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Abstract

We study a collector’s problem with K renewal arrival processes for different type items,
where the objective is to collect complete sets. In particular, we derive the asymptotic
distribution of the sequence of interarrival times between set completions.
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1. Introduction

The original collector’s problem deals with the probability distributions arising when col-
lecting complete sets from sequentially arriving items of K different types. For recent work on
this classical problem and its ramifications, we refer the reader to [1], [4], and [6]; for surveys
on discrete-time models (i.e. new items are obtained at every time instant t = 1, 2, . . .), see [2]
and [5] for more recent contributions and [7] for older work.

In this paper we tackle the situation when the arrival times of the items are random, which
to the authors’ knowledge has not been studied before. In principle, we can consider a general
marked point process on (0, ∞) with one of K different marks assigned to each point. The
times of interest to the collector are the arrival times of points completing a set of K points
with different marks. Each completed set is immediately put aside and the waiting for the
completion of the next set begins. In this paper we will study the sequence of intercompletion
times in the special case that, for every mark k ∈ {1, . . . , K}, the arrival times of items marked
k form a renewal stream. We will suppose that the K renewal processes are independent, but
our results will also be seen to hold under a slightly weaker assumption.

Technically, let {Xk
n | n ≥ 1}, k = 1, . . . , K , be K independent sequences of indepen-

dent and identically distributed (i.i.d.) positive random variables with distribution functions
F1, . . . , FK . Let Sk

0 = 0 and Sk
n = ∑n

i=1 Xk
i for n ≥ 1. In our setting, Sk

1 , Sk
2 , . . . are the

arrival times of items of type k. Now define Mn = max1≤k≤K Sk
n; clearly, Mn is the time at

which the nth complete set can be formed.
In the corresponding discrete-time models, the basic collector’s problem is to determine the

expected number of items arriving before obtaining a complete set. In our situation we can start
by deriving the expected value of the time T of the first completion and the expected number
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A collector’s problem with renewal arrival processes 611

of items of type k obtained before T . Of course, T = max1≤k≤K Xk
1, so that

E(T ) =
∫ ∞

0
g

(
1 −

K∏
k=1

Fk(t)g

)
dt.

For the expected number of items of a given type that have arrived before T , we obtain the
following result.

Proposition 1. Let F1, . . . , FK be continuous. Let Nk(t) = ∑∞
n=1 F ∗n

k (t) be the renewal
function associated with Fk (where F ∗n

k denotes the n-fold convolution of Fk with itself). Then
the expected number of items of type k obtained before time T , say mk , is given by

mk =
∑

1≤j≤K
j �=k

∫ ∞

0
Nk(x)g

( ∏
l∈{1,...,K}\{k,j}

Fl(x)g

)
dFj (x). (1)

Proof. The assumption that F1, . . . , FK are continuous excludes ties with probability 1.
For any k, j ∈ {1, . . . , K}, let mk,j (x) be the conditional expected number of items of type k

obtained before time T given that T = X
j
1 = x. Then mk,k(x) = 0 and, for k �= j , we have

mk,j (x) = E(number of items of type k obtained before time x | Xk
1 < x)

= 1 +
∫ x

0

Nk(x − t)

Fk(x)
dFk(t)

= 1 + (Nk ∗ Fk)(x)

Fk(x)

= 1 + Nk(x) − Fk(x)

Fk(x)

= Nk(x)

Fk(x)
. (2)

Note that Fk(x) = 0 implies that Nk(x) = 0, and, for those values of x, we set the right-hand
side of (2) equal to 0 (which is obviously the value of mkj (x) in this case). As

P
[

max
1≤l≤K

Xl
1 = X

j
1 ∈ dx

]
=

(∏
l �=j

Fl(x)

)
dFj (x),

deconditioning in (2) yields

mk =
∫ ∞

0

∑
j : j �=k

Nk(x)

Fk(x)

( ∏
l : l �=j

Fl(x)

)
dFj (x),

which is tantamount to (1).

