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ON REFLEXIVITY OF ALGEBRAS
MEHDI RADJABALIPOUR

For each natural number # we define &, to be the class of all weakly
closed algebras .2/ of (bounded linear) operators on a separable Hilbert
space H such that the lattice of invariant subspaces of &/™ and (alg lat
&)™ are the same. (If 4 is an operator, 4™ denotes the direct sum of n
copies of 4 ; if &7 is a collection of operators, /™ = {4A™: 4 € /}. Also,
alg lat &/ denotes the algebra of all operators leaving all invariant sub-
spaces of & invariant.) In the first section we show that % \Z. # 0.
In Section 2 we prove that every weakly closed algebra containing a
maximal abelian self adjoint algebra (m.a.s.a.) is in %3, and that #Z\%;
# @. It is also shown that certain algebras containing a m.a.s.a. are
necessarily reflexive. (Reflexive means &/ = alg lat.%7.) In Section 3 we
study the invariant operator ranges of certain algebras. For instance, we
show that if a weakly closed algebra &/ contains a m.a.s.a. and if every
invariant operator range of .27 is either closed or the range of a compact
operator, then &7 is reflexive. A similar result is proved for reductive
algebras. Also, it is shown that if.9/ is a weakly closed algebra containing
a m.a.s.a., then T € alg lat &/ if and only if T leaves every invariant
operator range of &7 invariant.

1. A classification of algebras. Throughout the paper by an algebra
we mean an algebra of (bounded linear) operators defined on a separable
Hilbert space H. All algebras contain the identity on H; the algebra of all
operators on H is denoted by B(H).

The lattice of all invariant subspaces of a collection .2/ of operators is
denoted by lat.Z, and the same notation is used for the lattice of ortho-
gonal projections whose ranges are elements of lat.?. If ¥ is any collec-
tion of subspaces (or projections), the algebra of all operators leaving all
elements of .# invariant is denoted by alg.#. Obviously alg.¥ is weakly
closed.

Definition 1. An algebra.&/ is called reflexive if &/ = alg lat.2/.

If » is a natural number and 4 is an operator on H, then A™ and H®™
denote the direct sum of % copies of 4 and H, respectively. If &7 is a set
of operators, & ™ denotes the set {4A®™: 4 ¢ /}.

LeEmMaA 1. ([20]) An operator A belongs to the weak closure of an algebra s/
if and only if lat A™ D lat. ™ for all natural numbers n. Consequently,
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two weakly closed algebras &/ and B are equal if and only if lat /™ =
lat Z™ for all n.

Let &/ be a weakly closed algebra. In view of Lemma 1,.2/ is non-
reflexive if there exists a natural number # such that lat. /™ s lat Z™,
where Z = alglat/.

Notation 1. For each positive integer #, let #, denote the class of all
weakly closed algebras &/ such that lat /™ = lat Z™, where Z =
alg lat 7.

Note that {#,} is a decreasing chain, and an algebra &/ is reflexive
if and only if & € N, #,.

Arveson [1] has asked whether lat &Z/® = lat (B(H))® implies
&/ = B(H), where ./ is assumed to be weakly closed. In our notation,
this means that whether an operator algebra &/ € %, with lat &/ =
{{0}, H} is reflexive. The problem seems to be very difficult, and a nega-
tive answer to this problem would imply a negative answer to the transi-
tive algebra problem. (We refer the reader to [1] or [18, page 196] for
more detail.) However, with less restriction on lat %/, we are able to
show that the answer is negative. In fact, we prove that every weakly
closed algebra containing a maximal abelian self-adjoint algebra (m.a.s.a.)
is of class #,; thus in view of [2, pages 504-509], %, contains a non-
reflexive algebra.

In the remainder of this section we show that #,\%, # 0, and in the
next section we prove that Z,\#. # 0. Note that %, is the class of all
weakly closed algebras.

Example 1. Let H be the direct sum of & copies of a Hilbert space K
for some k£ = 2. Let & be the algebra of all operators ((4;;)) such that

Ay =0fort>jand 4,; € B(K) forall4,j =1,2,...,k Leto/ be
the algebra consisting of all operators ((4:,)) € % such that 4;; =
Asy = ... = A Obviously Z = alglat.o/ #.o/. We show that &/ ¢ Z,.
Let_# be the set of all vectors of the form

x y

0 x

0 0

@l - JcH®H (x,y€K).
0 0

It is easy to see that.# is an invariant subspace of & » but not of Z®.
A similar argument shows that the nonreflexive algebras of [18,
Examples 9.27 and 9.28] are not in .
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Example 2. Let A be any operator on a finite-dimensional Hilbert space
such that the algebra generated by 4 and I is not reflexive. Such algebras
exist by a criterion due to [5], and we show that they are not in %,.
Assume the algebra .7 generated by 4 and I is not reflexive and, if
possible, & € A,. Let B € (alg lat &/)\&. Then lat (B ® B) D lat
(4 @ A). By the Deddens-Fillmore criterion the algebra generated by
A ® A and I @ I is reflexive and, therefore, contains B @ B. Hence
&/ contains B, a contradiction.

