorous computation of the
endomorphism algebra of the Jacobian [CMSV19])) then one can use this to compute the classes
of generators in cohomology.

Therefore the assumption that Tp generates the endomorphism algebra could be circumvented
in this step with a little work, although it is used in the computation of the local heights away
from p (see below). When the assumption is not satisfied, our implementation throws an error,
urging the user to try a different choice of prime p.

3.5.3 The local heights away from p. This step requires an explicit knowledge of a semi-stable
model of the modular curve X, as well as a description of the action of Zi on the concomitant
cohomological structures in order to be able to apply Theorem 3.2. It is clear that a full automa-
tion of this step, starting from a set of defining equations for X, falls outside the scope of our
implementation.

Semi-stable models for modular curves are known in many cases (see, for instance, the recent
work of Edixhoven and Parent [EP21]). In practice, one can also often use the SageMath toolbox
MCLF3 due to Rüth and Wewers to compute such models. The main advantage of having computed
the Zi in § 3.5.2 as combinations of powers of Tp is that this makes it easier to compute the
quantities appearing in Theorem 3.2. Even though we see no way to fully automate this step,
we hope to convince the reader of its practicality by working it out for the genus 2 curves C188

and C161 in Examples 5.18 and 5.19.

3 https://github.com/MCLF/mclf

1127

https://doi.org/10.1112/S0010437X23007170 Published online by Cambridge University Press

https://github.com/MCLF/mclf
https://doi.org/10.1112/S0010437X23007170


J. S. Balakrishnan et al.

3.5.4 The global height pairing. If there are not sufficiently many rational points on the
curve to solve for the height pairing, we instead compute the local heights hv in the sense of
Coleman and Gross (see § 3.3.1). For hyperelliptic curves X/Qp of odd degree, hp(D1, D2) can
be computed using an algorithm due to Balakrishnan and Besser [BB12, BB21]. Based on earlier
SageMath code due to Balakrishnan, we have implemented this in Magma for divisors D1 and
D2 that split over Qp, have support contained in disjoint residue disks, and for which no points
in the support reduce to Weierstrass points mod p. To compute the local heights h� for � �= p,
we rely on Magma’s implementation of an algorithm for local canonical heights on hyperelliptic
curves described by Holmes and Müller [Hol12, Mül14]. An algorithm for general curves was
given by van Bommel, Holmes and Müller [vBHM20].

To solve for the height pairing, we need to find representatives for r independent points in
J(Q) that satisfy the assumptions mentioned above. Our implementation is currently restricted
to genus 2 curves, since this step was only necessary for such curves, but a generalisation to
higher-genus hyperelliptic curves would be straightforward.

Remark 3.18. The code is currently restricted to the base field K = Q. To extend it to more
general number fields, one would need to combine these algorithms with those used in [BD18]
for imaginary quadratic fields in certain cases, or with those in [BBBM21] for general number
fields.

4. Precision analysis

In this section we bound the loss of absolute p-adic precision that may occur in our computations
by bounding the valuations of the error terms. We also estimate the valuations of the power series
expansion of the quadratic Chabauty function ρ and use this to bound the precision of its roots.

We retain the notation used in the previous sections. Recall from (2.5) that ρ = h − hp,
where:

− h is the global p-adic height defined in (2.4);
− hp is the local component of h, discussed in § 2.2.

By (3.2), the local height hp satisfies

hp(x) = γφ − γFil − βᵀ
φ · s1(αφ) − βᵀ

Fil · s2(αφ),

where the Hodge filtration of the filtered φ-module M(x) :=
(
AZ(b, x) ⊗Qp Bcrys

)GQp discussed
in § 2.2 is encoded by βFil and γFil. and αφ, βφ and γφ encode the Frobenius structure of M(x).

We will bound the loss of precision in the computation of the Hodge filtration in § 4.1, and
we do the same for the Frobenius structure in § 4.2. In § 4.3 we bound the precision loss for
the global height computation. In the final part of this section, § 4.4, we bound the valuation of
the coefficients of the expansion of ρ in a residue disk, and we discuss how this may be used to
provably determine the roots of ρ to a certain precision. This section relies heavily on [BDM+19,
§§ 4 and 5].

4.1 Hodge filtration
We first bound the loss of precision in steps (ii)–(v) of Algorithm 3.12. For simplicity, we restrict
to one class Z; the extension to rkNS(J) − 1 such classes is immediate. Let Y/Q be an affine
open subset of X, birational to a curve given by an equation that satisfies Assumption 3.10.
We may compute an integral, symplectic basis ω = (ω0, . . . , ω2g−1) of de Rham cohomology over
Q exactly, and extend this to an integral basis of H1

dR(Y ) via differentials (ω2g, . . . , ω2g+d−2)
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of the third kind. Using such a basis, we may compute the action of the Frobenius operator
F on H1

dR(X/Qp) to any desired p-adic precision using Tuitman’s algorithm [Tui16, Tui17],
from which we obtain the action of the Hecke operator Tp = F + pF−1 on H1

dR(X/Qp) by
the Eichler–Shimura relation. The inversion of F results in a finite and computable loss of
precision, which the code takes into account. This results in an algorithm that returns the
action of the correspondence Z correctly modulo pn for some n ≥ 1 that is returned by the
algorithm.

Using this, we may compute a matrix Λ with entries in H0(Y, ΩYQ
), of the form

Λ := −
⎛
⎝0 0 0

ω 0 0
η ωᵀZ 0

⎞
⎠

such that d + Λ extends to a flat connection on X. From this, we may compute γFil and βFil

from (3.1). We recall from [BDM+19, § 4] that the defining properties of η, the βFil and γFil are
as enumerated below. For x ∈ (X − Y )(Q), we let tx denote a parameter, and Ωx denote the
vector of formal integrals of the basis differentials ωi:

dΩx,i = ωi ∈ Q[[tx]].

(i) The first g entries of βFil are zero, and the last g are given by a vector bFil of constants
specified below.

(ii) η is a linear combination of ω2g, . . . , ω2g+d−2, unique by [BDM+19, Lemma 4.10], such that

dΩᵀ
xZΩx − η (4.1)

has vanishing residues at all x ∈ (X − Y )(Q).
(iii) bFil and γFil ∈ O(Y ) are the unique solutions to the equation γFil(b) = 0 and

gx + γFil − bᵀ
FilN

ᵀΩx − Ωᵀ
xZNNᵀΩx ∈ L[[tx]] (4.2)

for all x ∈ (X − Y )(Q), where gx ∈ Q[[tx]] is defined to be the formal integral of dΩᵀ
xZdΩx −

η and N is the block 2g × g matrix with top block zero and lower block a g × g identity
matrix.

Given our basis ω, we may calculate Ωx to any given tx-adic precision. Note that to solve (4.1),
we only need to know Ωx modulo tmx

x , where mx is the maximum of the order of the poles
of the entries of Ωx. Similarly, to solve for γFil and bFil in (4.2), we need only compute the
principal parts of Ωx and Ωᵀ

xZNNᵀΩx. Hence, given the above, we may calculate η, γFil and
bFil to precision pn−2ν , where ν is minus the minimum of the valuations of the tix coefficients of
the entries of Ωx, for i ≤ mx.

4.2 Frobenius-equivariant splitting
We now bound the loss of precision in the computation of the Frobenius-equivariant splitting

λφ(x) =

⎛
⎝ 1 0 0

αφ(b, x) 1 0
γφ(b, x) βᵀ

φ(b, x) 1

⎞
⎠

from (3.1) for x ∈ X(Qp)∩]U [, where U is an open of YFp on which we have an overconvergent
lift of Frobenius. This computation is the content of [BDM+19, § 5].
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The first step is to find the Frobenius structure on the filtered φ-module M(b). By [BDM+19,
§ 5.3.2], the inverse of the Frobenius structure is given by a matrix

G ∈ (H0( ]Y [ , j†OY ))(2g+2)×(2g+2)

such that
ΛφG + dG = GΛ, (4.3)

where j†OY is the overconvergent structure sheaf on the tube ]Y [.
Compared to [BDM+19, § 5.3.2], we give a slightly more detailed account of the algorithm to

find G. We first apply the algorithms in [Tui16, Tui17] (see [BT20, Algorithm 2.18]) to compute
the action of Frobenius on H1

rig(X ⊗ Qp) as

φ∗ω = Fω + df (4.4)

for a matrix F ∈ M2g(Qp) and a column vector f with entries in H0( ]Y [ , j†OY ), uniquely
determined by the condition that f(b0) = 0, where b0 is the Teichmüller point in the disk of b.

