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Abstract
Diet has direct and indirect effects on health through inflammation and the gut microbiome.We investigated total dietary inflammatory potential
via the literature-derived index (Dietary Inflammatory Index (DII®)) with gut microbiota diversity, composition and function. In cancer-free
patient volunteers initially approached at colonoscopy and healthy volunteers recruited from the medical centre community, we assessed
16S ribosomal DNA in all subjects who provided dietary assessments and stool samples (n 101) and the gut metagenome in a subset of patients
with residual fasting blood samples (n 34). Associations of energy-adjusted DII scores with microbial diversity and composition were examined
using linear regression, permutational multivariate ANOVA and linear discriminant analysis. Spearman correlation was used to evaluate asso-
ciations of species and pathways with DII and circulating inflammatory markers. Across DII levels, α- and β-diversity did not significantly differ;
however, Ruminococcus torques, Eubacterium nodatum, Acidaminococcus intestini and Clostridium leptumwere more abundant in the most
pro-inflammatory diet group, while Akkermansia muciniphilawas enriched in the most anti-inflammatory diet group. With adjustment for age
and BMI, R. torques, E. nodatum and A. intestini remained significantly associated with a more pro-inflammatory diet. In the metagenomic and
fasting blood subset, A. intestini was correlated with circulating plasminogen activator inhibitor-1, a pro-inflammatory marker (rho= 0·40), but
no associations remained significant upon correction for multiple testing. An index reflecting overall inflammatory potential of the diet was
associated with specific microbes, but not overall diversity of the gut microbiome in our study. Findings from this preliminary study warrant
further research in larger samples and prospective cohorts.
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Diet is one of the most influential and accessible modulators of
the gut microbiome, the human intestine’s vast and diverse
microbial ecosystem increasingly recognised as a key player

in the development of obesity, type 2 diabetes, CVD and
cancer(1–6). The composition and collective function of the gut
community affects how and what the human host is able to

Abbreviations: AMPK, AMP-activated protein kinase; B-H, Benjamini–Hochberg; DII, dietary inflammatory index; LASSO, least absolute shrinkage and selection
operator; LEfSe, linear discriminant analysis effect size; NCI, National Cancer Institute; PAI-1, plasminogen activator inhibitor-1; WGS, whole-genome shotgun.
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extract from the diet by providing the machinery that converts
dietary content into biological signals with profound systemic
effects on host health(7).

Not unlike the complex and interactive nature of the
microbiome, dietary habits are multidimensional with many inter-
related components. Recently, Bowyer et al. and Maskarinec et al.
demonstrated the utility of a priori dietary patterns or indices
for capturing and controlling for variation in the gut micro-
biome due to the effects of participants’ diets(8–12). The Dietary
Inflammatory Index (DII®) assesses the balance of pro- and
anti-inflammatory dietary factors based on literature-derived asso-
ciations between various dietary components and inflammatory
biomarkers. This index, with its specific focus on inflammation,
inherently differs from other index-based scores assessed in
previous studies measuring adherence to established dietary
guidelines or healthy eating patterns (e.g. the Healthy Eating
Index or Mediterranean Diet Score)(13).

Diet–microbiome interactions may be one of the most
promising targets to reduce chronic inflammation, a key patho-
physiologicalmechanismunderlying diet’s influence onmultiple
chronic diseases through the common mechanism of the NF-κB
pathway and a complex interaction of cellular, molecular and
metabolic factors(14–21). Given that diet can modulate inflamma-
tion through both pro-inflammatory and anti-inflammatory
mechanisms, we hypothesised that the inflammatory potential
of usual dietary habits would be associated with the overall com-
position and functional capacity of the gut microbiome. In the
present study, we investigated total dietary inflammatory poten-
tial, as assessed by the literature-derived DII, in relation to gut
microbiota diversity and composition. In a subset of individuals
with fasting blood samples and metagenomic data, we further
exploredmicrobes andmicrobial gene pathways associatedwith
DII score and circulating inflammatory markers.