2. Algebras containing m.a.s.a. In this section we will show that
every weakly closed algebra containing a m.a.s.a. is necessarily in %,.
Using this fact and an example of Arveson [2, page 504] we show that
R\Z 7 # 0. We will also show that if a weakly closed algebra containing
a m.a.s.a. is nonreflexive, then there exists a projection P € lat.%/ such
that (I — P) lat.?/ contains a nontrivial Boolean algebra.

Notation 2. Letx € H™ and . # C H™. The vector x has a unique rep-
resentation of the formx; @ xo. ® ... ® x, withx, € H,7=1,2, ..., n.
The vectorsxy, xs, . . . , X, are called the first, the second, ..., the nth com-
ponent of x, respectively. Similarly, the set of all ith components of
vectors in.# is denoted by .#, and is called the ith component of .

LEMMA 2. Let A be a self-adjoint operator of multiplicity 1. Let 2 be
an invariant subspace of A™ for some fixed integer n = 2. Let 1 < n be
a fixed positive integer. Assume the ith component of no nonzero vector of 2
is gero. Then A™|2 and A|2, are unitarily equivalent. In particular, if
2" and 2" are complementary invariant subspaces of A™|2, then the
closures of 2/ and 2" are complementary invariant subspaces of A|2.,.
Conversely, if L and M are complementary invariant subspaces of A|2,,
then there exist complementary invariant subspaces 2' and 2" of A™|2
such that L and M are the closures of 2/ and 2, respectively.

Proof. Define Ci: 2 — Z,by Cix = x;. Obviously
C(A™IQD) = (4|2,)C..

Since C; is injective and has dense range, it follows that C; = KUy,
where Uy 2 — 2, is unitary and K;: 2, — 2, is a positive injective
operator. Thus

K[U(A™2)U X = (412)K,
and hence
4|2, = U(A®|2)U* [11, page 306].

In particular, C;F(8) = E(8)C, for all Borel sets 6, where F and E are
the resolutions of the identity for A™|2 and 4|Z,, respectively. There-
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fore, A™|Z is a self-adjoint operator of multiplicity 1. Now the rest of
the lemma follows from the fact that C; maps each F (6) 2 densely into
E(3)Z,, and that every invariant subspace of a self-adjoint operator of
multiplicity 1 is the range of some spectral projection.

LeEmMMA 3. Let A € B(H) be a self-adjoint operator of multiplicity 1.
For a fixed integer n 2 2, let & be an invariant subspace of A™ such that
no nonzero vector of P has some zero component. Then P, = ... = P,
and there exist closable operators G; from Py onto PPy (1 = 1,2, ...,
n — 1) such that

,@: {x@Gw@...@Gn_lx:ng’]},
the closures of Gy, . . . G,—1 are normal, and
Py =N {Domain (G;) :1=1,...,n — 1}.

Proof. Since 4™|% and A|_?71 are unitarily equivalent (Lemma 2),

it follows that #; = ... = £,, and there exists a unitary operator V:
Py — P such that

(A®|PYV = V(4]|P)).

Define C;: # — P, by Cax = x4(i = 1,...,n). Observe that
CV(A|P)) = CA™|P)V = (4|P))C.V.

This implies that C;V belongs to the commutant of AIg_’l, and thus
CV = fi(4|Py) and (C.V)! = g (4|P),

where f; and g; are Baire functionsforz = 1,2,...,n — 1. Thus
CdC)™! = V(G = flAIZ)a(dIP)) C (i) (A1P)

and hence C;(C1)~! has a normal closure (fl-gl)(Alﬁl),i =1,...,n—1:
(See (7, pages 1196-1200 and Problem 3 (page 1257)].) Let

Gi=Ciu1Cih2e=1,2,...,n— 1.
It is easy to see that
P={Cx®... ®@Cx:x¢P}
={y@Gy ®...0G1y:y € P}
It remains to show that #; = N ; Domain (G,). Let
M={x®CGx®... D G,1x:x € MN;Domain (G,)}.

Obviously # is closed, and &, and -#; have the same closures. Let
2 =M 0 P. In view of Lemma 2, the closures of £, and &, are com-

plementary orthogonal subspaces of g/Z 1, from which it follows that
2, = {0}. Thus 2 = {0} and A = £.
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The following is the key theorem.

THEOREM 1. Let &/ C B(H) be a weakly closed algebra containing a
m.a.s.a. Let M be an invariant subspace of /™ for some fixed integer
n = 2. Let NV be the span of all vectors in M having at least one zero com-
ponent, and assumeM is the smallest invariant subspace of ™ containing
P =M N Let T € B(H) be such that lat T™=D D lat e/ ™=V Then
N is an invariant subspace of /™ and T™, and

(a)jt=@i@</t7i,i=l,2,...,n,
(b)@1=...=ﬁnand(/i/_1=...=</17n.