Next, we define a vector of functions g0 := −FᵀZf . Then the differential

ξ := (φ∗ωᵀ)Zf + (φ∗η − pη) − gᵀ
0ω (4.5)

is of the second kind, and therefore the reduction algorithms in H1
rig(Y ) from [Tui16, Tui17] can

be applied to compute a vector of constants c ∈ Q2g
p and a function H4 ∈ H0( ]Y [ , j†OY ) such

that
cᵀω + dH = ξ. (4.6)

Hence, the function g := g0 + c satisfies

dgᵀ = dfᵀZF and dH = ωᵀFᵀZf + dfᵀZf − gᵀω + φ∗η − pη,

and we normalise H by requiring that H(b0) = 0. The matrix

G =

⎛
⎝ 1 0 0

f F 0
H gᵀ p

⎞
⎠ (4.7)

then satisfies (4.3).

4.2.1 Frobenius-equivariant splitting for Teichmüller points. Suppose that x0 ∈ X(Qp)∩]U [
is a Teichmüller point. As described in [BDM+19, § 5.3.2], the Frobenius-equivariant splitting of
M(x0) is given by

λφ(x0) =

⎛
⎜⎜⎝

1 0 0
(I − F )−1f 1 0

1
1 − p

(
gᵀ(I − F )−1f + H

)
gᵀ(F − p)−1 1

⎞
⎟⎟⎠ (x0). (4.8)

The loss of precision in the computation of f and F is estimated in [Tui17]. Hence, it is easy to
bound the precision loss in the computation of λφ(x0) using the following result.

Proposition 4.1. Suppose that the entries of the matrix G and a point P ∈ X(Qp)∩]U [ are
accurate to n digits of precision. Then G(P ) is also accurate to n digits of precision.

4 The function H is denoted h in [BDM+19], but we chose a different notation to avoid confusion with the global
height, which is also denoted by h.
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Our proof of Proposition 4.1 is somewhat similar to but more involved than the proofs
in [BT20, § 4], where the loss of precision in the evaluation of f and of single Coleman integrals
is estimated. We may expand

ξ =
∑
j∈Z

(dx−1∑
k=0

wj,k(x)
r(x)j

b0
k

)
dx

r
. (4.9)

The hardest part of the proof of Proposition 4.1 is to find lower bounds on the valuation of
the coefficients wj,k, which we now describe. Let e0 (respectively, e∞) be the maximum of the
ramification indices of the map x : X → P1 with respect to our chosen model at points lying in
affine (resp., infinite) disks.

Lemma 4.2. There is a constant κ such that for all j, k we have

ordp(wjk) ≥
⎧⎨
⎩
⌊

j

p

⌋
+ 1 − logp(je0) + κ, j �= 0,

κ, j = 0.
(4.10)

Proof. Looking at the constituent parts of (4.5), we start with (φ∗ωᵀ)Zf . We write

(φ∗ωᵀ)i =
∑
j1∈Z

(dx−1∑
k1=0

d
(i)
j1,k1

(x)

rj1
b0
k1

)
dx

r
.

Then ordp(d
(i)
j1,k1

) ≥ �j1/p� + 1 by [Tui17, Proof of Proposition 4.9]. We have

fi = fi,0 + fi,∞ + fi,end,

where fi,0, fi,∞ and fi,end correspond to the three reduction steps (2), (3) and (4) in the reduction
algorithm from [Tui17], summarised in [BT20, Algorithm 2.18]. By (1), (3) and (4) of [BT20],
there are μ1, λ1 ≥ 0 such that

fi,0 =
∞∑

j2=1

(dx−1∑
k2=0

c
(i)
j2,k2

(x)

rj2
b0
k2

)
,

fi,∞ =
dx−1∑
k3=0

μ1∑
l=0

e
(i)
k3,lx

lb0
k3

, fi,end =
dx−1∑
k4=0

λ1∑
m=0

u
(i)
k4,mxmb0

k4
.

Equation (2) of [BT20] implies the lower bound ordp(c
(i)
j2,k2

) ≥ �j2/p� + 1 − logp�j2e0�. Let

κ(i) := min({0, ordp(e
(i)
k3,l)} ∪ {ordp(u

(i)
k4,m)}) and κ1 := min

i
{κ(i)}. (4.11)

Without loss of generality, the matrix Z has p-integral entries. Hence, every (Zf)i is of the form

(Zf)i =
∞∑

j2=0

dx−1∑
k2=0

g
(i)
j2,k2

(x)

rj2
b0
k2

(4.12)

where, for all k2, we have

ordp(g
(i)
j2,k2

) ≥
⎧⎨
⎩
⌊

j2

p

⌋
+ 1 − logp�j2e0�, if j2 > 0,

κ1, if j2 = 0.
(4.13)
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Let us now consider, for each i,

(
φ∗ωᵀ)

i

(
Zf

)
i
=

∑
j1∈Z

(dx−1∑
k1=0

d
(i)
j1,k1

rj1
b0
k1

)( ∞∑
j2=0

dx−1∑
k2=0

g
(i)
j2,k2

rj2
b0
k2

)
dx

r

=
∑

j=j1+j2∈Z,j1∈Z,j2≥0

1
rj

( ∑
k=k1+k2,ki∈{0,...,dx−1}

(
d

(i)
j1,k1

g
(i)
j2,k2

)
b0
k

)
dx

r

=:
∑
j∈Z

(
1
rj

dx−1∑
k=1

τjkb
0
k

)
dx

r
.

We distinguish two cases. If j2 > 0 then

ordp(d
(i)
j1,k1

g
(i)
j2,k2

) ≥
⌊

j1

p

⌋
+ 1 +

⌊
j2

p

⌋
+ 1 − logp(j2e0) ≥

⌊
j

p

⌋
+ 1 − logp((j − 1)e0). (4.14)

If j2 = 0, then ordp(d
(i)
j1,k1

g
(i)
j2,k2

) ≥ �j1/p� + 1 + κ1. Together, these yield

ordp(τjk) ≥
⌊

j

p

⌋
+ 1 − logp((j − 1)e0) + κ1. (4.15)

The next term to consider in (4.5) is φ∗η − pη, where η is constructed in [BDM+19, § 4]. Let
κ2 denote the p-adic valuation of the vector of coefficients of η in terms of the basis differentials
ω2g, . . . , ω2g+2−d (see [BDM+19, § 4.1]). Write

φ∗η − pη =
∑
j∈Z

(dx−1∑
k=0

sjk(x)
rj

b0
k

)
dx

r
.

Then the sjk satisfy ordp(sjk) ≥ κ2 + �j/p� + 1 if j �= 0 and ordp(s0k) ≥ κ2 + 1, so

ordp(sjk) ≥ κ2 +
⌊

j

p

⌋
+ 1 for all j. (4.16)

For the final summand gᵀ
0ω in (4.5) note that since F has p-integral entries, every (FᵀZf)i

has an expansion as in (4.12). Because ωi is integral for all i, the lower bounds in (4.13) remain
valid for gᵀ

0ω. The proof of Lemma 4.2 follows from this and from (4.14) and (4.15) upon setting
κ = min{κ1, κ2}. �

We now estimate the precision loss that can occur during the application of the reduction
algorithm from [Tui17] to the differential ξ. Our proof is similar to the proof of [Tui17, Prop 4.9],
which estimates the precision loss in the reduction of F ∗(ωi). Suppose that ξ is correct to n
digits of p-adic precision. First consider terms in (4.9) with j > 0. It follows from (4.10) that
j − p logp(je0) ≤ pm − pκ (note that κ ≤ 0). By [Tui17, Proposition 3.7], the precision loss at
pole order j during the reduction at finite points is at most �logp(jmaxe0)�, where jmax is the
largest integer j such that j − p logp(je0) ≤ pn − pκ. As in the proof of [Tui17, Proposition 4.9],
this might introduce small poles above ∞, but by the same reasoning as in [Tui17], the reduction
of these poles leads to a loss of precision bounded by �logp(−(ord∞W−1) + 1)e∞�. We set

g1(n) := �logp(jmaxe0)� + �logp(−(ord∞W−1) + 1)e∞�.
If we write

ξ =
(dx−1∑

i=0

αi(x, x−1)b∞i

)
dx

r
and m∞ = −min

i
{ord∞αi − deg(r) + 1},
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then the loss of precision during the reductions above infinity (where j ≤ 0) is bounded by
g2 := �logp(m∞e∞)�.

Hence, we have established the following lemma.

Lemma 4.3. Suppose that ξ is correct to n digits of precision. Then c and H are correct to
n − max{g1(n), g2} digits of precision.