Methods

Study population

The study population is composed of 101 cancer-free individ-
uals, including patient volunteers initially approached in the
colonoscopy clinic of MD Anderson Cancer Center (n 36) and
community volunteers recruited from the medical centre com-
munity (n 65). Detailed study recruitment and eligibility criteria
are provided in online Supplementary Fig. S1. Initially, from 2013
to 2016, a total of 132 patient volunteers with no history of cancer
and 449 community volunteers expressed an interest in partici-
pating. Both subgroups were screened and interviewed by a
clinical provider and/or trained study coordinator with regard
to their medical history andmedication use and asked to provide
stool samples using the same collection protocol. Study ineli-
gibility criteria included current smoker, antibiotic use within
the past month, incident or prevalent cancer other than non-
melanoma skin cancer, one or more chronic conditions that
restricts dietary intake (e.g. coeliac disease), major intestinal
surgery (e.g. gastric bypass), currently pregnant or lactating.
BMI was calculated from measured weight (kg)/height (m)2

and categorised based on WHO criteria(22). Study subjects were
included in the current analysis if they completed the dietary

questionnaires, provided a stool sample and passed microbiome
data quality filtering criteria. All procedures were reviewed and
approved by The University of Texas MD Anderson Institutional
Review Board. Informed consent was obtained from all research
participants, and all methods were performed in accordance
with relevant guidelines and regulations.

Dietary assessment

Participants completed dietary histories via one of two versions
of the National Cancer Institute (NCI)-developed FFQ. For con-
sistency with historic recruitment of patients in prior and
ongoing MD Anderson studies, patient volunteers completed a
modified version of the NCI Health Habits and History
Questionnaire(23,24), which queries the frequency of intake and
portion size of 165 food and beverage items, including ethnic
foods commonly consumed in the Texas region. Daily nutrient
consumption was estimated using the US Department of
Agriculture Food and Nutrient Database for Dietary Studies(25).
Community volunteers completed the NCI Dietary History
Questionnaire II (DHQ II), a more recent web-based adaptation
of the NCI Health Habits and History Questionnaire(25), which
queries 134 food items. NCI Dietary History Questionnaire II
responses were processed using Diet*Calc software(26).

Energy-adjusted dietary inflammatory index
score calculation

Food and nutrient intake derived from responses to FFQ was
linked to the corresponding inflammatory effect scores desig-
nated in the DII to calculate the energy adjusted (E-DII)
score for each participant(13). The DII is a literature-derived,
population-based dietary index designed to quantify the overall
inflammatory potential of an individual’s entire diet. The details
of the development and scoring algorithm are described else-
where(13). In short, approximately 2000 primary research articles
published through 2010 which investigated the effects of forty-
five different food parameters (mostly macronutrients, micronu-
trients, some bioactive components and individual food items
such as garlic and tea) on six inflammatory markers (i.e. IL-1β,
IL-4, IL-6, IL-10, TNF-α and C-reactive protein) were identified
and scored to derive the component-specific inflammatory effect
scores(13). Thirty-one DII components (plus garlic in the NCI
Health Habits and History Questionnaire) were used to calculate
the instrument-specific, energy-adjusted E-DII score for analysis.
Both FFQ lacked information on some less commonly consumed
spices (ginger, saffron, turmeric, pepper, oregano, rosemary)
and phenols/flavonoids (eugenol, flavan-3-ol, flavones, flavo-
nols, flavonones, anthocyanidins, isoflavones). Food and
nutrient consumption was first energy-adjusted per 4184 kJ
(1000 kcal), and subsequently standardised for each component
using mean and standard deviation data derived from a
composite dietary database representing energy-adjusted intake
from eleven populations around the world(13). The energy-
adjusted and standardised dietary intakes were then converted
to centred proportions to account for skewness, multiplied by
the inflammatory effect score for each available DII parameter
and summed across all DII components to obtain the overall
E-DII score(13). Higher (i.e. more positive) E-DII scores represent
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more pro-inflammatory diets, while lower (i.e. more negative)
E-DII scores indicate more anti-inflammatory diets. The E-DII
score has been construct validated and consistently associated
with elevated inflammatory biomarker levels such as IL-6(27),
TNF-α(27) and C-reactive protein(28).