The main results of this paper concern the sequence Yn = Mn − Mn−1 of intercompletion
times. Of course, Y1, Y2, . . . are neither independent nor identically distributed. We could try
to approach Yn by embedding Mn into a complicated high-dimensional Markov chain, say Zn.
The components of Zn are Mn itself, the index κn for which max1≤k≤K Sk

n is taken, and, for
every k ∈ {1, . . . , K} \ {κn}, the sequence (Sk

n+j 1{Sk
n+j ≤Mn})j≥1, indicating the arrival times of
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612 O. KELLA AND W. STADJE

all the items that are still present just after the first n complete sets have been removed. We will
not follow this idea but use a direct method to determine the asymptotic distribution of Yn; our
approach will then be extended to also derive the asymptotic distribution of the tails of the entire
sequence (Yn+N)N≥1 as n → ∞. We will show that if the means µ1, . . . , µK and variances
σ 2

1 , . . . , σ 2
K of F1, . . . , FK are finite and µ1 = µ2 = · · · = µk0 > µk0+1 ≥ · · · ≥ µK , then Yn

converges in distribution to the mixture
∑k0

k=1 π
k0
k Fk , where the weights π

k0
k can be defined in

terms of i.i.d. N(0, 1) random variables Z1, . . . , Zk0 by

π
k0
k = P[σkZk > max{σ�Z� | 1 ≤ � ≤ k0, � �= k}].

It is interesting (and maybe counterintuitive) to note that, for k0 = 2, the weights are independent
of the variances σ 2

1 and σ 2
2 . Since σ1Z1 − σ2Z2 is normally distributed with mean 0, its

distribution is symmetric around 0 so that

π2
1 = P[σ1Z1 > σ2Z2] = P[σ1Z1 − σ2Z2 > 0] = 1

2

and, of course, π2
2 = 1

2 also. For k0 > 2, the weights do depend on the variances in an intricate
way. We will show how to compute the π

k0
k in closed form. The weak limit of the entire

tail sequence (Yn+N)N≥1 as n → ∞ is given by the mixture of independent i.i.d. sequences
(Xk

1, X
k
2, . . .) with the same mixing coefficients π

k0
k , k = 1, . . . , k0. We also present an

extension to the case of infinite variances, using the theory of stable laws.

2. The core result

In the proofs below we need the following general proposition for which no reference could
be found. Let ‘ d−→’ and ‘ p−→’ denote convergence in distribution and in probability, respectively.

Proposition 2. Let G and Gn, n ≥ 1, be distribution functions, and let ξn and ηn (n ≥ 1) be
random variables such that ξn ∼ Gn and ηn

p−→ 0. If Gn
d−→ G and 0 is a continuity point of G,

then 1{ξn+ηn>0} − 1{ξn>0}
p−→ 0.

Proof. All we need is to show that the probability that 1{ξn+ηn>0} − 1{ξn>0} is not 0 converges
to 0. For any ε > 0 for which −ε is a continuity point of G, we have

P[ξn + ηn > 0, ξn ≤ 0] = P[ηn > −ξn, ξn ≤ −ε] + P[ηn > −ξn, −ε < ξn ≤ 0]
≤ P[ηn > ε] + P[−ε < ξn ≤ 0]
→ G(0) − G(−ε) as n → ∞, (3)

and since 0 is a continuity point of G, the right-hand side converges to 0 as ε ↓ 0. Similarly, if
ε > 0 is a continuity point of G,

P[ξn + ηn ≤ 0, ξn > 0] = P[ηn ≤ −ξn, ξn > 0]
= P[ηn ≤ −ξn, ξn ≥ ε] + P[ηn ≤ −ξn, 0 < ξn ≤ ε]
≤ P[ηn ≤ −ε] + P[0 < ξn ≤ ε]
→ G(ε) − G(0) as n → ∞, (4)

and the right-hand side converges to 0 as ε ↓ 0.
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Corollary 1. Let Gk and Gk
n be distribution functions for k = 1, . . . , K and n ≥ 1, and

let ξk
n and ηk

n be random variables such that ξk
n ∼ Gk

n

d−→ Gk and ηk
n

p−→ 0 as n → ∞ for
k = 1, . . . , K . Assume that 0 is a continuity point of G1, . . . , GK . Then