Moreover, for every vector x € P, the vector T™x is the direct sum of a
vector y € &P and a vector z of the form

2=21@20..0ncNoN,0...0N,

Proof. Let A" be the set of all vectors x € .# whose first components
are zero and let

N = {x € H=D .0 ® x € N].
Obviously A" € lat./ ™ and hence
A" € latZ @0 C lat T¢D,
Thus
N € lat T™ N lat ™,
Similar arguments for other components show that
N € lat T® N lat ™.

In particular, & is an invariant subspace of 4™, where 4 is a self-
adjoint operator of multiplicity 1 which generates a m.a.s.a. in.%/. Note
that no nonzero vector of & has some zero component. Thus, by Lemma
3, P, =...=%,and, in view of the minimality of #, M, = ... = M,.

Let 2 = M4 ©N" and @' =N © N". The sets 2 and 2’ are in-
variant subspaces of 4™. Moreover, 2, = .#;and 2, =.#,. Consider-
ing the operators 4™|2 and 4|2, and the orthogonal subspaces 2’
and 2, one can apply Lemma 2 to see that./#; and &, are orthogonal
and span.#;. Similar results hold for other components of #,.#, and 2.

Letx = %1 @ ... @ x, € P. Since#, is an invariant subspace of T,
it follows that Tx, =1y, @z, wherey; € ,andz, €N, (G =1,2,.

n). It remains to show thaty; ® ... ® y, € Z.

For each B € alg lat%Z, define B# P, —>P by Btu = (I — P)Bu,
where P is the orthogonal projection from H onto N1. Let &/* be the
weakly closed algebra generated by {B* : B ¢ &/}. The algebra .&/* con-
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tains the m.a.s.a. generated by the self-adjoint operator A* = 4|,
and Z*® leaves & invariant. In view of Lemma 3, & is of the form

(U®Gu®...0® Gu:uc P =MN,;Domain (G,)}.

Fix 0 < 7 =< n — 1 and consider the closed subspace

2 ={u® Gu:u € Domain (G,)}

of H®, Obviously £ is an invariant subspace of &/#®. Hence B'Gu =
G Btu for all # € Domain (G;), and B* leaves Domain (G;) invariant. In
particular, every spectral subspace of the normal operator G, is an in-
variant subspace of .&/*.

We claim T* commutes with_G-i. Let D be an arbitrary invariant sub-
space of /. Obviously D ® A4, is an invariant subspace of . and hence
that of 7. Thus D is an invariant subspace of 7* and, therefore, lat 7 D
lat &/*. Thus every spectral subspace of G; is left invariant by 7%, and
hence T* leaves Domain (G;) invariant and T*Gu = G,T*u for all
u € Domain (G;). (See [7, pages 1258-1259].) Now since 7 is arbitrary, it
follows that T* leaves &, invariant and T*G;, = G, 7%, i =1,2, ...,
n — 1. We conclude that T#® leaves & invariant and hence y; @ ...
@y, = (Ttx) ® ... @ (I'tx,) € P.

THEOREM 2. Every weakly closed algebra containing ¢ m.a.s.a. is of
class R .

Proof. Let./ be an algebra containing a m.a.s.a., and let 7" € alg lat./.
Let.# be an arbitrary invariant subspace of 2™ and let.# be the span
of all vectors in.# having some zero component. Let # =.# © /. To
show that.# is an invariant subspace of T® it is enough, in view of
Theorem 1 and its proof, to show that 7®x € . for allx € &, Therefore,.
we can assume without loss of generality that.# is the smallest invariant
subspace of &/ » containing Z.

Since4 is the span of vectors of the form « ® 0 and 0 ® v, 4/, and A,
are closed and A = A1 @ A, Now, if x is an arbitrary vector in &,
it follows from Theorem 1 that 7®x is the direct sum of vectors in & and
N1 @A, Thus T®@x € A and the proof is complete.

The following example shows that Z,\%Z: # 0.

Example 3. We show that the nonreflexive algebra containing a m.a.s.a.
given by Arveson [2, pages 504-509] is in #\%:. We first review the
example.

Fix a function # € Cy”(R3) such that

f u@u(t — x)dt > 0
RS
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for all x € S% For x = (x4, x5, x3) € R?, define
ar(x) = u(x), bi(x) = (o2 + x2? + 252 — Du(x),

as(x) = xu(x), bo(x) = —2xiu(x),
as(x) = xou(x), bs(x) = —2xm(x),
as(x) = x3u(x), ba(x) = —2xu(x),

as(x) = x*u(x), bs(x) = u(x),
as(x) = x?u(x), bs(x) = u(x),
ar(x) = x32u(x), b1(x) = u(x).
Note thatay,. .., ar by, . . ., brare elements of L2(R3). In (2, Proposition
2.5.5] it is shown that there exists a linear space of operators on L?(R3)
denoted by & un(Z), and an operator T such that if the elements of
L(R3) are viewed as multiplications, then
(i) L°(R3)A i (Z)L*(R3) C A (Z) (2, page 488],
(ii) b1 @ ... ® by is perpendicular to Sa; @ ... ® Sa; for all

S E Mmln(z)y
(iii) lat 7 D lat & wn (Z),

@iv) b1 @ ... @ by is not perpendicular to Ta; @ ... ® Tas.