Proof of Proposition 4.1. Similar to the fi, we may decompose H as H = H0 + H∞ + Hend,
corresponding to steps (2), (3) and (4), respectively, in [BT20, Algorithm 2.18]. By the above,
the reduction above finite points introduces a denominator of valuation at most logp(je0) for
pole order j, therefore we have

H0 =
∑
j≥1

dx−1∑
k=0

cjk(x)
rj

b0
k, where ordp(cjk) ≥

⌊
j

p

⌋
− 2 logp(je0) + κ. (4.17)

Recall that the matrix G is defined in (4.7). There is no loss of precision when evaluat-
ing f(P ) by [BT20, Proposition 4.5]. By our assumption that F and Z are p-integral, there
is no precision loss when evaluating g0(P ). Using the bounds (4.17), the proof of [BT20,
Proposition 4.5] shows that H(P ) is accurate to n digits of precision as well. Since g = g0 + c, the
proposition follows. �

4.2.2 Frobenius-equivariant splitting for general points. For x ∈ X(Qp)∩]U [, not necessarily
Teichmüller, the Frobenius-equivariant splitting λφ(x) of M(x) is given by

⎛
⎜⎝

1 0 0∫ x0

x ω 1 0∫ x0

x η +
∫ x
x0

ωᵀZω
∫ x0

x ωᵀZ 1

⎞
⎟⎠ ·

⎛
⎜⎜⎝

1 0 0∫ b
b0

ω 1 0∫ b
b0

η +
∫ b
b0

ωᵀZω − ∫ b
b0

ωᵀZ 1

⎞
⎟⎟⎠ · λφ(x0), (4.18)

where x0 is the Teichmüller point in the disk of x. The first two matrices in (4.18) correspond
to parallel transport of Λ from x to x0 and from b0 to b, respectively.

For the local height hp(A(x)), we need the Frobenius-equivariant splitting λφ(x) both for
fixed x and for x varying inside a residue disk. We start by bounding the valuations of the
coefficients of power series expansions of the differentials in the parallel transport matrices of
Λ in terms of a local coordinate t at a fixed affine point y0 ∈ X(Qp)∩]U [. By assumption, the
entries of the expansions of ω and ωᵀZ all have integral coefficients, so their integrals have
entries whose ith coefficient has valuation − ≥ ordp(i). Therefore, we have

ω(t)ᵀZ
∫

ω(t) =
∑
i≥1

ait
i, where ordp(ai) ≥ −�logp(i)�. (4.19)

It follows that ∫ (
ω(t)ᵀZ

∫
ω(t)

)
=
∑
i≥1

bit
i, where ordp(bi) ≥ −2�logp(i)�. (4.20)

By construction, the coefficients of η in terms of ω2g, . . . , ω2g+d−2 are polynomials in x. Define
di(η) to be the valuation of the ith coefficient if i is smaller than the maximum of the degrees
of these coefficients and 0 otherwise. Then the ith coefficient of the integral of η has valuation
at least −ordp(i) − di(η). Hence, the ith coefficient of every expansion of the parallel transport
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matrix in t has valuation at least

ϕ(i) := −�logp(i)� + min{di(η),−�logp(i)�}. (4.21)

For definite parallel transport from y0 to another Qp-point y1 in the same residue disk, we
need to evaluate the integrals above. Suppose that y0, y1, and the coefficients of the expansions of
ω and η are correct to n digits of p-adic precision, and suppose that the expansions are truncated
modulo tl. Let

ν1 := 1 + min
i≥l

{i − �logp(i + 1)�} and ν2 := n + min
0≤i≤l−1

{i − �logp(i + 1)�}.

Then
∫ y1

y0
ωj and

∫ y1

y0
(Zω)j are correct to min{ν1, ν2} digits by [BT20, Proposition 4.1]. The proof

of [BT20, Proposition 4.1] requires that the differential we integrate has integral coefficients. A
modification of this proof yields that the integral

∫ y1

y0
η is correct to min{ν ′

1, ν2} digits, where
ν ′
1 = 1 + mini≥l{i − �logp(i + 1)� − di(η)}. A similar modification shows that the double integral∫ y1

y0
ωᵀZω is correct to min{ν ′′

1 , ν ′
2} digits, where ν ′′

1 = 1 + mini≥l{i − 2�logp(i + 1)�} and

ν ′
2 = n − �logp(n)� + min

0≤i≤l−1
{1 − �logp(i + 1)�}.

Hence, we obtain the following lemma.

Lemma 4.4. The parallel transport matrix from y0 to y1 is correct to min{ν ′
1, ν

′′
2 , ν ′

2} digits of
precision.

Using (4.18), we can finally bound the loss of precision in the computation of λφ(x) for fixed
points x ∈ X(Qp)∩]U [ by combining Lemma 4.4 and Proposition 4.1.

4.3 Global heights
We now discuss the possible precision loss in the computation of the global height h. In step
(vi(b)) of Algorithm 3.12 we solve for d1, . . . , dg such that

h =
∑

i

diΨi (4.22)

in terms of a basis {Ψi} of bilinear pairings on H0(XQp , Ω
1)∨ by evaluating h and the Ψi. Recall

that our method for determining the coefficients depends on whether there are sufficiently many
rational points on X in the sense of § 3.3. If this is the case, meaning that we can use a basis
consisting of π(AZ(b, x)) for rational points x ∈ X(Q)∩]U [, then we need to compute hp(AZ(b, z)
and π(AZ(b, x)), and then apply simple linear algebra. The precision loss in the computation
hp(AZ(b, x)) has already been bounded and π(AZ(b, x)) can be obtained directly from the same
data (see [BBB+21, Equation (41)]). The loss of precision in the linear algebra computations is
easy to detect in practice, so we do not bound it explicitly here.

In the other case, the basis Ψi is given in terms of products of abelian integrals. As mentioned
above, the loss of precision in their computation is estimated in [BT20]. It remains to discuss
precision loss in the computation of Coleman–Gross local heights hp(D1, D2), where D1, D2 are
divisors in Div0(X)(Qp) for X a hyperelliptic curve subject to the hypotheses of Algorithm 3.4
(see [BB12, § 6.2] for further details). Choosing ω in step (1) can be done up to the precision of
the points in the support of the divisor D1. To compute Ψ(ω) and ωD1 to O(pn) in step (2) (see
§ 5.2 and § 6.2.3 of [BB12]): one needs to compute the local coordinates (x(t), y(t)) at infinity,
with x(t) to precision t2(2g−1) and y(t) to precision t2g−1, where these t-adic estimates are made
based on the maximal pole order in the basis of H1

dR(X). Step (4) proceeds similarly to this step
as well.
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In step (5), the tiny integrals are computed as in [BB12, § 6]. In previous steps, we wrote Ψ(α)
and Ψ(β) as Qp-linear combinations of the basis elements of H1

dR(X), up to precision O(pn).
Note that the hypothesis that p > 2g − 1 is to ensure that the cup product matrix has entries
that are p-integral, so no precision loss comes from the cup product matrix.

Finally, for
∑

A∈X(Cp) ResA

(
α
∫

β
)
, we consider the cases of A a non-Weierstrass point (where

we describe the computation in the annulus of A) versus A Weierstrass (where we have just one
contribution, at the Weierstrass point). If A �= (0, 0) is a Weierstrass point, we compute the local
coordinate (x(t), y(t)) at A to precision t2pn−p−1 (see the corrected Proposition 6.5 in [BB21])
so that ResA(α

∫
β) is computed to n digits of p-adic precision.

Now we consider the non-Weierstrass poles of α. For the annulus of a non-Weierstrass pole A,
the generic situation is handled by [BB12, Corollary 6.4]. By [BB12, Remark 4.10], we consider
all A ∈ {Pi, Qj}i,j where x(Pi) corresponds to a root of an irreducible factor of xp − x(P ) (and
similarly where x(Qj) corresponds to a root of an irreducible factor of xp − x(Q)). For these i, j,
we compute

∫ Pi

P β and
∫ Qj

Q β and trace down to Qp. We suppose P ∈ X(Qp) has precision O(pn).
Fix m and suppose β is computed to tdim at Pi, where di = [Qp(Pi) : Qp]. Let πi be a uniformiser
of Qp(Pi). Note that P is known to din πi-adic digits, and suppose that Pi is known to ni πi-adic
digits. Then the πi-adic precision of

∫ Pi

P β is at least min{ni, din, �dim + 1� − logp(dim + 1)}.
We similarly repeat this for Q and the corresponding Qj . Hence,

∑
A ResA(α

∫
β), where the

sum is over all non-Weierstrass poles A of α, is correct to p-adic precision

min
i,j

{ni, din, �dim + 1� − logp(dim + 1), nj , djn, �djm + 1� − logp(djm + 1)},

where we consider the corresponding i, j for all Pi and all Qj .