K∏
k=1

1{ξk
n+ηk

n>0} −
K∏

k=1

1{ξk
n>0}

p−→ 0. (5)

Proof. Obviously,

K∏
k=1

1{ξk
n+ηk

n>0} =
K∏

k=1

((1{ξk
n+ηk

n>0} − 1{ξk
n>0}) + 1{ξk

n>0}). (6)

By (6),
∏K

k=1 1{ξk
n+ηk

n>0} − ∏K
k=1 1{ξk

n>0} can be written as a sum of products, each having at
least one term of the form 1{ξk

n+ηk
n>0} − 1{ξk

n>0} for some k ∈ {1, . . . , K}. Since this term
converges in probability to 0 as n → ∞, it follows that each product and, hence, also the whole
sum converges in probability to 0.

Now let {Xk
n | n ≥ 1}, k = 1, . . . , K , be independent sequences of i.i.d. positive random

variables with distributions Fk , and call their means µk (when finite) and their variances σ 2
k

(when finite). Let Sk
0 = 0 and, for n ≥ 1, Sk

n = ∑n
i=1 Xk

i . In our setting Sk
1 , Sk

2 , . . . are the
arrival times of items of type k. Finally, we set Mn = max1≤k≤K Sk

n , so that Mn is the time at
which the nth complete set can be formed, and Yn = Mn−Mn−1. Of course, the intercompletion
times Y1, Y2, . . . are neither independent nor identically distributed.

Theorem 1. Assume that F1, . . . , FK are continuous distribution functions with finite means
µ1, . . . , µK and finite variances σ 2

1 , . . . , σ 2
K , and that the means are equal: µ1 = · · · = µK =

µ. Let Z1, . . . , ZK be i.i.d. N(0, 1) random variables that are independent of {Xk
n | n ≥ 1, k =

1, . . . , K}. Then, with
κ = arg max{σkZk | k = 1, . . . , K}, (7)

we have

Yn
d−→ Xκ

1 =
K∑

k=1

Xk
1Ik, (8)

where I1, . . . , IK are {0, 1}-valued random variables that are independent of X1
1, . . . , X

K
1 and

have the joint distribution

P[(I1, . . . , IK) = ek] = P[σkZk > max{σ�Z� | � �= k}], (9)

where ek is a unit vector with a 1 in the kth coordinate and 0 elsewhere.

Proof. We first note that

Mn =
K∑

k=1

Sk
n 1{Sk

n>S�
n;��=k} almost surely (a.s.), (10)

which implies that

Yn = Mn − Mn−1

=
K∑

k=1

Xk
n 1{Sk

n−1>S�
n−1;��=k} +

K∑
k=1

Sk
n(1{Sk

n>S�
n;��=k} − 1{Sk

n−1>S�
n−1;��=k}) a.s.

(11)
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614 O. KELLA AND W. STADJE

If we can show that
1{Sk

n>S�
n;��=k} − 1{Sk

n−1>S�
n−1;��=k}

p−→ 0 (12)

then this would immediately imply that

K∑
k=1

Sk
n(1{Sk

n>S�
n;��=k} − 1{Sk

n−1>S�
n−1;��=k})

p−→ 0. (13)

Actually, (12) implies that the probability that the sum in (13) is equal to 0 tends to 1 as n → ∞.
Thus, it will be enough to show (12) and that

K∑
k=1

Xk
n 1{Sk

n−1>S�
n−1;��=k}

d−→ Xκ
1 . (14)

Now fix k. Letting

ξ�
n = Sk

n−1 − S�
n−1√

n − 1
and η�

n = Xk
n − X�

n√
n − 1

,

we can write

1{Sk
n>S�

n;��=k} − 1{Sk
n−1>S�

n−1;��=k} =
∏
��=k

1{ξ�
n+η�

n>0} −
∏
��=k

1{ξ�
n>0} . (15)

Since E(X�
1)

2 < ∞, we have (X�
n)

2/n → 0 a.s. and, thus, η�
n

p−→ 0 (in fact, even a.s.). Rewriting
ξ�
n as

ξ�
n = σk

Sk
n−1 − (n − 1)µ

σk

√
n − 1

− σ�

S�
n−1 − (n − 1)µ

σ�

√
n − 1

, (16)

it can be seen that ξ�
n

d−→ σkZk − σ�Z� ∼ N(0, σ 2
k + σ 2

� ). The distribution function of the limit
is continuous everywhere, in particular at 0. Thus, the conditions of Corollary 1 are met and,
thus, (13) indeed holds.