Stool and blood sample collection

All participants were provided the same stool sample collection
kit with detailed instructions. Following defecation into a plastic
‘toilet hat’, gloved participants used a sterile BBL culture swab
collection and transport system (Becton Dickinson) to collect
a small portion of their sample. Samples were either Express
(overnight or same day) shipped or brought to their next sched-
uled visit. All faecal samples were received within less than 48 h
of collection, stored at –80°C and processed within 1 year of col-
lection(29). Residual fasting blood samples drawn at the colonos-
copy clinic visit were available in a subset of thirty-four patient
volunteers with FFQ and stool samples.

Microbiome characterisation

Total genomic DNAwas extracted from faecal samples using the
MoBio PowerSoil DNA Isolation Kit following themanufacturer’s
instructions. The 16S rRNA gene was amplified using V4-targed
primers (GGACTACHVGGGTWTCTAAT and GTGCCAGCM
GCCGCGGTAA)(30), and amplicons were sequenced using the
MiSeq platform (Illumina). Raw FASTQ sequences were proc-
essed as previously described(31). Following quality filtering
and chimera removal, sequence readswere clustered into opera-
tional taxonomic units using UPARSE(32), with operational taxo-
nomic units subsequently mapped to a V4-optimised version of
the SILVA database (version 123) at 97 % similarity level. The
remaining samples were rarefied to 2742 reads/sample, and rel-
ative abundances were calculated (online Supplemental Table
S1). Basic Local Alignment Search Tool was used to identify
the likely species represented by each operational taxonomic
units (OTU) centroid sequence(33).

Whole-genome shotgun (WGS) sequencing was performed
to comprehensively assess microbial genomic DNA of faecal
samples in a subset of thirty-four patient volunteers who also
had FFQ and residual fasting blood samples. WGS data provide
species-level taxonomy of the gut microbiome, as well as the
metabolic or functional gene content pathways represented
within the microbial community. Individual libraries constructed
from extracted total gDNA for each sample were pooled and
sequenced via HiSeq 2000 (Illumina) using the 1 × 100 bp
paired-end read protocol. Pooling resulted in a sequencing
depth>3 Gb/sample. Quality filtering, trimming, demultiplexing
and read mapping were carried out by an in-house pipeline
described previously.(34) To determine metabolic pathway
content of the entire metagenome, reads aligning to known ortho-
logues in the Kyoto Encyclopedia of Genes and Genomes data-
base were tabulated and pathways constructed by calculating
the minimum set through MinPath45(35).

Circulating inflammatory markers

Plasma leptin, TNF-α, IL-6, lipocalin 2, plasminogen activator
inhibitor-1 (PAI-1), C-peptide and monocyte chemoattractant

protein-1 were assessed via multiplex assay (Millipore). All sam-
ples were run in duplicate with internal standards (pooled
cancer case plasma), healthy control samples (normal plasma)
and kit quality controls to assure plate to plate consistency.

Statistical analyses

The E-DII score was categorised according to instrument-
specific tertiles. Characteristics of study participants were
described with medians and standard errors of the mean for
continuous variables and frequencies and percentages for cat-
egorical variables. We examined the difference of categorical
variables across E-DII tertiles by the χ2 test and the difference
of continuous variables by the Kruskal–Wallis non-parametric
test. We also examined the associations of these covariates with
bacterial α- and β-diversity to assess potential confounders for
inclusion in the adjusted models of E-DII and microbiota
associations.

α-Diversity was assessed by observed OTU, Shannon diver-
sity index, Chao1 index and Simpson’s diversity index.
Differences in α-diversity across E-DII tertiles among all subjects
and by study subgroup were assessed via the Kruskal–Wallis
non-parametric test. We also examined associations of the con-
tinuous E-DII score with α-diversity in each subgroup using lin-
ear regression models. None of the potential confounders
examined, including age (continuous), sex (males and females),
BMI (continuous), medication use (yes/no) and study subgroup
(patient v. community volunteers), was associated with α-diver-
sity or appreciably changed the model estimates and thus was
not included in the final adjusted model.