4.4 Coefficients of the quadratic Chabauty function and root finding
The previous results of this section bound the loss of precision in the computation of the
quadratic Chabauty function ρ = h − hp. Let D ⊂ X(Qp)∩]U [ be a residue disk and let x0 be
the Teichmüller point in D. We now bound the valuations of the coefficients of the expansion of
ρ in D and show how to provably compute its roots to desired precision.

In our algorithm, we fix a point x1 ∈ D, and we compute the Frobenius-equivariant splitting
λφ(x) on D as a power series in a local coordinate t in x1 by first computing λφ(x1) from λφ(x0)
and then multiplying this by the parallel transport matrix from x1 to x. To bound the valuations
of the coefficients of the entries of λφ(x), we first compute

c1 := ordp(λφ(x1))

using Lemma 4.4. By the above, we find that the ith coefficient of every entry of the expansion of
λφ(x) has valuation at least ϕ(i) + c1. We use this to bound the valuations of the coefficients of
the local height hp. Recall from § 3.3 that we use a height with respect to an End(J)-equivariant
splitting of the Hodge filtration; let vspl be the smallest valuation of the coefficients of this
splitting in terms of our basis ω. We denote by ordp(γFil) the smallest valuation in the coefficients
of the rational function γFil, and we set

c2 := min{0, vspl, ordp(βFil), vspl + ordp(βFil)}.
Lemma 4.5. Let

hp(x(t)) =
∑
i≥0

hit
i

1135

https://doi.org/10.1112/S0010437X23007170 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007170


J. S. Balakrishnan et al.

be the expansion of hp on the residue disk D in the local parameter t. Then we have

ordp(hi) ≥ min{ordp(γFil), ϕ(i) + c2}. (4.23)

Proof. This follows from the discussion above and from (3.2), which expresses hp(x) in terms of
λFil(x) and λφ(x). �

We set c3 := mini{ordp(di)}, where the di are the coefficients in (4.22). Let i0 ≥ 0 be such
that

−�logp(i)� ≤ min
{

di(η),
⌊

ordp(βFil)
2

⌋
,

⌊
ordp(γFil) − c2

2

⌋}

for all i ≥ i0. Then we have ϕ(i) = −2�logp(i)� for all i ≥ i0. This proves the following
proposition.

Proposition 4.6. Let

ρ(t) =
∑
i≥0

ρit
i

be the expansion of the quadratic Chabauty function ρ = h − hp on D. If i ≥ i0, then we have

ordp(ρi) ≥ −2�logp(i)� + c1 + min{c2, c3}.
Together with Proposition 4.6, the following result allows us to provably determine the roots

of ρ to any desired precision.

Lemma 4.7. Suppose F (x) =
∑

i≥0 Fix
i ∈ Qp[[x]] is such that there are integers k, m, n satisfying

min{ordp(Fi) + i : i ≥ 0} = k

and

max{i ≥ 0 : ordp(Fi) + i = n} < m,

and furthermore that F has at most d roots in the closed disk {ordp(x) ≥ 1}. Then the roots
of F in the ball {ordp(x) ≥ 1} can be determined, with multiplicity, to precision (n − k)/d, by
computing F0, . . . , Fm−1 modulo pn.

Proof. By our assumptions, F (px) lies in pkZp[[x]] − pk+1Zp[[x]]. Hence, the power series G(x) :=
p−kF (px) lies in Zp[[x]] − pZp[[x]]. Furthermore, by our assumptions, for any α ∈ Zp, the positive
slopes of the Newton polygon of G(x + α) are uniquely determined by the first m coefficients. If
G(x) is congruent modulo pn−k to a polynomial H in Zp[x] with a root α ∈ Zp of multiplicity e,
then the valuation of the first e coefficients of G(x + α) must be at least n − k. Since G(x + α)
has degree ≤ m mod pn−k and has at least one coefficient of valuation zero, we deduce that the
Newton polygon of G(x + α) must contain a segment of slope at least (n − k)/d of length at
least e. �
Remark 4.8. In practice, we usually apply this with d = 1, by recentring and rescaling our power
series so that there is only one root in the ball {ordp(x) ≥ 1} (and because in practice the power
series do not typically have repeated roots). Hence, most loss of precision occurs from k being
large, rather than d.

5. Examples

In this section, we apply our techniques to compute the rational points on:

− the exceptional modular curve XS4(13) (see § 5.1);
− all curves X+

0 (N) of genus 2 and 3 for which N is prime and the rational points were not
previously known (see § 5.2);
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− two genus 2 curves of interest in Mazur’s Program B (see § 5.3);
− two genus 2 curves with Jacobian of GL2-type that have non-trivial local height contributions

away from p (see § 5.4);
− the non-split Cartan curve X+

ns(17) (see § 5.5).

For the computations, we used our Magma implementation. The code used for the examples, along
with log files, can be found in the Examples folder at [BDM+].

5.1 The exceptional curve XS4
(13)

Recall that for a prime � ≥ 5, any proper subgroup of GL2(F�) is conjugate to a subgroup
of a Borel subgroup, the normaliser of a Cartan subgroup, or an ‘exceptional’ subgroup with
projective image isomorphic to S4, A4, or A5. The field of definition of the modular curves
attached to the exceptional subgroups is the unique quadratic subfield Q(

√±�) of the cyclotomic
field Q(ζ�), with the exception of the curves XS4(�) for � ≡ ±3 (mod 8), which are defined
over Q. For such values of �, we would therefore like to determine XS4(�)(Q).

Serre [Ser72] shows by a monodromy argument that such tetrahedral modular curves have
no points defined over Q� when � is large enough, and in particular he obtains

XS4(�)(Q) = ∅, if � > 13.

The curves XS4(3) and XS4(5) are both of genus zero, and contain a unique rational cusp.
Ligozat [Lig77] showed that XS4(11) is an elliptic curve of conductor 112 whose Mordell–Weil
group is trivial, where the unique rational point is CM, corresponding to discriminant D = −3.
This leaves only the curve XS4(13), which has genus 3. In fact, this curve is the last remaining
modular curve of level 13n whose rational points have not been determined.

Using modular symbols algorithms, Banwait and Cremona [BC14] show that the curve
XS4(13) is a smooth plane quartic whose canonical model is given by

4x3y − 3x2y2 + 3xy3 − x3z + 16x2yz − 11xy2z

+ 5y3z + 3x2z2 + 9xyz2 + y2z2 + xz3 + 2yz3 = 0.

Furthermore, they exhibit the four rational points

{(1 : 3 : −2
)
,
(
0 : 0 : 1

)
,
(
0 : 1 : 0

)
,
(
1 : 0 : 0

)} ⊆ XS4(13)(Q),

where the rational point (0 : 0 : 1) corresponds to an elliptic curve with CM by the order of
discriminant D = −3, and the three other rational points correspond to non-CM elliptic curves
over Q with projective mod 13 image equal to S4, whose j-invariants are given by

j =
24 · 5 · 134 · 173

313
, j = −212 · 53 · 11 · 134

313
,

j =
218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929

513 · 6113
.

The Jacobian of XS4(13) is isogenous to that of X+
s (13), so it is absolutely simple and has

Mordell–Weil rank 3 over Q by the results of [BDM+19, § 6]. The curve has potential good
reduction at p = 13, as can be seen, for instance, using the Sage toolbox MCLF.
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We determine the set of rational points on the curve XS4(13) using quadratic Chabauty with
p = 11 for the affine patches

y4 + (18x + 9)y3 + (160x2 + 176x + 52)y2 + (560x3 + 832x2 + 384x + 48)y

+192x4 + 512x3 + 384x2 + 64x = 0

and

y4 + (9x + 9)y3 + (52x2 + 72x + 36)y2 + (48x3 + 240x2 + 208x + 64)y

+64x3 + 192x2 − 64x = 0.

The computation is analogous to the computation of X+
s (13)(Q) in [BDM+19]. The Hecke oper-

ator T11 generates the Hecke algebra, as can be verified, for instance, by checking the analogous
statement for X+

s (13). Hence, we may construct suitable cycles Z1, Z2 from T11 and its square,
respectively. The set of common zeros of the resulting quadratic Chabauty functions consists
precisely of the known rational points, so we obtain Theorem 1.1.

In order to solve for the height pairing, we use the four known rational points and the cycle
Z1, so the resulting function automatically vanishes there. However, since the cycles Z1 and Z2

are independent, and Z2 is not used to solve for the height, the vanishing of the resulting function
in the rational points provides a check for the correctness of our code.