Next we note that
K∑

k=1

Xk
n 1{Sk

n−1>S�
n−1;��=k} = Xκn

n a.s., (17)

where κn = arg max{Sk
n−1 | k = 1, . . . , K} is independent of (X1

n, . . . , X
K
n ), which in turn is

distributed like (X1
1, . . . , X

K
1 ). Thus, to complete the proof, it suffices to show that κn

d−→ κ .
This can be concluded from

P[κn = k] = P[Sk
n−1 > S�

n−1; � �= k] = P[min{ξ�
n | � �= k} > 0], (18)

where the ξ�
n are as in (16). Note that (ξ�

n)�∈{1,...,K}\{k} is of the form (V k
n − V �

n )�∈{1,...,K}\{k},
where V 1

n , . . . , V K
n are independent and V �

n

d−→ σ�Z1. Hence,

(ξ�
n)�∈{1,...,K}\{k}

d−→ (σkZk − σ�Z�)�∈{1,...,K}\{k} as n → ∞.

As the function h : R
K−1 → R defined by h(u1, . . . , uK−1) = min{u1, . . . , uK−1} is contin-

uous, it follows that min{ξ�
n | � �= k} converges in distribution to min{σkZk − σ�Z� | � �= k},

and since the distribution of the latter is continuous, the right-hand side of (18) converges to
P[κ = k], as desired.

https://doi.org/10.1239/jap/1222441817 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441817


A collector’s problem with renewal arrival processes 615

3. Generalizations

Theorem 1 can be generalized in several ways.

Extension 1. Instead of assuming that the K renewal processes are independent, it is sufficient
to suppose that the K-vectors {(X1

n, . . . , X
K
n ) | n ≥ 1} of interarrival times are i.i.d. with

a positive definite covariance matrix. In this case the vector (V 1
n , . . . , V K

n ) converges to a
nondegenerate K-dimensional normal distribution from which the distribution of κ can be
derived.

Extension 2. The means µ1, . . . , µK do not have to be equal. Let us assume that µ1 = · · · =
µk0 > µk0+1 ≥ · · · ≥ µK . Write (10) for Mn as

Mn =
k0∑

k=1

Sk
n 1{Sk

n>S�
n;��=k} +

K∑
k=k0+1

Sk
n 1{Sk

n>S�
n;��=k} a.s. (19)

By the strong law of large numbers,

lim
n→∞

max
k=k0+1,...,K

Sk
n

n
= µk0+1 < lim

n→∞
min

k=1,...,k0

Sk
n

n
a.s.

Thus, the second sum in (19) converges to 0 a.s. and can be neglected; the proof can then
proceed as in Section 2.

Extension 3. Theorem 1 gives the asymptotic distribution of Yn. We can even obtain the
asymptotic distribution of the tail (Yn+N)N≥1 of the entire sequence as n → ∞. This
distribution turns out to be the mixture obtained from the infinite product distributions of
the sequences (Xk

1, X
k
2, . . .), k ∈ {1, . . . , K}, by choosing k according to the distribution

πK
k = P[σkZk > max{σ�Z� | � �= k}]. It suffices to determine the limiting finite-dimensional

distributions. We show that, for any N ∈ N,

(Yn, . . . , Yn+N−1)
d−→ (Xκ

1 , . . . , Xκ
N) as n → ∞. (20)

It is enough to prove that

lim
n→∞ P[κn+1 = κn+2 = · · · = κn+N ] = 1. (21)

Indeed, since
(Yn, . . . , Yn+N−1) = (X

κn+1
n , X

κn+2
n+1 , . . . , X

κn+N

n+N−1),

(20) follows from κn
d−→ κ and (21). Relation (21) in turn is an immediate consequence of

lim
n→∞ P[κn+1 = k, κn+N = l] = 0 for all k, l ∈ {1, . . . , K}, k �= l. (22)