Let%Z be the algebra of all operators on L2(R?) @ L2(R3) which admit
a2 by 2 matrix representation

(A S
0 B/’
where 4, B belong to L”(R?) and S is in the weak closure of &y (2).

In view of (i), & is a weakly closed algebra containing the m.a.s.a.
L>(R3) ® L*(R?). Therefore, by Theorem 2,.%7 € %,. Let

r- (3 5)-

By (iii), T € alglat/; by (ii) and (iv) the smallest invariant subspace
M of /D containing the vector

(0) ®...0 (0) € [L’RY) ® L'R)|”
a1 aq
is not left invariant by 7. Hence &/ ¢ %#.

Question 1. Does the algebra .2/ in Example 3 belong to % ;?

Question 2. Is R, # X 3? What about %, and Z%,,, in general?
Note that we have so far shown that #; = #;and #, # R

In [18, page 197] it is asked whether the algebra generated by 4 @ 4
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is reflexive for every 4 € B(H). The following proposition shows that
this is not true for a general algebra.

PROPOSITION 1. Let o/ be a nonreflexive algebra in R,. Then ™ is not
reflexive. In particular, there exists an algebra /' € R, such that L P is
not reflexive.

Proof. Assume &/ € A, is not reflexive. Let 4 € (alg lat &)\
Obviously A™ ¢ /™, SinceZ € X,, A® € alg latZ ™, which implies
that.2/ ™ is nonreflexive. Now the algebra .2/ of Example 3 is an element
of #, and 7 ® is nonreflexive.

The following theorem is a generalization of a result of Radjavi-
Rosenthal [16], [18, Theorem 9.24].

THEOREM 3. Let &/ C B(H) be a weakly closed algebra containing
a m.a.s.a. Assume for no projection P € lat S the lattice

(I — P)lats/ = {(I — P)Q: Q € lat.o}

contains a nontrivial Boolean algebra. Then every invariant subspace M of
'™ is spanned by invariant subspaces of the form

™ (%1 @%@ ...@x,:%,€ M;forj € Jandx, =D esaix,; forid J},

where J C {1,2,...,n},{M;:j € J} Clate and the complex numbers
ayy are independent of x., . . . , %,. In particular, o s reflexive.

Proof. We prove the theorem by induction on #. The case n = 1 is
trivial. Assume every invariant subspace of &/ ® is spanned by invariant
subspaces of the form (*) forall # £ » — 1. Let.# be an invariant sub-
space of /™ and let £ C # be the orthogonal complement of all
invariant subspaces of the form (*) included in.#. Assume without loss
of generality that.# is the smallest invariant subspace of & ™ containing
2. We have to show that# = {0}. Let.4 be the span of all vectors in.#
having some zero component. By induction assumption,./ is spanned by
invariant subspaces of the form (*) and hence 2 C & =.# © . In
particular, # is the smallest invariant subspace of &/ ™ containing &.
Let P be the projection from H onto.4/; and let %/* be as in the proof of
Theorem 1. Let

P={x@®GCx®...0 Gix:x € P}

as in Lemma 3. We observed in the proof of Theorem 1 that 2/* leaves
the spectral subspaces of each G, invariant, and that D € lat &/* if and
only if D@ P € late/ and D C &;. (Note that the same notation is used
for a projection and its range.) Therefore, if & ; is the Boolean algebra of
all spectral projections of G, then

#: C (I—P)lat.
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Thus %, is trivial, which implies that G; = G is a multiple b, of the
identity on 2, = £°,. Hence

P=x@bx®... Db _1x:x € P

Since £ C £, it follows from the definition of £ that £ = {0} and
thus.# = {0}.

To show that %/ is reflexive, let T € alg lat.%/. Since every invariant
subspace of the form (*) is invariant under 7®, it follows that lat 7™ D
lat. 2™ for all n. Thus.2/ is reflexive and the proof is complete.

CoroLLARY 1. ([16], [18]) Let &/ be a weakly closed algebra containing
a m.a.s.a. Assume lat o is a chain. Then S is reflexive.

Proof. If P € lat2Z, then (I — P) lat.%/ is a chain and cannot contain
any nontrivial Boolean algebra.

An algebra &7 is qalled pre-reflexive if &/ N Z* = (lat ). In (2,
Theorem 2.1.8] it is shown that every ultraweakly closed algebra con-
taining a m.a.s.a. is pre-reflexive. Here we include an operator-theoretic
proof of this fact for weakly closed algebras.

COROLLARY 2. Every weakly closed algebra containing a m.a.s.a. s
pre-reflexive.