Remark 5.1. Since the Jacobian of XS4(13) is isogenous to that of X+
s (13), even if there were

not enough rational points on XS4(13) to solve for the height pairing, one could instead solve
for it using X+

s (13).

5.2 The Atkin–Lehner quotients X+
0 (N)

For a positive integer N , consider the Atkin–Lehner involution wN acting on the modular curve
X0(N). Then the quotient

X+
0 (N) := X0(N)/〈wN 〉

is a smooth projective curve defined over Q whose non-cuspidal points classify unordered pairs
{E1, E2} of elliptic curves admitting an N -isogeny between them. The study of rational points on
these curves is also important in an ongoing research programme aiming to compute quadratic
points on the modular curves X0(N) (see, for instance, recent work of Box [Box21]). Among
the rational points, we distinguish between cusps, CM points and exceptional points, those which
are neither cusps nor CM points. The exceptional points correspond to quadratic Q-curves
without CM.

In this subsection we restrict to prime values N such that X+
0 (N) has genus 2 or 3.

Galbraith [Gal96] has computed models for all these curves (and many more) by finding relations
in the vector space spanned by the newforms of level N and weight 2 that are invariant under
wN . Up to conjugation, there is a unique such newform.

By work of Ogg, for prime level N , the curve X+
0 (N) has genus 2 if and only if

N ∈ {67, 73, 103, 107, 167, 191}. (5.1)

It has genus 3 if and only if

N ∈ {97, 109, 113, 127, 139, 149, 151, 179, 239}. (5.2)

Models for all these curves were communicated to us by Elkies; one can also find such models in
Galbraith’s thesis [Gal96] or by using the Magma command X0NQuotient.
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Via a search for small rational points, Galbraith [Gal99] found exceptional rational points on
X+

0 (N) for N = 73, 91, 103, 191 (genus 2) and N = 137, 311 (genus 4). The latter examples
disproved an earlier conjecture of Elkies that there are no exceptional rational points on non-
hyperelliptic X+

0 (N) for prime level N . In [Gal02], Galbraith also finds an exceptional point on
X+

0 (125) and conjectures that there are no further exceptional points on modular curves X+
0 (N)

of genus 2 ≤ g ≤ 5.
Together with [BBB+21] and [Gal96], our computations described below prove Theorem 1.3.

We first check that for level N as in (5.1) and (5.2) the curves X+
0 (N) satisfy the require-

ments to apply our algorithm. The Jacobian J+
0 (N) of X+

0 (N) has real multiplication over
Q, so the Picard number is at least g. Using Magma, we computed the L-function of the cor-
responding newforms to show that the analytic rank is g, so the work of Gross and Zagier
and of Kolyvagin and Logachev proves that the rank of J(Q) is exactly g. For the genus 2
examples, we also applied 2-descent on J+

0 (N), as implemented in Magma, as an independent
check.

The curves X+
0 (N) have good reduction away from N , but, in contrast to X+

ns(13) and
XS4(13), they do not have potentially good reduction at N . Nevertheless, the following result
implies that when applying quadratic Chabauty, there are no non-trivial contributions to the
height away from p.

Lemma 5.2. There is a regular semi-stable model X+
0 (N) of X+

0 (N) over ZN whose spe-
cial fibre has a unique irreducible component. In particular, the local height hN is trivial on
X+

0 (QN ).

Proof. If N = 2, 3 the result is readily checked. When N > 3 the Atkin–Lehner quotient of the
model X0(N) for X0(N) over SpecZ constructed by Deligne and Rapoport [DR73] is shown
by Xue [Xue09] to be regular and semi-stable. Its special fibre at N is a projective line, with
an ordinary double point for every conjugate pair of supersingular j-invariants in FN2\FN . It
follows from Theorem 3.2 that hN is trivial. �

Finally, we checked for all N in (5.1) and in (5.2) that the Jacobian is absolutely simple by
finding a prime q of good reduction such that JFq is absolutely simple, using the criterion of
Howe and Zhu [HZ02, Proposition 3].

5.2.1 Genus 2. In [BBB+21], the rational points on X+
0 (N) for N = 67, 73, 103 were

computed. Using a combination of quadratic Chabauty and the Mordell–Weil sieve, it is
shown there that X+

0 (67)(Q) contains no exceptional points and that the sets X+
0 (73)(Q)

and X+
0 (103)(Q) both contain one pair of exceptional points each, with respective j-invariants

(see [Gal99, Table 1])

j = (81450017206599109708140525 ± 14758692270140155157349165 · √−127)/274,

j = (35982263935929364331785036841779200 ± 669908635472124980731701532753920

·
√

5 · 577).

The remaining prime level genus 2 curves X+
0 (107), X+

0 (167) and X+
0 (191) are more chal-

lenging, because they do not have sufficiently many rational points in the sense of § 3.3 to solve
for the height pairing, so we need to compute heights between divisors. In all cases, the quadratic
Chabauty function ρ = h − hp has p-adic zeros that do not come from a rational point; to verify
this, we apply the Mordell–Weil sieve.
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Example 5.3. We discuss our computations for the example X := X+
0 (107) in some detail.

We look for a prime p of good reduction such that

− there is a unique Qp-rational Weierstrass disk, and it does not contain known rational points,
− the Hecke operator Tp generates the Hecke algebra, and
− p is suitable for the Mordell–Weil sieve.

For p = 61, the first two conditions are satisfied; moreover, we have

J(F229) 	 Z�(4 · 61)Z × Z�(4 · 61)Z,

and since J(F61) 	 Z/(31 · 151)Z has quite smooth order, 61 is a suitable prime. We now go
through the steps in Algorithm 3.12, applied to X.

Step (i). The model

y2 = −3x6 − 4x5 − 2x4 + 2x3 + 5x2 + 2x + 1 =: f(x),

of X has six small rational points of exponential height at most 1000, given by {(0,±1), (±1,±1)}.
It also has no Q61-adic points at infinity, so that we only need to run our algorithm for one affine
patch. We fix the base point b = (0,−1).

Steps (ii) and (iii). These are exactly as in [BDM+19].
Step (iv). We may use the unit root splitting, since p = 61 is ordinary (see Remark 3.15).
Step (v). Using step (iii), we find for

Z = Z1 = (Tr(T61) · I4 − 4T61)C−1 =

⎛
⎜⎜⎝

0 2/3 −2 4
−2/3 0 4 2

2 −4 0 0
−4 −2 0 0

⎞
⎟⎟⎠ , (5.3)

that
Z =

∑
i,j

Zijωi ⊗ ωj ∈ H1
dR(X/Q61) ⊗ H1

dR(X/Q61)

corresponds to a non-trivial cycle Z ∈ ker(NS(J) −→ NS(X)) where C is the standard symplectic
matrix of dimension 2g and ω is the basis found in step (ii).

Step (vi)(a). The Hodge filtration for Z is given by γFil = −4x − 4 and βFil = 0. After com-
puting the Frobenius structure, we obtain a power series expansion of the function x �→ h61(A(x))
on all residue disks of X(Q61), except for the disks at infinity and the unique Weierstrass disk
containing points that reduce to (31, 0).

Step (vi)(b). The points P, Q ∈ J(Q) with respective Mumford representations (x2 + x, 1)
and (x2 + 1, 2x − 1) generate a subgroup of J(Q) of index 2. To solve for the height pairing
via § 3.3.1, we need divisor representatives with support in distinct non-Weierstrass residue disks.
Let E be the degree 2 divisor on X cut out by the functions x2 + 1 and 2x − 1 and let E′ be its
image under the hyperelliptic involution. We set

D1 = (0, 1) + (−1, 1) − div0(x − 1), D′
1 = (0,−1) + (−1,−1) − div0(x − 7),

D2 = E − div0(x − 7), D′
2 = E′ − div0(x − 1).

Then we have h(P, Q) =
∑

v hv(D1, D2) and

h(P, P ) = −
∑

v

hv(D1, D
′
1), h(Q, Q) = −

∑
v

hv(D2, D
′
2).

The divisors above all split over Q61, so we can compute the height pairings h61(D1, D2),
h61(D1, D

′
1) and h61(D2, D

′
2), working on a monic odd-degree model over Q61. Using Magma’s
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implementation of the algorithm described in [Mül14], we also find∑
��=61

h�(D1, D
′
1) = −2 log61 2 + 2 log61 3 − log61 7,

∑
��=61

h�(D1, D2) = 2 log61 2 − 2 log61 3 + log61 7,

∑
��=61

h�(D2, D
′
2) = 3 log61 2 − log61 5,

and we conclude that
h = α00g00 + α01g01 + α11g11,

where

α00 = 58 · 61−1 + 19 + 2 · 61 + 43 · 612 + O(613),

α01 = 43 · 61−1 + 48 + 44 · 61 + 41 · 612 + O(613),

α11 = 49 · 61−1 + 13 + 55 · 61 + 2 · 612 + O(613),

and the gij are defined in (3.3).
Steps (vi)(c)–(vii). Combining the functions resulting from steps (vi)(a) and (vi)(b), we find

a power series expansion of the quadratic Chabauty function

ρ = h − h61 : X(Q61) → Q61

in all affine non-Weierstrass disks. By Lemma 5.2, the local heights h�(A(x)) are trivial for � �= 61,
so Υ = {0} and all rational points are zeros of ρ. We find that ρ indeed vanishes on the known
rational points, and that these are simple zeros of ρ.