To prove (22), fix k and l, k �= l. Then

P[κn+1 = k, κn+N = l] ≤ P[Sk
n ≥ Sl

n, S
k
n+N−1 ≤ Sl

n+N ]
= P[Rn ≥ 0 ≥ Rn+N−1],
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where Rn = Sk
n − Sl

n. Choose an arbitrary ε > 0. We have

P[Rn ≥ 0 ≥ Rn+N−1] ≤ P[0 ≤ Rn ≤ εn1/2] + P[Rn > εn1/2, Rn+N−1 − Rn < −εn1/2]
= In(ε) + Jn(ε).

By the central limit theorem,
lim
ε→0

lim
n→∞ In(ε) = 0.

Furthermore, Rn+N−1 − Rn has the same distribution as Sk
N−1 − Sl

N−1, which is independent
of n, and, therefore,

lim
n→∞ Jn(ε) = 0 for every ε > 0.

The latter two relations together imply that

lim
n→∞ P[Rn ≥ 0 ≥ Rn+N−1] = 0,

as remained to be shown.

Extension 4. The distribution functions F1, . . . , FK do not have to be continuous. If at least
two of the Fk have discontinuities, it is possible that Sk

n = S�
n = maxl S

l
n for some n, k, �.

However, ∣∣∣∣Mn −
K∑

k=1

Sk
n 1{Sk

n>S�
n;��=k}

∣∣∣∣ ≤
K∑

k=1

|Sk
n| 1{Sk

n=S�
n for some ��=k}

and, for any fixed indices k and l, k �= l, it is clear that limn→∞ P[Sk
n −Sl

n = 0] = 0. Therefore,
κn is unambiguously defined on a set An satisfying limn→∞ P[An] = 0. The nonuniqueness of
κn on An does not disturb the line of reasoning in the proof of Theorem 1. (We may define κn

in general to be the smallest index k ∈ {1, . . . , K} for which the maximum of Sk
n−1 is attained.)

Summarizing, we obtain the following theorem.

Theorem 2. Assume that the K-vectors {(X1
n, . . . , X

K
n ) | n ≥ 1} are i.i.d. with a positive

definite covariance matrix (σij )1≤i,j≤K and means µk = E(Xk
n) satisfying µ1 = · · · =

µk0 > µk0+1 ≥ · · · ≥ µK for some k0 ∈ {1, . . . , K}. Let Z1, . . . , Zk0 be jointly normal
random variables with zero means and covariance matrix (σij )1≤i,j≤k0 , which are independent
of {Xk

n | n ≥ 1, k = 1, . . . , k0}. Then, with

κ = arg max
{
σ

1/2
kk Zk

∣∣ k = 1, . . . , k0
}
, (23)

we have, for every N ∈ N,

(Yn+N)N≥1
d−→ (Xκ

1 , Xκ
2 , Xκ

3 , . . .). (24)

We can also extend the result to the case of infinite variances, using the theory of stable
laws. Again, for simplicity, assume that F1, . . . , FK have the same mean µ. Fix an arbitrary
α ∈ (1, 2). We impose the following condition.

(C1) Every Fk , k = 1, . . . , K , belongs to the domain of attraction of a stable law with
exponent α, i.e. there are positive sequences (ak

n)n≥1 such that ((ak
n)

−1[Sk
n − nµ])n≥1

converges weakly to a stable distribution with exponent α.
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We use some basic facts from the theory of stable laws; see, e.g. [3, Section XVII.5,
pp. 574–581]. It is well known that Fk (a distribution function on (0, ∞)) belongs to the
domain of attraction of a stable law with exponent α < 2 if and only if 1 − Fk(x) is regularly
varying with exponent −α, i.e. xα(1 − Fk(x)) is slowly varying. In this case the constants ak

n

can be defined implicitly in terms of the truncated second moment functions

mk(x) =
∫ x

0
u2 dFk(u)

by the relations

lim
n→∞

(ak
n)

2

nmk(ak
n)

= 1. (25)

Furthermore, it is known that if (C1) holds then

lim
x→∞

x2−αLk(x)

mk(x)
= 1 (26)

for some slowly varying function Lk(x), and

lim
x→∞

x2(1 − Fk(x))

mk(x)
= 2 − α

α
. (27)

We need the following additional conditions that the truncated second moment functions grow
proportionally to each other and that the sequences ak

n grow fast enough.

