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1. Introduction

In this note we shall deal with the enumeration of labelled trees of
given order and given height over a selected point.

An undirected graph is called a tree if it is connected and contains
no cycle. If we select any two vertices P and Q of a tree T, there is evidently
a uniquely determined path in T leading from P to Q. We shall call the
length of this path (i.e. the number of edges in the path) the distance of
P and Q in T and denote it by dT(P, Q). If a vertex P is distinguished as
the root of T, we define the height of T over P as the length of the longest
path in T starting from P; thus if hP(T) denotes the height of T over the
root P, we have

(1.1) hP(T) = max dT(P, Q).

Let us consider the set &~n of all possible trees with n given labelled
vertices Plt P2, • • •, Pn. According to a classical result of Cayley [1] if
tn denotes the number of elements of ^"B, we have

(1.2) tn = n - »

Let tn(k) denote the number of those trees T e &'„ for which hP (T) ^ k.
Clearly

(1.3) ^(0) = 1, tn(0) = 0 for n > 1

and

(1.4) tn(k)=tn for k^n-\.

J. Riordan [2] has shown that the enumerator

oo * (b)

(1.5) G k ( z ±Gk(z)2rjr.x (A 0 , l , )
n = l (fl — l j l

1 Part of this work was done at the fifth Summer Research Institute of the Australian
Mathematical Society in Canberra. The first author is greatly indebted to the Australian
National University for its generous support of his visit to the Institute.
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satisfies the recursion formula

(1.6) Gk+1(x) = x exp Gk(x) (k = 0, 1, • • •)

with

(1.7) G0(x) = *;

the latter follows from (1.3) and (1.5).
From the recursion formula (1.6) one can determine tn(k) for any k

and n (0 ^, k ^ n—1). For instance

(1.8) G^x) = xe*, G2{x) = xe"*, etc.,

and thus

(1.9) tn(l) = 1 (n = 1, 2, • • •)

(1.10) U2) = 2

and generally for k ^ 1

(I 11) ~~ m +...+J, =n_i mAmJ. • • • mk\
 1 2 *-1

m ' s S (*= 1,2, • • • , * ) .

In these formulae 0° always means 1.
In view of (1.2) and (1.4) one has

(1.12) lim Gk(x) = 2 T~-—r, *"
fc-»oo n=l (n — 1) !

provided that the series on the right of (1.12) is convergent. But the series

converges for |*| ̂  \\e and represents the inverse function of

(1.14) x = ye~v.

This equation also follows from (1.6) and (1.12).
Riordan [2] obtained the formula (1.6) as a special case of a more

general result on enumerators of trees. In § 2 we shall give direct proofs
of (1.6) and (1.11).

In § 3 we shall investigate the asymptotic distribution of

(1.15) dn(k) = tn(k)-tn(k-l)r

i.e. the number of trees Ts^n having exact height k over Px . Let us
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mention that if D(T) denotes the diameter of T (i.e. the length of the
longest path in 7") one has evidently

(1.16) \D{T) ^ min hP({T) ^ hP({T) ^ max hPf(T) ^

Thus the study of the distribution of hP (T) for T e 3~n gives us also some
information on the distribution of D(T).

Our thanks are due to F. Harary and J. W. Moon for calling our at-
tention to the paper [2] of Riordan.

2. Proof of the recursion formula

To prove (1.6) we start from the formula

v̂  (n-l-p)l

J > = 1 {mp-l)\

(2.1) can be proved as follows: Let E denote the set of those points
of l e f , which are directly connected (i.e. connected by an edge) with
Px. If p is the number of elements of E then 1 rgl p 5S w—1 and denoting
these points by Qlt • • •, Qp, the points Q{ can be selected in ("p1) ways.
All the remaining n-l-p points Pm(Pm # Q,, 1 ^ / ^ p; Pm =£ PJ can
be classified into p classes which are defined as follows: Pm lies in the ;-th
class (/ = 1, 2, • • -,p) if the unique path from Px to Pm goes through Qj.
Clearly if the /-th class contains %—1 points, these points together with
Qt form a tree of order m, and height rgi k—1 over the basic point Q}.
Thus (2.1) follows.

Multiplication of (2.1) by xnj{n—1)! and summation for n = 1, 2, • • •
leads immediately to (1.6). (1.11) can be deduced from (1.6) by using several
times the power series of the exponential function. It can also be proved
directly as follows:

Let T e 3~n be a tree the height of which over the basic point Px is
^ k. Then all points of T different from Px can be classified into k classes,
the /-th class f̂y consisting of those points whose distance from Px is equal
to / (1 5g / ^ k). Let mt denote the number of points in the class ^i

(1 ^ / <k); then k

If the numbers mi are fixed, the distribution of the »—1 points in the classes
'Sf can be carried out in {n—\)\jmx\ • • • mk\ ways. Now evidently each
point in the class (4>1 is directly connected with P1 ( each point in ^ 2 is
directly connected with some point in (€x etc., each point in #,. is directly
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connected with some point of e8k_1. As the connections can be established
in ra™«ra™8 • • • m™\ different ways and by choosing these connections
the tree T is completely determined, (1.11) follows.