In addition, ρ vanishes to multiplicity 1 on 82 points in X(Q61) that do not appear to be
rational. As described in § 3.4, these yield cosets of 612J(Q), and our implementation of the
Mordell–Weil sieve shows that the image of these cosets does not intersect the image of X(F229)
inside J(F229)/612J(F229). Hence, these additional zeros do not come from a rational point.

Recall that there are no Q61-rational points at infinity, so it only remains to show that there
are no rational points in the Weierstrass disk. To this end, we show that for

S = {41, 83, 641, 1697, 4057, 10853},
the image of the reduction of this disk does not intersect

im(βS, 2·61) ⊂
∏
v∈S

J(Fv)�MJ(Fv),

where M = 2#J(F61) and β2,61 :
∏

v∈S X(Fv) →
∏

v∈S J(Fv)/MJ(Fv) is induced by the
Abel–Jacobi map with respect to b and the canonical surjections.

This completes the proof that #X(Q) = 6. According to Galbraith [Gal96], these points are
all cusps or CM points.

Example 5.4. We were able to prove that the curve

X+
0 (167) : y2 = x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x − 3

only contains the four obvious rational points {(−1,±1),∞±} ; these are all cusps or CM by
Galbraith [Gal96]. In our computation, we use our quadratic Chabauty algorithm for p = 7 and
the Mordell–Weil sieve, following the same strategy as in Example 5.3. The verification that the
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additional solutions of the resulting p-adic functions are not rational was the most challenging
Mordell–Weil sieve computation we encountered in our work; it required the auxiliary integer
5 · 11 · 19 and the set of good primes

S = {3, 5, 19, 29, 31, 67, 263, 281, 283, 769, 1151, 2377, 3847, 4957, 67217}.
Example 5.5. A model for X+

0 (191) is given by

y2 = x6 + 2x4 + 2x3 + 5x2 − 6x + 1.

We use quadratic Chabauty for p = 31 together with the Mordell–Weil sieve exactly as above
to show that X+

0 (191)(Q) = {(0,±1), (2,±11),∞±}. Galbraith (see [Gal99, Table 1]) has shown
that (2,−11) is exceptional, with corresponding j-invariant

j = 2891249511562231668955764266428063102082570956800000

± 64074939271375546714155254091066566840131584000
√

61 · 229 · 145757.

5.2.2 Genus 3. We apply our algorithm to show that the rational points on the curves X+
0 (N)

for N as in (5.2) are precisely the ones already found by Galbraith. All curves in our list are
non-hyperelliptic and they have the convenient feature that they have sufficiently many rational
points, so no heights on divisors need to be computed. We always find two independent cycles in
ker(NS(J) −→ NS(X)), and, as expected, the common zero set of the corresponding functions
consists precisely of the rational points found by Galbraith.

Theorem 5.6. Let N be a prime such that X+
0 (N) has genus 3. Then the rational points on

X+
0 (N) are as below. In particular, all rational points are either cusps or CM points, with

discriminant Δ.

Example 5.7. A model for X+
0 (97) is given by

zx3 + (−y2 + zy)x2 + (−y3 − zy2 − z3)x + (zy3 + z2y2) = 0.

Using our algorithm for p = 5, we find that the rational points are as follows:

Δ Cusp −3 −4 −8 −11 −12 −16 −27 −43 −163

Point (1 : 0 : 0) (−2 : 1 : 1) (−1 : 0 : 1) (0 : 0 : 1) (0 : 1 : 0) (0 : −1 : 1) (1 : 0 : 1) (1 : 1 : 1) (−1 : 1 : 0) (5 : 3 : 2)

Example 5.8. A model for X+
0 (109) is given by

zx3 + (zy + z2)x2 + (−y3 − zy2 − z3)x + (−zy3 − 3z2y2 − 2z3y) = 0.

Using our algorithm for p = 29, we find that the rational points are as follows:

Δ Cusp −3 −4 −7 −12 −16 −27 −28 −43

Point (1 : 0 : 0) (−2 : 1 : 2) (0 : −2 : 1) (0 : −1 : 1) (0 : 1 : 0) (0 : 0 : 1) (−1 : −1 : 1) (−2 : 1 : 1) (1 : −1 : 1)

Example 5.9. A model for X+
0 (113) is given by

zx3 + (−y2 − z2)x2 + (y3 + z3)x + (−2z2y2 + z3y) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

Δ Cusp −4 −7 −8 −11 −16 −28 −163

Point (1 : 0 : 0) (2 : 2 : 1) (0 : 1 : 0) (1 : 1 : 1) (1 : 1 : 0) (0 : 0 : 1) (0 : 1 : 2) (5 : 3 : 1)
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Example 5.10. A model for X+
0 (127) is given by

zx3 + (−y2 − 3z2)x2 + (y3 − z2y + 4z3)x + (2zy3 − 3z2y2 + 3z3y − 2z4) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

Δ Cusp −3 −7 −12 −27 −28 −43 −67

Point (1 : 0 : 0) (5 : 3 : 2) (2 : 1 : 1) (1 : 1 : 0) (1 : 0 : 1) (0 : 1 : 1) (0 : 1 : 0) (4 : 2 : 1)

Example 5.11. A model for X+
0 (139) is given by

zx3 + (−y2 + zy)x2 + (−y3 − 2zy2 − 3z2y − z3)x + (y4 + zy3 + z2y2 + z3y) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

Δ Cusp −3 −8 −12 −19 −27 −43

Point (1 : 0 : 0) (4 : −3 : 1) (0 : 0 : 1) (0 : −1 : 1) (1 : −1 : 1) (1 : 0 : 1) (−1 : 0 : 1)

Example 5.12. A model for X+
0 (149) is given by

zx3 − y2x2 + (y3 + zy2 − 2z2y − z3)x + (−y4 + zy3 + z2y2 − z3y) = 0.

Using our algorithm for p = 11, we find that the rational points are as follows:

Δ Cusp −4 −7 −16 −19 −28 −67

Point (1 : 0 : 0) (−1 : 0 : 1) (0 : 1 : 1) (1 : 0 : 1) (0 : 0 : 1) (0 : −1 : 1) (2 : 2 : 1)

Example 5.13. A model for X+
0 (151) is given by

zx3 + (−2zy + z2)x2 + (−y3 + 2zy2)x + (−zy3 + 3z2y2 − z3y − 2z4) = 0.

Using our algorithm for p = 19, we find that the rational points are as follows:

Δ Cusp −3 −7 −12 −27 −28 −67 −163

Point (1 : 0 : 0) (−2 : −2 : 1) (0 : 1 : 0) (0 : 2 : 1) (1 : 1 : 1) (2 : 3 : 2) (1 : 0 : 1) (3 : 2 : 1)

Example 5.14. A model for X+
0 (179) is given by

zx3 + (−2zy − z2)x2 + (−y3 − zy2 − 2z2y − z3)x + (−zy3 + z3y) = 0.

Using our algorithm for p = 17, we find that the rational points are as follows:

Δ Cusp −7 −8 −11 −28 −163

Point (1 : 0 : 0) (0 : −1 : 1) (0 : 1 : 0) (0 : 0 : 1) (0 : 1 : 1) (−2 : 2 : 1)

Example 5.15. A model for X+
0 (239) is given by

zx3 + (−y2 + zy + z2)x2 + (−y3 − zy2 − z2y)x + (y4 + 3zy3 + 2z2y2 + z3y) = 0.

Using our algorithm for p = 13, we find that the rational points are as follows:

Δ Cusp −7 −19 −28 −43

Point (1 : 0 : 0) (−1 : 0 : 1) (0 : 0 : 1) (1 : −2 : 1) (1 : −1 : 1)

5.3 Genus 2 curves in Mazur’s Program B
In this section, we determine the rational points on two genus 2 curves that were commu-
nicated to us by David Zureick-Brown. They arise in the work of Rouse, Sutherland and
Zureick-Brown [RSZB22] on Mazur’s Program B as modular curves XH = X(25)/H, where
Γ(25) ⊂ H ⊂ GL2(Z5). Both curves have the following properties:

− They each have two rational points of exponential height at most 1000, good reduction away
from 5, and potentially good reduction at 5.
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− Their Jacobians have real multiplication, no rational torsion and Mordell–Weil rank 2; they
are both absolutely simple.