Proof. Let &/ be a weakly closed algebra which contains a m.a.s.a.
Obviously &7 N &* C (lat &)’. For the converse inclusion assume
T € (lat&/)’. Every invariant subspace of & is reduced by 7. We show
by induction on # that lat 7™ D lat.&/ ™. The statement is trivially true
for n = 1. Assume the statement is true for all £ < # — 1. Let.# be an
invariant subspace of &/ @, Let & and./ be as in Theorem 1, and assume
without loss of generality that.# is the smallest invariant subspace of
&/ ™ containing &. (Note that/4 € lat 7™ by the induction assumption.)
Let x € & be arbitrary. In view of Theorem 1, Tx; = 3, ® z;, 5, € £,
2, €N, (G=1,2,...,n)andy =9, ® . ® ... Dy, € P. Since N,
is a reducing invariant subspace of T and.A#"; 1 &, it follows thatz; = 0
(for all 7). Thus

TWy =y P CM

and hence.# is an invariant subspace of 7®.
Therefore, 7 € &/ and by a similar argument 7* € &. The proof is
complete.

CoRrOLLARY 3. ([1]) Let.s/ C B(H) be a weakly closed transitive algebra
containing a m.a.s.a. Then &/ = B(H). (This is also a special case of
Corollary 1.)

The proof follows from the following stronger corollary.
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COROLLARY 4. ([17], [21]) Let &/ be a weakly closed reductive algebra
containing a m.a.s.a. Then S/ is self-adjoint. (Note that &/ being reductive
means that every invariant subspace of o is reducing.)

Proof. Observe that
o* C (lat) =L NA* CA
which implies that.?/ is self-adjoint.

3. Invariant operator ranges of algebras.

Definition 2. By an operator range we mean a linear manifold which is
the range of a Hilbert-space operator. An invariant operator range of a
collection.2Z of operators in an operator range which is an invariant linear

manifold of &7

THEOREM 4. Let/ C B(H) be a weakly closed algebra of operators con-
taining a m.a.s.a., and let T € B(H). Then T € alg lat %/ if and only +f
T leaves every invariant operator range of &/ invariant.

Proof. Let KH be an invariant operator range of %/, where K is an
operator. Using polar decomposition, assume without loss of generality
0 = K £ I. By a result of Foias [10, page 892] there exists a positive
number N < 1 such that&ZE[t, 11H C E[\, 1] H for all ¢ € [0, 1], where
E is the resolution of the identity for K. Let T € alg lat /. Since the
closure of &/ E[t, 1]H is an invariant subspace of %/ and E[t, 1]H C
S E[t, 11H, it follows that

TE[t, 1]H C E[M, 1]H for all t € [0, 1].

LetH, = E0A,\"1H,:=1,2,3,.... ThenKH=H, ® H,® . ..,
and the operators 7 = T|KH and K* = K|KH are respectively of the
forms ((T'i;)), ((Ki;)), where T';; and K ;; have H; as their domains and
H, as their ranges. Moreover, T';; = Oforz = j + 3 and K,; = 0 for
i # j. (Note that KH € lat.2Z and that some H, may be trivial.) Let
J = {j: H; # {0}}; then ¥ £ K,; < N~ for j € J. Therefore,

[K T K | £ N9 T for 4,5 € J,4 <7+ 3,

and hence (K*)~1T*K* has a matrix representation ((K ‘7 ;K;,))
whose entries are majorized by the entries of the numerical matrix
((c4s)), where

o = {V““‘HTH ifi<j+3,
R (0] ifi =7+ 3.

Since ((cys)) defines a bounded operator, it follows from [13, Lemma 1]
that (K*)-'T*K* is bounded and hence 7' leaves the range of K*
invariant. This completes the proof of the theorem.
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THEOREM 5. Let € R, 1\ R, for some integer n = 2. Then there exists
an invariant subspace M of ™ such that M = P ® N, where N is the
span of all vectors inM having some zero components, and M is the smallest
invariant subspace of L™ containing P. Moreover, M ¢ lat T™ for some
T € alglatZ. Also, the following statements are true.

(@) The linear manifolds M ; and N | are invariant operator ranges of Z,
1=1,2,...,n.

(b) If F 1s the maximal invariant subspace of (alg lat .2/ )™ contained
inMand if 2 = MO I, then 2 # {0} and for all nonzero vectors

x € 2 the components x,, . . . , x, are linearly independent.
(c) If & contains a m.a.s.a., then no M, is the range of a compact
operator.

Proof. The existence of A,/ and & with the required properties is
easy and follows from an argument similar to the one used in the proof of
Theorems 1, 2 and 3.

For (a) observe that each .#; (respectively A4';) is the range of the
operator x + x; from.# (resp.. ) onto#; (resp..N ;).

Let # and £ be as in (b). Since.# = S, 2 # {0}. Let x € A be
such that 3 a&; = 0, where ay, . . ., a, are complex numbers and a; = 1
for some ¢ which can be assumed without loss of generality to be 1. Let

S =lxcM:Y ax; =0} and
S ={x® ... 0%, :x1Dx2®D ... Dx, €L}

It is easy to see that ¥’ is a (closed) invariant subspace of .2/ =1 and,
consequently, that of (alg lat.2/)™1, So.% is an invariant subspace of
(alg lat/ )™ which implies that £ € . C A.