(C2) There are constants c1, . . . , cK−1 > 0 such that limx→∞ mk(x)/mK(x) = ck, k =
1, . . . , K.

(C3)
∑∞

n=1(1 − Fk(a
k
n)) < ∞ for some (and then all) k.

Note that, by (25), condition (C2) implies that

lim
n→∞

ak
n

a�
n

=
(

ck

c�

)1/2

. (28)

By (25) and (26), it follows that ak
n ∼ n1/αLk(a

k
n)

1/α , so that condition (C3) is, for example,
satisfied if E((Xk

1)
α) < ∞ and Lk(x) is bounded away from 0.

Now let U1, . . . , UK be i.i.d. random variables with common stable characteristic function

ω(ζ ) = exp

{
|ζ |α �(3 − α)

α(α − 1)

(
cos

πα

2
+ isgn(ζ ) sin

πα

2

)}
, ζ ∈ R.

Theorem 3. If (C1)–(C3) hold then

Yn
d−→

K∑
k=1

Xk
1Ik,

where the random vector (I1, . . . , IK) takes the values e1, . . . , eK , is independent of X1
1, . . . ,

XK
1 , and has distribution

P[(I1, . . . , IK) = ek] = P
[
ckUk > max

��=k
c�U�

]
, k = 1, . . . , K.
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Proof. It is not difficult to see that the proof of Theorem 1 can be imitated provided that we
can show that, for any fixed k,

ξ̄ �
n = Sk

n−1 − S�
n−1

ak
n−1

d−→ Uk − cl

ck

U� (29)

and

η̄�
n = Xk

n − X�
n

ak
n−1

p−→ 0. (30)

Clearly, by (C1) and (28),

ξ̄ �
n = Sk

n−1 − (n − 1)µ

ak
n−1

− a�
n−1

ak
n−1

S�
n−1 − (n − 1)µ

a�
n−1

d−→ Uk − cl

ck

U�, (31)

proving (29). Next, note that (30) would follow from

∞∑
n=1

P

[
Xk

n

ak
n−1

> ε

]
< ∞ for all ε > 0 (32)

(which implies that Xk
n/a

k
n−1 → 0 a.s.) together with (28). Since L̃k(x) = xα(1 − Fk(x)) is

slowly varying, we have

1 − Fk(a
k
n−1ε) = (ak

n−1ε)
−αL̃(ak

n−1ε)

∼ ε−α(ak
n−1)

−αL̃(ak
n−1)

= ε−α(1 − Fk(a
k
n−1)).

Thus, the series
∑∞

n=1(1 − Fk(a
k
n−1ε)) converges for every ε > 0 if and only if it converges

for ε = 1. Therefore, (C3) yields (32), and the proof is complete.

4. The weights of the mixture for the superposition of independent renewal processes

In the case of independent renewal processes with equal means and finite variances for the
interarrival times (which we considered in Theorem 1), the weights of the limiting mixture are
given by

πK
k = P[σkZk > max{σ�Z� | � �= k}].

Conditioning on Zk , it is easily seen that πK
k can be written in terms of the density ϕ and the

distribution function 
 of N(0, 1) as follows:

πK
k =

∫ ∞

−∞
ϕ(x)

∏
��=k




(
xσk

σ�

)
dx, k = 1, . . . , K. (33)

These integrals can be computed recursively. Define the auxiliary functions

In,l(u1, . . . , ul) =
∫ ∞

−∞
xnϕ(x)

l∏
i=1


(uix) dx (34)
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for n, l ∈ Z+ and u1, . . . , ul ∈ R+. Clearly,

πK
k = I0,K−1

(
σk

σ1
, . . . ,

σk

σk−1
,

σk

σk+1
, . . . ,

σk

σK

)
. (35)

For index pairs (n, 0), we have

In,0 = E[Zn
1 ] =

⎧⎨
⎩

n!
(n/2)! 2n/2 , n = 0, 2, 4, 6, . . . ,

0, n = 1, 3, 5, . . . .