Similarly, Bray–Curtis dissimilarity,WeightedUnifrac,Unweighted
Unifrac and Jaccard (β-diversity metrics) between the highest v.
the lowest E-DII tertile were assessed via permutational multi-
variate ANOVA among all the subjects and by study sub-
group(36). While none of the measured covariates were clearly
associated with β-diversity, we further examined whether
BMI-status modified associations of β-diversity with E-DII in
stratified analysis.

Differentially abundant bacterial taxa by E-DII tertiles were
assessed using linear discriminant analysis effect size (LEfSe)
under Galaxy environment(37), applying the one-against-all
strategy with a logarithmic linear discriminant analysis score
threshold of 3 and α of 0·1 for factorial Kruskal–Wallis test among
classes. Analysis was restricted to bacteria present in ≥20 % of
the study population. We further assessed the associations
between differentially abundant candidate taxa identified from
LEfSe and potential confounders as mentioned above. Given
some taxawere associatedwith BMI, we subsequently evaluated
associations of LEfSe-identified taxa in association with E-DII
tertiles via a negative binomial regression model adjusted for
age and BMI.

Due to the large number of low abundance species in meta-
genomic data, we employed the least absolute shrinkage and
selection operator (LASSO) method to identify bacterial species
and microbial gene content pathways associated with E-DII
among thirty-four patient volunteers with residual fasting blood
samples using the glmnet package in R(38). Spearman’s rank cor-
relation method was subsequently used to estimate the
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correlations of selected species and functional pathways based
on LASSO and 16S LEfSe analyses with seven circulating inflam-
matory biomarkers including leptin, TNF-α, IL-6, lipocalin 2,
PAI-1, C-peptide and chemoattractant protein-1. The Benjamini–
Hochberg (B-H) method was used to adjust P values in the multi-
ple correlation analyses while controlling for the expected false
discovery rate at 0·05.

Sensitivity analysis was performed by rerunning all the analy-
ses described above after removing one subject identified as an
outlier based on his/her Shannon index value, defined as 1·5
interquartile range below the 25th or above the 75th percentile
of the population’s value. All analyses were performed in SAS, R,
Galaxy(37), Agile Toolkit for Incisive Microbial Analyses(39). All
tests were two-sided, with P values<0·05 considered statistically
significant unless otherwise noted.

Results

Characteristics of participants

The median E-DII score was 1·79 (range –5·15 to –3·08) for
patient volunteers and –0·85 (range –4·04 to 2·83) for community

volunteers. Subjects with higher E-DII scores (i.e. more pro-
inflammatory diets) tended to have higher BMI (Table 1).
However, there was no statistically significant difference across
E-DII levels in the distribution of age, sex, history of precancer-
ous colorectal polyps and medication use. When we examined
these factors in relation to overall microbial diversity, none of the
factors were strongly associated with α-diversity (all P≥ 0·15) or
β-diversity (all rho≤ 0·05; data not shown).

Associations of energy-adjusted dietary inflammatory
index score with microbial diversity

α-Diversity (within sample diversity), a measure of microbial
richness and/or evenness, did not differ across E-DII levels
among all participants in the crude analysis (Shannon index:
P= 0·63 (Fig. 1(A)); other metrics (Table 1)). Null results were
similarly consistent within study subgroup (Fig. 1(B) for
Shannon Index; data not shown for other metrics). Null results
also were observed when examining continuous associations
of E-DII and α-diversity by subgroup (data not shown).