− The Galois action on the 2-torsion field is A5, which is too large for an elliptic curve Chabauty
computation.

We prove that #XH(Q) = 2 for each curve XH using quadratic Chabauty and the Mordell–Weil
sieve, similar to the computation of X+

0 (107)(Q) described in detail in Example 5.3.

Example 5.16. A suitable affine model of the curve X11 is given by

X11 : y2 = −35x6 + 310x5 − 675x4 + 750x3 − 450x2 + 140x − 15.

As in Example 5.3, we found the rather large prime p = 61 to be the most convenient one for
our computations. We determine the height pairing on the Jacobian using divisors as in § 3.3.1.
The quadratic Chabauty function ρ has 62 solutions in addition to the rational ones. Applying
the Mordell–Weil sieve with the primes 7, 29, 257 and 3457, we show that these are in fact not
rational; to prove non-existence of rational points in the unique Weierstrass disk, we sieve with
the primes 31, 61 and 191. This shows that X11(Q) = {(1,±5)}.
Example 5.17. We use the model

X15 : y2 = 5x6 − 50x4 − 150x3 + 25x2 + 90x + 25

with small rational points (0,±5). Again we run quadratic Chabauty for a fairly large prime,
namely p = 71, resulting in 78 additional zeros in X(Q71) which we show to be non-rational by
sieving with the primes 7, 43, 83, 101 and 1399. There is an additional final sieving to show there
are no rational points in the Weierstrass disk. We conclude that X15(Q) = {(0,±5)}.

5.4 Two curves with non-trivial local heights away from p
We compute the rational points on two genus 2 curves C188 and C161 considered in [FLS+01]. In
both cases, the Jacobian of CN is an optimal quotient of J0(N), so it has real multiplication and
Picard number 2. The Mordell–Weil ranks are both 2 as well, and the rational torsion subgroup
is trivial. In [FLS+01] empirical evidence was presented that the full conjecture of Birch and
Swinnerton-Dyer holds for both Jacobians. The curves themselves have good reduction away
from N .

So far, all curves whose rational points were computed via quadratic Chabauty had trivial
contributions away from p, except for the bielliptic examples in [BD18, BD21]. However, for
those examples it was possible to find the local contributions away from p by relating them
to local heights on the elliptic quotients. In the examples presented here, we compute these
contributions using Theorem 3.2. As discussed in § 3.1, we do not have a general algorithm
for the action induced by an endomorphism on étale cohomology. Nevertheless, we show below
that we can sometimes derive sufficient information from Theorem 3.2 to pin down the local
contributions precisely, by computing the local heights at p = 3 for the known rational points
and by exploiting the bilinearity of the global height pairing.

We include these examples to illustrate the practicality of our algorithms. However, we note
that the rational points on both curves can be computed by combining covering collections with
elliptic curve Chabauty. For C188 this was pointed out to us by Nils Bruin, and for C161 this
computation is due to Bars, González and Xarles [BGX21].

Example 5.18. We first consider the genus 2 curve

C188 : y2 = x5 − x4 + x3 + x2 − 2x + 1. (5.4)
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Over Z47, it has a regular semi-stable model whose special fibre is a curve of genus 1 with a node,
so h47 is trivial by Theorem 3.2. However, as we shall see, there are non-trivial contributions to
the local height at 2.

The integral points on C188 over Q(
√−3) were computed in [BBBM21, Example 6.5]. In the

present work, we show that

C188(Q) = {(0,±1), (1,±1), (−1,±1), (2,±5), (4,±29),∞}. (5.5)

For our computations, we use the good ordinary prime p = 3, the base point b = (1, 1), and a
cycle Z constructed from the Hecke operator T3 as in (5.3).

Recall from Example 3.3 that there is a regular semi-stable model over K = Q2(
3
√

2) and
that the corresponding metric graph Γreg is a line segment. The two genus 1 vertices w0 and w1

have pre-images

U0 := {P ∈ C188(Q2) : ord2(x(P )) > 0}, U1 := {P ∈ C188(Q2) : ord2(x(P )) = 0},
respectively. The set U2 := {P ∈ C188(Q2) : ord2(x(P )) < 0} maps to the midpoint w2 of the line
segment.

Since the function jΓ from Theorem 3.2 is affine linear and vanishes at w1, there is a constant
κ such that for all x ∈ C188(Q2) we have

h2(A(P )) = m(P ) · κ,

where

m(P ) =

⎧⎪⎨
⎪⎩

2, when x(P ) is divisible by 2,
0, when x(P ) is a 2-adic unit,
1, when x(P ) is non-integral.

One could determine κ by further computing the trace of Z acting on the cohomology of the
two genus 1 curves in the special fibre of the regular model described in Example 3.3. In this
example, we can determine κ by computing local heights at p, as there is a unique choice of κ
such that

h3(A(P )) + m(P ) · κ

satisfies the bilinearity properties of a global height. We can reduce the determination of κ
to linear algebra by computing h3(A(P )) and the values of a basis of the space of End0(J)-
equivariant bilinear pairings for 3 = g + 1 rational points P ∈ X(Q). We find κ = 4

3 logp(2).
To finish the computation of the rational points, we first solve for the zeros of the quadratic

Chabauty function ρ on the affine patch (5.4). In order to deal with the Weierstrass disk at
infinity, we move the point at infinity to (0, 0) and repeat the computation for the resulting
affine patch. We then apply the trick described in [BDM+19, § 5.5], changing the base point and
reducing the computation of the Frobenius structure to the computation of Coleman integrals.

We find that ρ vanishes on the known rational points and that it vanishes on 13 additional
Q3-points to precision 35. Upon noticing that J(F43) 	 (Z/54Z)2, we show that the reductions
of the corresponding cosets of 27J(Q) do not meet the image of C188(F43) in J(F43)/27J(F43).
This suffices to prove (5.5).

Example 5.19. The curve C161 has an affine equation

y2 = x6 + 2x4 + 6x3 + 17x2 + 18x + 5 = (x3 − 2x2 + 3x + 5)(x3 + 2x2 + 3x + 1).
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Figure 1. Dual graph of the minimal regular model of C161 at � = 7.

As discussed in [BGX21], this is in fact a model for the modular curve X∗
0 (161) =

X0(161)/〈w7, w23〉. The curve has ten small rational points

(
1
4 ,±209

64

)
, (−1,±1), (1,±7),

(
1
2 ,±35

8

)
,∞±. (5.6)

Anticipating the need to use the Mordell–Weil sieve, we choose the prime p = 29 and the cycle
Z corresponding to the endomorphism 4T29 − Tr(T29)I4.

The bad primes are 7 and 23. At both of these primes, the stable model has special fibre
a genus zero curve with two double points. One can show this, for instance, using the pro-
gram genus2reduction due to Qing Liu, now contained in Pari/GP or Sage. This (or Magma’s
RegularModel package) also shows that the model over Z23 defined by the given equation is
regular. Indeed, the 23-adic valuation of the discriminant is 2; therefore both singular points
(2, 0) and (11, 0) on the reduction modulo 23 define regular points on this model. Hence, the
given equation defines a regular semi-stable model over Z23, and all of the Q23 points lie on a
common irreducible component of a minimal regular model over Z23, so the height contribution
at this prime is zero by Theorem 3.2.

At 7, the discriminant has valuation 4, so the model defined by the given equation is not
regular. The singular points on the special fibre are (1, 0) and (4, 0). Blowing up once in both
of these yields a semi-stable regular model whose special fiber consists of two genus zero curves
w1 and w2 that do not intersect and another genus zero curve w0 which reduces to the smooth
locus of the stable model and which intersects w1 and w2 transversely in two points each, e1 and
e2 and e3 and e4, respectively. This information can also be obtained from genus2reduction or
RegularModel.

The corresponding dual graph is shown in Figure 1. We choose an orientation by designating
w0 as the source of e1 and e3 and as the target of e2 and e4. The points (1

4 ,±209
64 ), (−1,±1),∞±

listed in (5.6) reduce to the component w0. The points (1,±7) reduce to w1 and the points
(1
2 ,±35

8 ) reduce to w2. We may again use Theorem 3.2 to determine the possible values of h7(P ),
without computing the action of our chosen correspondence on H1(Γ). Note that in this case, the
homology H1(Γ) is generated by γ1 = e2 + e1 and γ2 = e3 + e4, respectively. Since Z is trace 0 on
H1(Γ), with respect to this basis, the corresponding endomorphism must be of the form

(
a b
c −a

)
.