Finally we prove (c). Let # and £ be as in (b), and let 4 € & be
a self-adjoint operator of multiplicity 1. It is easy to see that4 C .#,
2 C & and Z is a reducing invariant subspace of A®™. Thus, in view of
Lemma 2 and its proof, &, ..., £, are equal spectral subspaces of 4,
and reduce the normal operators C,;V : ?; — &, of the proof of Lemma
3. Assume, if possible, that some.#; is the range of a compact operator.
By a reordering of the copies of H™, one can assume without loss of
generality that ¢ = 1. The operator x + x; from.# onto.#, is compact.
In particular, C1V|£; is a compact normal operator. Hence the bounded
normal operators C1V|Z; and C3V|<Z, have a common reducing finite-
dimensional invariant subspace and thus the linear transformation G; =
(C:V)(C1V)~! has an eigenvector in £;. It follows that £ contains a
nonzero vector x such that x,, x,, . . ., x, are not linearly independent,
a contradiction.

COROLLARY 5. Let &/ be a weakly closed algebra containing a m.a.s.a.
Assume every invariant operator range of I 1s either closed or the range of a
compact operator. Then S is reflexive.
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Proof. Assume, if possible, that & € #,_\Z, for some n = 2. Let
M, N and 2 be as in Theorem 5. Since no.# ; is the range of a compact
operator, each 4, is closed and hence, in view of Lemma 2, each &, is
closed. Thus the linear transformations Gy, Gs, . . . , G, of Lemma 3 are
bounded normal operators and G,Bf = B*!G, for all 7 and all B ¢ &,
where Bf = (I — P)B|%; and P is the orthogonal projection with range
N1 Let X € ¢(G,). Since Bf commutes with G; — \ for all B € 27,

it follows from Lemma 2 that the operator range
R ={u ®v:u € Range (G; — \) andvE/Vl}

is an invariant operator range of & and, hence, either Range (G, — \) is
closed or G; — X is compact. Let £ be as in Theorem 5. We saw in the
proof of Theorem 5(c) that £, (= £,) is a reducing invariant subspace
of G, and hence (G; — \)|Z, is either compact or has a closed range for
all A € ¢(G1|Z1). In any case, G, has an eigenvector in £; which implies
that £ contains a nonzero vector x such that xi, %, ..., %, are not
linearly independent, a contradiction.

Remark 1. Corollary 5 is not true for a general algebra.2/. In Examples
1 and 2 we saw that nonreflexive algebras exist on finite-dimensional
Hilbert spaces; for such algebras all invariant operator ranges are closed
ranges of compact operators.

Remark 2. In view of Corollary 5, on finite-dimensional Hilbert spaces
every algebra containing a m.a.s.a. is reflexive [2, page 484].

Definition 3. A weakly closed algebra.2/ C B(H) is called k-reductive if
lat /' ® = lat.o/*®;
and is called k-transitive if
lat./® = lat [B(H)]®.
The definition of a k-transitive algebra first appeared in [6].

THEOREM 6. A reductive (tramsitive) algebra o/ is k-reductive (k-transi-
twe) if and only if & € Ry. Moreover, if & € R, 1\R, is reductive and if
M is an invariant subspace of ™ not invariant under (alg lat./)™, then
M contains an invariant subspace P of /'™ with the following properties.
(@) & contains no nontrivial reducing invariant subspace of /™ and

the components x1, . .., x, of any nonzero vector x € P are linearly in-
dependent.

(b) Ifn = 3, n0 P ;1s closed.

(c) If L is transitive and if {i(1), . . ., i(k)} is a set of integers such that

1 £4(1) <1(2) < ... < 1i(k) £ nfor some positive integer k < n, then

https://doi.org/10.4153/CJM-1981-098-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-098-5

REFLEXIVITY OF ALGEBRAS 1303

the linear manifold
Q= {xm)(@...@x,(k):xle...@axneg’}

is dense in H®. In particular, if n = 3, then £ is not closed.
(d) If < is transitive, no P, is the range of a compact operator.

Proof. Assume & is reductive (transitive). Since every von-Neumann
algebra is reflexive (Double Commutant Theorem), alg lat & is the
von-Neumann algebra generated by & U &/*. (If & is transitive, then
alg lat &/ = B(H)). This shows that 2/ is k-reductive (k-transitive) if
and only if &7 € #,. Now assume &/ € X, _1\Z, is reductive. Note that
A is a non-reducing invariant subspace of & ® if and only if 4 is not
left invariant by (alg lat.&/)™.

To prove (a), let_# be an arbitrary non-reducing invariant subspace
of ™. Let & be the orthogonal complement of the maximal reducing
invariant subspace of &/™ contained in .#. In view of Theorem 5(b),
& is the required subspace.

For part (b) assume, if possible, that &, is closed for some 7, which
can be assumed to be 1. It follows that the operator C; : & — &£, is
invertible and

P=u®@Gu®...®Guu:ucPy,

where G; = C;1Ci7' (1 = 1,...,n — 1) are bounded linear transforma-
tions. Since each {# @ Gu : u € £,} is a closed invariant subspace of
L*® G, T* = T*G,; (on &,) for all T € &/ and hence & is an invariant
subspace of &Z*™ a contradiction.