We examined several β-diversity (between sample diversity)
metrics, representing different measures of dissimilarity or

Table 1. Characteristics of participants by energy-adjusted dietary inflammatory index (E-DII) score (n 101)
(Medians and standard errors; numbers and percentages)

Most anti-inflammatory diet
Most pro-inflammatory

diet

P†Tertile 1* Tertile 2* Tertile 3*

n 33 34 34
Median SE Median SE Median SE

Age (years) 36·0 2·49 45·0 2·44 41·5 2·47 0·78
BMI (kg/m2) 23·10 1·04 28·6 1·52 30·2 1·09 0·001
Microbial α-diversity measures
Shannon index 2·45 0·12 2·61 0·10 2·63 0·11 0·63
Observed OTU 70·58 4·18 76·29 4·24 80·12 4·83 0·41
Chao1 index 88·94 5·58 100·11 6·60 104·15 6·61 0·22
Simpson index 0·83 0·03 0·87 0·02 0·85 0·02 0·65

n % n % n %
Sex
Male 9 27·27 11 32·35 15 44·12 0·33
Females 24 72·73 23 67·65 19 55·88

Study subgroup
Community volunteers 22 66·67 21 61·67 22 64·71 0·91
Patient volunteers 11 33·33 13 38·24 12 35·29

History of precancerous colorectal polyps
Yes 8 24·24 11 32·35 6 17·65 0·37
No 25 75·76 23 67·65 28 82·35

Medication use for the following conditions
Hyperlipidaemia

Yes 3 9·09 6 17·65 6 17·65 0·53
No 30 90·91 28 82·35 28 82·35

High blood sugar
Yes 1 3·03 0 0 1 2·94 0·60
No 32 96·97 34 100 33 97·06

Gastro-oesophageal reflux
Yes 2 6·06 4 11·76 4 11·76 0·67
No 31 93·94 30 88·24 30 88·24

Medication use for one or more of above conditions
Yes 6 18·18 8 23·53 10 29·41 0·56
No 27 81·82 26 76·47 24 70·59

OTU, operational taxonomic units.
* E-DII values across the three levels were calculated from FFQ-specific E-DII scores and categorised into tertiles based on the distributions in each study subgroup.
† The difference of categorical variable across E-DII tertiles was tested by the χ2 test, and difference of continuous variables was tested using the Kruskal–Wallis non-parametric test
as they are not normally distributed.
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distance between groups by highest v. lowest E-DII level.
We observedmodest visual differences inoverall community com-
position (Fig. 2 and online Supplementary Fig. S2). Although the
results of Unweighted Unifrac reached statistical significance,
E-DII clusters, comparing the highest (pro-inflammatory) v. lowest
(anti-inflammatory) levels, were not overly distinct (P= 0·03,
rho=0·02; online Supplementary Fig. S2). Similar results were
observed when we examined E-DII and β-diversity associations
stratified by BMI status.

Differentially abundant taxa by energy-adjusted dietary
inflammatory index score

We identified several differentially abundant taxa in the LEfSe analy-
sis across the three levels of E-DII score (Fig. 3). Ruminococcus
torques, Eubacterium nodatum, Acidaminococcus intestini and
Clostridium leptum were more abundant in subjects consuming
the most pro-inflammatory diets, while Akkermansia muciniphila
was enriched in subjects with the most anti-inflammatory diets.
With adjustment for age and BMI in the negative binomial model,
E-DII associations with these five taxa did not appreciably change
compared with crude model (Table 2). R. torques, E. nodatum and
A. intestini remained significantly associated with a more pro-
inflammatory diet.

Associations of energy-adjusted dietary inflammatory
index with microbial species, pathways and circulating
inflammatory markers

Although the E-DII has been construct validated in several large
studies(40–42), no significant associations were observed with
inflammatory markers among the subset of subjects with fasting
blood samples available, but all were in the expected direction
(n 34; online Supplementary Table S2). In the correlation analy-
sis of microbial species and functional pathways with inflamma-
tory biomarkers (n 34), Luteimonas mephitis, a low abundance
species identified via LASSO based on its non-zero negative cor-
relation with E-DII, was found to be inversely related to PAI-1
(rho= –0·40, P= 0·02; B-H adjusted P= 0·24). A. intestini, the
taxa associated with the most pro-inflammatory diet in the over-
all (16S) analysis, was positively related to PAI-1 (rho= 0·40,
P= 0·02; B-H adjusted P= 0·24) in the WGS subset. Another
LASSO-selected Lachnospiraceae bacterium strain associated
with a more pro-inflammatory E-DII was also positively corre-
lated with C-peptide (rho= 0·41, P= 0·02; B-H adjusted
P= 0·24). No other taxa selected from LEfSe in the larger 16S
analysis, or LASSO in the WGS subset analysis were associated
with circulating markers (all P values> 0·05; Fig. 4). Polyketide
sugar unit biosynthesis was significantly positively correlated
with E-DII (rho= 0·32, P= 0·03; B-H adjusted P= 0·50).