Then, by Theorem 3.2, the measure μZ is simply given by (a/2)(γ1 − γ2), since both edges have
length 2. The image of X(Q7) in Γ consists of the three vertices w0, w1, and w2 and hence if we
take the basepoint (1

4 , 209
64 ) reducing to w0, the values of jΓ are simply a, 0,−a. We solve for a

using a 29-adic computation similar to the previous example, and we find that a = −4. Finally,
we apply the Mordell–Weil sieve with M = 4 · 293 and primes 199, 373, 463 to show that the only
29-adic points in the zero set of ρ modulo 293 are the rational points listed in (5.6). This proves
that these are indeed the only rational points on C161.
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5.5 The non-split Cartan modular curve X+
ns(17)

The modular curve
X := X+

ns(17)

attached to the normaliser of the non-split Cartan subgroup of level 17 has genus 6. By [DLF21,
§ 5.3], the rank of J+

ns(17)(Q) is also 6. The set of rational points X(Q) can be determined without
computing local heights at the bad prime 17, even though these contribute non-trivially when
determining X(Qp)2, by carefully choosing the correspondence Z.

The curve X has a semi-stable model X over W (F17)[�] with � = (1 + ζ17)1/9, where
W (F17) is the ring of Witt vectors of F17, described by Edixhoven and Parent [EP21]. Its
special fibre has two irreducible components

C1 : y2 = x(x9 + a), a ∈ F×
17,

C2 : z2 = w(w3 + b), b ∈ F×
17,

which have genus 4 and 1, respectively. They are smooth and intersect transversely at two points,
so that the Jacobian has toric rank 1. The inertia subgroup I ⊂ GQ17 acts via automorphisms on
the special fibre of this model, and the stabiliser of the set of irreducible components is contained
in μ18(F172) = 〈ζ〉, where the root of unity ζ18 = 1 acts on the components by

ζ : (x, y) �−→ (ζ4x, ζ2y),

ζ : (z, w) �−→ (ζ12z, ζ6w).

The resulting operator [ζ] on the cohomology of these curves has characteristic polynomial

det
(
1 − t[ζ] : H1(C1,Qp)

)
= (t2 + t + 1)(t6 + t3 + 1),

det
(
1 − t[ζ] : H1(C2,Qp)

)
= (t2 + t + 1).

Since the Hecke action on the cohomology of X is defined over Q, it must commute with the
action of inertia, and therefore the irreducible Hecke modules of the Jacobian up to isogeny must
be contained in the submodules coming from the toric part (dimension 1) and the parts where
the operator [ζ] is of order 3 (dimension 2) and of order 9 (dimension 3). By the work of Chen
and of Edixhoven and de Smit [Che00, EdS00] the Jacobian of X admits an isogeny to the new
part of the Jacobian of X+

0 (172) equivariant for the anaemic Hecke algebra. The new part of
the Jacobian of X+

0 (172) decomposes up to isogeny into irreducible factors M1 × M2 × M3 of
dimensions 1, 2, 3 respectively, where M1, M2, M3 are killed by the Hecke operators

M1 : (T2 + 1) = 0,

M2 : (T 2
2 + T2 − 3) = 0,

M3 : (T 3
2 − 3T2 + 1) = 0.

If we set M = (T2 + 1)(T 2
2 + T2 − 3), we find that Z = M and Z = 2M3 + 3M2 are non-trivial

trace zero correspondences that induce the zero endomorphisms on H1(Γ,Q) and the cohomology
of C2, so that Theorem 3.2 implies that μF = 0, and hence the 17-adic height vanishes:

h17(AZ(x)) = 0, for all x ∈ X(Q17).

In fact, starting from any generator T of the Hecke algebra (like T = T2 above), one easily
computes two linearly independent trace zero correspondences Z ∈ Z[T ] that act trivially on
the dual graph and the cohomology of C2, which therefore likewise ensures the triviality of the
associated 17-adic height.

1147

https://doi.org/10.1112/S0010437X23007170 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007170


J. S. Balakrishnan et al.

To put these observations into action, we choose p = 31 and use the model of X found by
Mercuri and Schoof [MS20, § 6] as an intersection of six quadrics in P5. Our strategy for finding
a suitable singular plane curve model largely follows [AAB+21]. To find a model with small coef-
ficients, we use the Magma function Genus6PlaneCurveModel, and then apply an automorphism
of P2 to ensure that there are two rational points at infinity (this speeds up the computation
of the Hodge filtration (see [BDM+19, § 4]) where one passes to a number field over which the
divisor at infinity splits completely). We obtain a singular plane curve model Q(x, y) = 0, where

5 · Q(x, y) = 5y6 +
(
24x + 12

)
y5 +

(− 495x2 − 543x − 153
)
y4

+
(− 1472x3 − 2814x2 − 1719x − 337

)
y3

+
(− 1686x4 − 4875x3 − 4761x2 − 1902x − 263

)
y2

+
(− 540x5 − 2082x4 − 2952x3 − 1875x2 − 535x − 56

)
y

+ 188x6 + 534x5 + 567x4 + 284x3 + 70x2 + 7x.

The fact that T31 generates the Hecke algebra can be checked from the LMFDB page for newforms
of weight 2, level 289, trivial character and Atkin–Lehner eigenvalue 1 [LMFDB21]. We compute
two correspondences Z ∈ Z[T31] as above, and obtain a pair of power series in each residue disk,
whose common zeros to precision O(3120) correspond to the rational points

{(−4
9 , 1

9

)
,
(−2

3 ,−1
3

)
,
(−1

2 , 1
2

)
, (0, 0), (−1, 0),∞1,∞2

} ⊂ X(Q),

where ∞1 and ∞2 are the points (1 : −1 : 0) and (1 : −1
5 : 0). Therefore, this must be the full set

of rational points X(Q). These were already found by Mercuri and Schoof [MS20, § 6]; they are
all CM points and the corresponding discriminants are −3,−7,−11,−12,−27,−28,−163. This
proves Theorem 1.2.

Remark 5.20. It would be interesting to use the techniques of this paper to compute the ratio-
nal points on X+

ns(19). Mercuri and Schoof [MS20, § 7] found a model for this curve as well.
Nevertheless, we were unable to find a plane affine equation for this curve and a prime p, satis-
fying Assumption 3.10, such that it is feasible to carry out Algorithm 3.12. Difficulties arose in
computing a basis of H1

dR(XQp) due to the large degrees of the field extensions we encountered
when applying the algorithms in [Tui17, § 3].
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CRM Proceedings and Lecture Notes, vol. 36 (American Mathematical Society, 2004),
13–25.

1149

https://doi.org/10.1112/S0010437X23007170 Published online by Cambridge University Press

https://arxiv.org/abs/2105.04811
https://doi.org/10.1016/j.exmath.2023.02.009
https://doi.org/10.1016/j.exmath.2023.02.009
http://math.bu.edu/people/jbala/cg_heights_errata.pdf
https://github.com/steffenmueller/QCMod
https://doi.org/10.1112/S0010437X23007170


J. S. Balakrishnan et al.

BMS21 A. Besser, J. S. Müller and P. Srinivasan, p-adic adelic metrics and Quadratic Chabauty I,
Preprint (2021), arXiv:2112.03873.

BO83 P. Berthelot and A. Ogus, F-isocrystals and de Rham cohomology I, Invent. Math. 72 (1983),
159–199.

BD19 A. Betts and N. Dogra, The local theory of unipotent Kummer maps and refined Selmer
schemes, Preprint (2019), arXiv:1909.05734v2.

BCP97 W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,
J. Symbolic Comput. 24 (1997), 235–265.

Box21 J. Box, Quadratic points on modular curves with infinite Mordell–Weil group, Math. Comp.
90 (2021), 321–343.

BS10 N. Bruin and M. Stoll, The Mordell–Weil sieve: proving non-existence of rational points on
curves, LMS J. Comput. Math. 13 (2010), 272–306.

CG89 R. F. Coleman and B. H. Gross, p-adic heights on curves, in Algebraic number theory, Adv.
Stud. Pure Math., vol. 17 (Academic Press, Boston, MA, 1989), 73–81.

Che00 I. Chen, On relations between Jacobians of certain modular curves, J. Algebra 231 (2000),
414–448.

CR91 T. Chinburg and R. Rumely, Well-adjusted models for curves over Dedekind rings, in Arith-
metic algebraic geometry, Progress in Mathematics, vol. 89 (Birkhäuser, Boston, MA, 1991),
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