For dn(k) = tn(k)-tn{k-\) the proof of (1.11) gives

(* = 1. • • - , * ) .

If dn(k, m) denotes the number of trees T s&~n for which hP (T) = k
and in which there are exactly m points connected with Px by an edge
then (2.2) gives

1 (n—1)!
(2.3) dn{k,m) = — 2 mm*m?l

ml
2 . . m

ml „,,+ ••-+mt=n-l-m W2! • • • Vtk\

From here the following recursion formula can be deduced:

(2.4) dn(k, m) =

Similarly if tn(k, m) is the number of those trees T e$~n which have height
^ k over P1 and in which the number of points having distance k from Px

equals m, then

(2.5) tn(k,m) = ±- 2 m ln~^ , < " -
and

2 Pmtn-m(k-l,P).

Thus putting
oo n—1 f th fft\

(2.7) /--»(*,«)= 2 2 T^TT35"""^
n=X m=0 \n — l ) '•

we have the recursion formula

(2.8) Ft(x, z) = Fh_x{x, xe>)

with F0(z, z) = z. We obtain

F^x, z) = xez, F2(x, z) = xe"", etc.,
hence

(2.9) Fk+1(x, z) = x exp Fft(a;, z)

further

(2.10) Ffc(!r, x) = Fk+1(x, 0) = (^(as).
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3. The asymptotic distribution of da(k)

We consider now the asymptotic distribution of dn[k) when n and k
are large. We shall make use of the generating function

(3-1) Gt(x)-G^(x) = 2 7 ^ 1 ^ "
n - l V ™ — l l •

where

(3.2) G0(x) = x, Gk{x) = x exp G^x) (k = 1, 2, • • •)

by (1.5) and (1.15). From (3.2) it is seen that Gk(z) — Gk_x{z) is an entire
function and hence

where C is any circular path with centre 0. For the radius of C we shall
take r = e~x; this is the largest positive value of r for which the sequence
Gk(r), k = 1, 2, • • • tends to a finite limit, namely lim,.,,^ G4(e

-1) = 1.
Moreover if k is of order y/n which is the case of principal interest then
the point e~x lies very close to a saddle point of the integrand.

As in (2.9), write for a fixed complex number £

(3.4) F0(C, z) = z,

(3.5) Fk(C, z) = £ exp FM(f , 2) (* = 1, 2, • • •;.

Thus Fk(C, z) is the &-th iterate of

(3.6) F(C, z) = Ce' (£ fixed)

and

(3-7) Gk(C) = Fk(£, £) = Fk+1(C, 0),

as in (2.10).
In the particular case of £ = erx, z = 1 is a fixed point with multiplier

1 of the function2 F{e~1, z) = ez~x; in fact F{e~x, 1) = 1, F'(e~x, 1) = 1.
The sequence

(3.8) yk = Fk(e-X, e~x) = Gh(erx), k = 0, 1, 2, • • •

satisfies

(3.9) r* = exp(yfc_1-l), k = 1, 2, • • •

and has an asymptotic expansion

• z = a is a fixed-point with multiplier j« of the function F(z) if .F(a) = a and F'(a) = fi.
If |/41 < 1, the fixed-point is called attractive. (Fatou [4], p. 186).
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(3-10) y i S i _ | + f ! ^ + ^ + . . . (^^co)

where c is a certain constant (see e.g. [3], Lemma 3, p. 247). For all other
values of f on the circle

F(C, z) has an attractive fixed-point2 co = «+»'» with multiplier w (|a>| < 1),
given by the equation

(3.11) w = C e" = e-
1+it+a.

These fixed-points lie on the curve

(3.12) u2+v2 = g2<"-D, u ^ 1

with

(3.13) tan (v+t) = vju = u~x (e*<u-U-u?)i.

Thus to each £ = e~1+it there corresponds a unique o> = <y(£) = w+ia
on the curve (3.12). In the neighbourhood of t = 0, i.e. of u = 1, v = 0,
the curve of fixed-points has a double point and satisfies an expansion

u = 1 —
(3.14) w = y/t—%t+bt\ft-\ if t > 0

§ H - • • • if t < 0.

The fixed-points eo on (3.12) are attractive for all z on the circle
\z\ = e-1; in fact

(3.15)

for all \C\ = er1, Re z < 1 and the functions

F,(£ «), |C| = e~\ k = 0, 1, 2, • • •

form a normal family on the half plane Re z < 1.
By a more refined argument one can show that if we set

(3-16) Dk(C) = Gt(f )-«>(£)

then Dk(C)la>(C)k is uniformly bounded for all f = e-1+tf, — jr ^ t ^ rc
and ^ = 0, 1, 2, • • •, i.e.