Fig. 1. Microbial α-diversity, as assessed by the Shannon index, across energy-adjusted dietary inflammatory index (E-DII) tertiles among (A) all study subjects (n 101)
and (B) by study subgroup (n 65 community volunteers, n 36 patient volunteers). EDII level , a (most anti-inflammatory diet); , b; , c (most pro-inflammatory diet).
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Secondary bile acid biosynthesis was positively correlated
with IL-6 (rho= 0·35, P= 0·04; B-H adjusted P= 0·50), but
appeared to be modestly inversely correlated with E-DII scores
favouring a more anti-inflammatory diet. Mammalian AMP-
activated protein kinase (AMPK) signalling and carbon metabo-
lism pathways, which were each modestly correlated with E-DII

scores favouring a more anti-inflammatory diet, were inversely
correlated with C-peptide (rho= –0·36 for AMPK and rho=
–0·40 for carbon metabolism, respectively; both P values
<0·05; B-H adjusted P≥ 0·50; Fig. 5). Of note, none of these
associations were statistically significant following correction
for multiple testing.

Fig. 2. Microbial community differences, as assessed by Bray–Curtis dissimilarity, between individuals with the most anti-inflammatory v. pro-inflammatory diet among
(A) all study subjects and (B) by study subgroup. Energy-adjusted dietary inflammatory index (E-DII) level , a (most anti-inflammatory diet); , c (most pro-inflammatory
diet).

Fig. 3. Differentially abundant taxa across energy-adjusted dietary inflammatory index (E-DII) tertiles using the linear discriminant analysis (LDA) effect sizes approach
among 101 subjects. , E-DII group 1 (most anti-inflammatory diet); , E-DII group 2; , E-DII group 1 (most pro-inflammatory diet).
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Discussion

Dietary inflammatory potential as measured by the E-DII score
was associated with differential composition of specific
microbes, but not overall diversity of the gut microbiome in this
cross-sectional sample of 101 cancer-free individuals. In the

overall analysis, R. torques, E. nodatum, A. intestini and C.
leptum were more abundant in subjects consuming the most
pro-inflammatory diets, while A. muciniphila was enriched in
subjects with the most anti-inflammatory diets. In analysis
adjusted for both age and BMI, R. torques, E. nodatum and

Table 2. Crude and age- and BMI-adjusted associations of energy-adjusted dietary inflammatory index (E-DII) with five candidate taxa* (n 101)
(eβ and 95 % confidence intervals)

Most anti-inflammatory diet Most pro-inflammatory diet

P*

Tertile 1 (n 33) Tertile 2 (n 34) Tertile 3 (n 34)

eβ† eβ† 95% CI eβ† 95% CI

Ruminococcus torques
Crude model 1·00 (ref) 1·17 0·62, 2·21 3·16 1·68, 5·93 0·001
Age- and BMI-adjusted model 1·00 (ref) 1·12 0·55, 2·28 3·03 1·48, 6·20 0·002

Acidaminococcus intestine
Crude model 1·00 (ref) 18·93 2·23, 160·93 257·21 30·90, 2140·72 <0·0001
Age- and BMI-adjusted model 1·00 (ref) 7·59 0·83, 69·58 127·96 9·85, 1661·54 0·0005

Eubacterium nodatum
Crude model 1·00 (ref) 0·57 0·19, 1·70 2·10 0·86, 5·16 0·03
Age- and BMI-adjusted model 1·00 (ref) 0·43 0·13, 1·36 1·74 0·65, 4·67 0·018