(36)

Thus, if all the In,l can be expressed in terms of the values Ik,0, k ≥ 0, we obtain explicit
formulae for the πK

k . The next theorem provides a suitable recursion.

Theorem 4. For n ∈ Z+, l ≥ 1, and u1, . . . , ul ∈ R+, we have

In,l(u1, . . . , ul) = 1
2In,l−1(u2, . . . , ul)

+
∫ u1

0

1√
2π(1 + x2)n/2+1

In+1,l−1

(
u2

(1 + x2)1/2 , . . . ,
ul

(1 + x2)1/2

)
dx.

(37)

Proof. Taking the partial derivative with respect to u1 in (34), using the identities 
′ = ϕ

and ϕ(x)ϕ(u1x) = (2π)−1/2ϕ(x(1 + u2
1)

1/2), and making the substitution y = x(1 + u2
1)

1/2,
we obtain

∂

∂u1
In,l(u1, . . . , ul) =

∫ ∞

−∞
xn+1ϕ(x)ϕ(u1x)

l∏
i=2


(uix) dx

=
∫ ∞

−∞
xn+1(2π)−1/2ϕ(x(1 + u2

1)
1/2)

l∏
i=2


(uix) dx

=
∫ ∞

−∞
(1 + u2

1)
−n/2−1yn+1(2π)−1/2ϕ(y)

l∏
i=2


(uiy(1 + u2
1)

−1/2) dy

= (1 + u2
1)

−n/2−1(2π)−1/2In+1,l−1

(
u2

(1 + u2
1)

1/2
, . . . ,

ul

(1 + u2
1)

1/2

)
.

(38)

Integrating (38) yields

In,l(u1, . . . , ul) − In,l(0, u2, . . . , ul)

= (2π)−1/2
∫ u1

0
(1 + x2)−n/2−1In+1,l−1

(
u2

(1 + x2)1/2 , . . . ,
ul

(1 + x2)1/2

)
dx. (39)

Since In,l(0, u2, . . . , ul) = 1
2In,l−1(u2, . . . , ul), (37) follows from (39).

Let us compute πK
k for K = 2 and K = 3.

Example 1. Let K = 2. We have I0,0 = 1 and I1,0 = 0 by (36) and, thus,

π2
1 = I0,1

(
σ1

σ2

)
= 1

2
I0,0 = 1

2
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and, of course, also
π2

2 = 1
2 .

Example 2. Let K = 3. In this case π3
1 = I0,2(σ1/σ2, σ1/σ3), π3

2 = I0,2(σ2/σ1, σ2/σ3), and
π3

3 = I0,2(σ3/σ1, σ3/σ2). To calculate I0,2(u1, u2) using Theorem 3, we need I0,1(u1) ≡ 1
2

and I1,1(u1). Regarding I1,1(u1), we have, by (38),

I1,1(u1) = 1

2
I1,0 +

∫ u1

0

1√
2π(1 + x2)3/2

I2,0 dx

= u1√
2π(1 + u2

1)
1/2

, (40)

where we have used I1,0 = E[Z1] = 0, I2,0 = E[Z2
1] = 1, and a simple integral. Next let us

derive I0,2(u1, u2):

I0,2(u1, u2) = 1

2
I0,1(u2) +

∫ u1

0

1√
2π(1 + x2)

I1,1

(
u2

(1 + x2)1/2

)
dx

= 1

4
+ u2

2π

∫ u1

0

1

(1 + x2)(1 + x2 + u2
2)

1/2
dx

= 1

4
+ 1

2π
arctan

(
u1u2

(1 + u2
1 + u2

2)
1/2

)
, (41)

where we have used the indefinite integral∫
1

(1 + x2)(1 + x2 + u2)1/2 dx = 1

u
arctan

(
ux

(1 + x2 + u2)1/2

)
, u > 0.

It follows that

π3
k = 1

4
+ 1

2π
arctan

(
σ 2

k

(σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3 )1/2

)
, k = 1, 2, 3.
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