(3.17) \Dk(C)\ < A\co(C)\k

for a suitable positive constant A. For we have

(3.18) Dk(C) = co(Z)[exp Z ? M ( f ) - l ] , A = 1, 2, • • •
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by (3.2), (3.11) and (3.16), and the sequence behaves very nearly like the
sequence D* given by the recursion

(3.19) D* = coD*_xl{\~lD*-x)-

For this sequence the statement can be verified by direct calculation since

2ft>
(3.20) Dt = -—— k_x , a=\\D*.

l+co+ • • • +(oK 1 a
We omit details.

For \t\ < ((log2 k)jk)2 the sequence Gk(C), k = 0,1, 2, • • • has a uniform
asymptotic expansion

« i_ sin T

where

(3.22) it =

and c is the constant in (3.10). The expansion becomes (3.10) for T = 0
and can be verified formally by setting

(3.23) Gk(e-^») ~ 1 - ^ + 0 2 ( T ) ^ + ^ + • • •

and using (3.2).
We obtain (for fixed t) by (3.22)

k+1(e w) S 1 - - ^ 3 - +02(r+Tlk)

log */*«
- 2 0 2 log kl&+d2lk

3+rd'2 log &/#«

exp (6 . -1+*/*, B eXp [ + ^ +

/ft*-e1e1 log kiP-e
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where values of the function 0< and their derivatives are taken at r. These
two expressions are equal by (3.2), hence comparing coefficients

(3.24) 0 , - T G ; = |02+2r2,

(3.25) T02-20.J = —0!02,

(3.26) _

With the initial conditions 0X(O) = 2, 02(O) = f, 03(O) = c, obtained from
(3.10), the equations (3.24) —(3.26) give

Bx(x) = 2rcotT, 02(T)
* sin2 T

0.W = e - 4 - + t r 2 ( 2 + l Q g — ) ' ie- (3-21)-sin T \ T /

Thus we only have to prove the existence of an expansion of the form
(3.23). This can be achieved by a step by step method such as the one
used in [3] for the proof of general expansions of the type (3.11); we omit
details. Actually we only need the expansion in the weaker form

(3.27) GJ.(e-1+") = 1— — T cot r+O (Ar1"2*)

for some <5 > 0 when \t\ ^ ((log2 k)/k)2.
We then get from (3.2), since

2T cot T = 0 (k •ys/\t\) = 0 (log2 k),

= exp (— ]

= 2r!(l+cot2T)/A:2+0(£-2-'5),

(3.28)

for |̂ |
Now from (3.17)

for |̂ | ^ ((log2 k)jky, by (3.14), hence by (3.3) and (3.28)
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(3 29) ( M ~ 1 ) ! 2m ^ Kl ««•<*'*)/*)'sm T

2ni k* J r sm2r
by (3.22), where

(3.30) $ = 2«/£2

and F is the path

T = (i— 1)M, — llog2 k ^ « ^ 0

T = (*+1)«, 0 ^ M ̂  J log2 A.
Hence

— 5 res —
1* , ± i T=spn \S1I

1 T

By using Stirling's formula we obtain from here

d (k) /27i\i °°
(3.31) pn(k) = -^-l~2\-) p 2 (21

for large n and A where /9 is given by (3.30).
This is the required asymptotic probability distribution. Note that

"-1 /2n\i f""1 °°
2 pn(k) ~ 2 — /32 2 {2pi7r*p-Zp*ni)e-l>''* dk
k=i \n I J o P=I

~ 27ii f°° f fi{-ty*n
Jo p=i

= 2** lim [ - f 2p*n2

€=0 L P=l

= h"m

= 47r-i f u2e-"*du= 1,
•'o

as required.
The maximum of the distribution curve is reached when in (3.31),

(d/dp)pn(k) = 0, i.e.

e - ^ v = 0.

Numerically £ (max) = 0.373138525 and

(3.32) k (max) = 2.31515436 y/n.
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4. Conclusion

The result of the previous section can be stated as follows:
Let <5f „ be the height over Px of a labelled random tree of order n

i.e. of a tree selected at random from the set of «"~2 elements of &~n with

uniform probability distribution. Then

- ~ < x) = H(x)

where
(4.2) H{x) = 4a;-37 V *

This can be transformed (e.g. by means of Poisson's formula) to the form

(4.3) H{x) = J e-"*x*(l-2v2x2)
V=—00

whence

(4.4) h{x) = H'(x) =

From (4.4) we can calculate all moments of the distribution function
H(x):

M, = f x'h{x)dx
(4.5) J°

= 2r( |s+l)(s-l)C(s) ( s > l )

where £(s) = 2m=i l/w*- I n particular we obtain for My, since

lim (s-l)C(s) = 1,

(4.6) Mx = V^-

Hence the expectation value of Jf „ is

(4.7) £p^ n ) ~ \fLnii = 2.50663V»

and the variance is

(4 g\ jyi — M M2 = — -
v • / 2 i 3
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