Clostridium leptum
Crude model 1·00 (ref) 0·59 0·17, 2·04 1·26 0·38, 4·20 0·48
Age- and BMI-adjusted model 1·00 (ref) 0·33 0·08, 1·34 1·24 0·36, 4·26 0·13

Akkermansia muciniphila
Crude model 1·00 (ref) 0·74 0·18, 3·09 0·23 0·06, 0·97 0·16
Age- and BMI-adjusted model 1·00 (ref) 2·30 0·45, 11·65 0·59 0·10, 3·72 0·17

ref, Reference; LEfSe, linear discriminant analysis effect sizes.
* Computed for the association between E-DII and five LEfSe selected taxa; the significant P value indicates E-DII is significantly associated with abundance of the taxa.
† Negative binomial model with log link was used to estimate eβ and 95%CI. Magnitude indicates howmuchmore abundant the taxa (treated as count), for example, three timesmore
abundant in the highest, as compared with the lowest E-DII tertile.

Fig. 4. Correlation heatmap of energy-adjusted dietary inflammatory index (E-DII)-associated species and circulating markers among thirty-four subjects with residual
fasting blood samples and whole-genome shotgun (WGS) sequencing of the gut microbiome. Acidaminococcus intestini, Akkermansia muciniphila, Ruminococcus
torques and Holdemanella biformis were selected as differentially abundant operational taxonomic units (OTU) in the 16S analyses, while other species were selected
using the least absolute shrinkage and selection operator (LASSO) method based on non-zero estimates of correlation with E-DII. ** Statistically significant Spearman
correlations (P< 0·05) before correction for multiple testing (none of the correlations was significant after Benjamini–Hochberg adjustment). MCP-1, monocyte chemo-
attractant protein-1; PAI-1, plasminogen activator inhibitor-1.
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A. intestini remained significantly associated with a more pro-
inflammatory diet. In an exploratory subset of individuals with
fasting blood samples and metagenomic characterisation of
the gut microbiome, pathways reflecting the functional capacity
of the gut microbiome to support AMPK signalling, carbon
metabolism, polyketide and secondary bile acid biosynthesis
were associated with the inflammatory potential of the diet
and/or systemic inflammation in the host.

We found several differentially abundant microbes by
E-DII level. Four bacteria: R. torques, E. nodatum, A. intestini
and C. leptum were associated with the most pro-inflammatory
diet, and A. muciniphila was enriched in participants with the
most anti-inflammatory diet. A. mucinphila and R. torques have
previously been highlighted in a randomised cross-over inter-
vention trial of the fermentable oligosaccharides, disaccharides,
monosaccharides and polyols (FODMAP) diet among
twenty-seven irritable bowel syndrome patients and six healthy
subjects(43). Results of this trial showed that low compared with
moderate FODMAP intake was associated with a 5-fold reduc-
tion in A. mucinphila and a 1·5-fold increase in R. torques(43).
FODMAP substrates are fermented by gut bacteria to SCFA with
anti-carcinogenic and anti-inflammatory actions(16). A. mucini-
phila is a producer of SCFA, primarily acetate and propionate,
through mucin degradation. Mouse studies have demonstrated
that a high-fat diet (i.e. pro-inflammatory diet) decreases the
abundance of this species and support a causative role for this
species in lowering adipose tissue inflammation and improving
insulin sensitivity and lipid metabolism(44). However, the role of
A. muciniphila in modulating inflammation in humans remains
unclear. Two studies reported no association of A. muciniphila
with systemic inflammatory markers, including high sensitivity-

C-reactive protein, IL-6 and lipopolysaccharides(45,46). In a
recently published randomised, double-blind, placebo-
controlled pilot study of thirty-two overweight/obese insulin-
resistant volunteers, a 3-month administration of pasteurised
A. muciniphilawas found to significantly decrease two enzyme
activities that are thought to be involved in modulating inflam-
mation, that is, dipeptidyl peptidase 4 and γ-glutamyltransfer-
ase(47). Previous human studies that investigated other a priori
dietary patterns or indices (e.g. Healthy Eating Index,
Mediterranean Diet Score and Healthy Food Diversity index)
also showed that greater adherence to healthy diets was associ-
ated with increased abundance of other SCFA-producing
microbes, such as Faecalibacterium prausnitzii(8,10).