Next let and (1), . . ., i(k) be as in (c), and assume without loss of
generality thati(j) = 7,7 =1,2,..., k. Let

D=1 D%:@ ... @%,: 6, Dx:D ... 0% D ... Dx, € P

The set 2 is an invariant linear manifold of .Z® and hence 2 is an
invariant subspace of [B(H)]®. Lety; @ ... @ y, € H® be arbitrary.
Take 0 = x € 2. Since x4, . . . , X, are linearly independent, we can define
an operator B such that Bx; = y;,,72 =1, ..., k. It follows that

y1®...@yk=B<k)(x1@...@xk)EQ—.

This shows that £ is dense in H®.

Letn = 3. If £ = 1, it follows from (b) that £ = £, is not closed.
If = 2, it follows from (a) that & = H®,

Finally assume % is as in (d) and, if possible, &, is the range of a
compact operator. Assume without loss of generality thats = n. If n = 2
and &, is closed, then

P ={x®Kx:x € H},

https://doi.org/10.4153/CJM-1981-098-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-098-5

1304 MEHDI RADJABALIPOUR

where K is a compact operator commuting with.%Z, a contradiction [12].
Otherwise, in view of (c), the manifold

Q={C1x@®C-1xx€g’}

is not closed, where C;: & — P isdefined by Cx = x, (1 = 1,...,n).
Let y1 @ ... ® y,-1 ¢ £. Let {x(k)} be a sequence in & such that
y¢=1lim Cx(k),7=1,2,...,n — 1. We claim || C,x (k)|| diverges to co.

If not, then {x(k)} has a subsequence converging weakly to a vector of
the formy, ® ... @ y,.1 ® v, € £, a contradiction.
Consider the bounded sequence

2(k) = x(k)/ICx®), k= 1,2,....

Obviously, lim Cg(k) = 0for2=1,2,..., n — 1, and there exists a
subsequence {z(k,)} such that the sequence {C,z(k,)} is (strongly) con-
vergent (note that C, is a compact linear transformation). But [|C,z(k,)||
= 1, which implies that a nonzero vector of theform 0@ ... ® 0 @ u
belongs to &, again a contradiction.

COROLLARY 6. ([14]) Let&Z be a weakly closed transitive algebra. If every
invariant operator range of S/ is either closed or the range of a compact
operator, then &/ = B(H).

The proof follows easily from Theorem 6. However, in Corollary 9
below, we prove a similar result for reductive algebras.

LeEMMA 4. Let /' € R1\X be a reductive algebra. Let & be an invariant
subspace of ' ® which contains no nontrivial reducing invariant subspace
of A ®. Assume P, is closed and let P be the projection from H onto 2P,.
Then the set {x1 ® Pxy : x1 ® xo € P} isaninvariant subspace of /@ which
contains no nontrivial reducing invariant subspace of .

Proof. Since x; and x, are linearly independent for all nonzerox; @ x, €
2, it follows that # = {x ® Kx : x € P}, where K : #; > P, isa
bounded operator commuting with & (on £,). Thus B(I — P)K =
(I — P)KBand B(PK) = (PK)Bforall B € & (on £,). Hence the set

{x+ (I —~P)Kx:x€P,)CH

is an invariant subspace of .27 and consequently of .2/ *. So
B*(I — P)K = (I — P)KB*

(on 2,) for all B € 7. Also, the set
92 = {x ® PKx:x € Py}

is an invariant subspace of &7 ®.
It remains to show that £ contains no nontrivial reducing invariant
subspace of /. Let ¥ C £ be a reducing invariant subspace of &/ ®,
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Then
& = {x ® PEKx:x € %1},
&1 C Pisclosed, and
B*(PK|Y1) = (PK|¥1)B*

(on.%;) for all B € o7. Hence the set {x @ Kx : x € .4} is a reducing
invariant subspace of &/®, which implies that %, is zero. (Note that
K = PK + (I — P)K.) Thus.Y = {0} and the proof is complete.

COROLLARY 7. Let ' € R, 1\Z, be a reductive algebra, and let P be an
invariant subspace of '™ which contains no nontrivial reducing invariant
subspace of ™. Then not all P ; are the ranges of compact operators. (In
particular, every reductive algebra in a finite-dimentional Hilbert space is
self-adjoint [4].)

Proof. Assume, if possible, that all &2, are the ranges of compact
operators which implies that & itself is the range of a compact operator.
Hence & is finite-dimensional and all £; are closed. Thus » = 2 and

P ={x® Kx:x € Py}.

In view of Lemma 4, we can assume without loss of generality that
P, =P, So K has an eigenvector (in &;) and, therefore, & has a
nonzero vector x such that x; and x, are not linearly independent, a
contradiction.

The following corollary is known for transitive algebras [18, page 146].
In the following by a graph transformation of an algebra.2/ we mean any
linear transformation 7" for which there exist an integer # and an invariant
subspace A of /™ such that Ci, ..., C, are injective and T = C,C,!
for some distinct pair 7 and j, where C; : ./ —.#, is defined by Cix =
%:; (¢ = 1,...,n). The range of a graph transformation of . is called a
graph operator range of /. Note that any graph operator range of & is
an invariant operator range of 2.

COROLLARY 8. Let &/ be a weakly closed reductive algebra. Assume every
graph transformation of & has an eigenvalue. Then &/ is self-adjoint.

Proof. If &/ # .o/* then & € H,_i\Z#, for some integer n = 2.
Let £ be an invariant subspace of .2/™ which contains no nontrivial
reducing invariant subspace of &Z®. Define C;: ¥ - £, by Cx = x,.
Since Cix, ..., Cx are linearly independent for all nonzero x € £, it
follows that no C;C;! has an eigenvalue (¢ # j), a contradiction.

COROLLARY 9. Let &/ be a weakly closed reductive algebra such that every
graph operator range of I is of the form {u @ v: u € M, v € R}, where
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M is an invariant subspace of &, R is an invariant compact-operater range
of , and M, R are perpendicular. Then &/is self-adjoint. In particular,
if every invariant operator range of a weakly closed reductive algebra is either
closed or the range of a compact operator, then it is self-adjoint.

Proof. Assume that &/ = &/* Then./ € HX,_\\#, for some n = 2.
Let & be a nontrivial invariant subspace of /™ which contains no
nontrivial reducing invariant subspace of .2/®. Each &, is of the form
{u ®v:u € M, v € R;} as in the statement of the theorem. Since not all
P, are the ranges of compact operators, M, = {0} for some ¢ which can
be assumed without loss of generality that « = 1 and &?; = M. There-
fore, in view of Theorem 6(b), n = 2. Using Lemma 4, if necessary, we
can modify £ such that

P,CP, =P, and P = {x ® Kx:x € Py}.

The operator K: &1 — £, has no eigenvalue and hence Range (K — \)
is nonclosed for some X € ¢(K). Since {x ® (K — N)x:x € &} isan
invariant subspace of &7 ®, it follows that

Range (K — \) = M ® R,

where M is an invariant subspace of & and R # {0} is an invariant
compact-operator range of 7. Let

D={x® (K- Nx:x€P; and (K — Nx € R}.

It is easy to see that £ € lat ¥/ ®, 2, is closed, and £, = R. Define
S:H—->HbySx = (K — Nxforx € £,and Sx = 0 forx 1L 2.
The operator S is compact and SB = BS for all B € /. Hence SB* =
B*S for all B € &7, [19], which implies that

(K — \)B*x = B¥*(K — Mx forallx € 2.

Thus the set {x @ Kx: x € £,} C £ is a reducing invariant subspace
of /@, a contradiction.

CoroLLARY 10. ([9]) If < is a weakly closed reductive algebra such that
every operator range tnvariant under I is closed, then ' is self-adjoint.

CoroLLARY 11. ([9]) If &7 is a weakly closed reductive algebra and if
every graph transformation of & is bounded, then </ is self-adjoint.

Proof. Let R be an arbitrary graph operator range of & and let.# €
lat.2/™ be such that R = .#, and the mappings C;: M — M, (i = 1, 2,

., n) are injective. We show that R is closed. Let {x(k)} be a sequence
in.# such that {Cyx(k)} converges to ¥;. Since each C;C;! is bounded,
it follows that {C.x(k)} converges to a vector y;,z = 1,2, ..., n. Hence
the sequence {x(k)} converges to y;1 ® ... @ ¥, which implies that
y1 € M, = R. This shows that R is closed and hence &7 is self-adjoint.
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Added in proof. We thank Professor Peter Rosenthal who informed us
of some known results which led to the following remarks.

(a) Let k£ be a natural number. An algebra.% is called k-reflexive if &7/ ®
isreflexive. Let # = 3 be a natural number. Let.%/ be an arbitrary algebra
on an n-dimensional Hilbert space H,. Azoff [3, Theorem 3.1] has shown
that/ is (n — 1)-reflexive. In view of Proposition 1, if &7 is nonreflexive,
then & ¢ A,—.. Azoff [3, Example 3.2] also gives an example of an
algebra.&/ on H, which is not (n — 2)-reflexive. By an argument similar
to the one given in our Example 1, one can show that the algebra &/ of
[3, Example 3.2] belongs to #Z:\% .. Therefore, Proposition 1 is the most
that can be said about the relation between the class %, and the class of
k-reflexive operators. For n = 4, in view of [3, Theorem 4.1], every non-
reflexive commutative algebra on H, does not belong to 4,5, where n/2
is to be interpreted as the greatest integer in 7/2.

(b) The existence of a nonreflexive .2/ in Proposition 1 is due to
Feintuch [8].

(c) An operator-theoretic proof of Corollary 2 is also given by
Nordgren—Radjavi-Rosenthal [15]. There are similarities between our
techniques and those of [8] and [15].
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