Less is known with regard to other potential inflammation-
related taxa observed in our study and their interactions with
the inflammatory potential of diet. E. nodatum is a periodontal
pathogen(48) that has been linked to active rheumatoid arthritis
and psoriatic arthritis characterised by chronic inflammation
affecting joints and connective tissues(49). C. leptum is a carbohy-
drate-fermenting bacteria associatedwith Treg responses known
to modulate intestinal and systemic inflammation in experimen-
tal models and found to be lower in patients with inflammatory
bowel disease(50–52). Although in our study higher C. leptumwas
observed in healthy individuals with a more pro-inflammatory
diet, this cross-sectional association was attenuated with adjust-
ment for age and BMI. A. intestini, previously recovered from
various human clinical samples of hospitalised patients(53),
appears to be responsive to supplementation with quercetin
and partially hydrolysed guar gum in human faecal samples(54,55)

and is positively associated with LPS-stimulated TNFα
production(56). This is generally consistent with our study finding

Fig. 5. Correlation heatmap of energy-adjusted dietary inflammatory index (E-DII)-associated pathways and circulating markers among thirty-four subjects with residual
fasting blood samples and whole-genome shotgun (WGS) sequencing of the gut microbiome. A total of seven WGS characterised pathways were selected using the
least absolute shrinkage and selection operator (LASSO)method based on non-zero estimates of correlation with E-DII. ** Statistically significant Spearman correlations
(P< 0·05) before correction for multiple testing (none of the correlations was significant after Benjamini–Hochberg adjustment). MCP-1, monocyte chemoattractant
protein-1; PAI-1, plasminogen activator inhibitor-1.
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of higher A. intestini in the most pro-inflammatory diet
group and its positive correlation with circulating PAI-1, a pro-
inflammatory marker closely associated with obesity, type-2 dia-
betes and CVD risk(57). Conversely, L. mephitis, a species of
Proteobacteria that reduces nitrite to nitrous oxide without
production of nitrogen(58), was inversely correlated with E-DII
and PAI-1 in our study.

Metagenomic pathways are expected to more closely reflect
the functional nature of the gut microbiome as an interacting
community of multiple microorganisms that supports (or hin-
ders) the host. We found that the AMPK signalling pathway, a
central regulator of cellular energy homeostasis and glucose
and lipid metabolism(59), was inversely associated with E-DII
and C-peptide. In both human and animal studies, activation
of AMPK in adipose tissue has been linked to several anti-
inflammatory dietary factors, such as n-3 PUFA, polyphenolic
compounds and fibre(60,61). However, there is little evidence to
support our findings for microbial AMPK and carbonmetabolism
pathways with C-peptide, an insulin resistance marker(62).
We also identified a positive association of secondary bile acids
biosynthesis with IL-6. Primary bile acids are converted to secon-
dary bile acids through microbial modifications in the gut and
modulate signalling via the nuclear bile acid receptors, that is,
farnesoid X receptor and G-protein-coupled bile acid receptor
(TGR5). Farnesoid X receptor and TGR5 signalling influence
many different metabolic processes in the host, including energy
homeostasis, glucose homeostasis, obesity and inflammatory
responses, involving IL-6 and TNF-α(63–65). The positive associa-
tion between E-DII and polyketide biosynthesis is also interest-
ing, as bacterially derived polyketides exhibit a number of
bioactive properties that modulate antibacterial, antitumour
and antiviral activities(66–68). The direction of this relationship
and some others (e.g. the suggestive inverse association of DII
with secondary bile acids biosynthesis) are somewhat unex-
pected and may be chance findings due to very limited sample
size (n 34). While these pathways reflect the presence of genes
needed to perform a particular metabolic function, they do not
necessarily reflect the gut-derived metabolites that may or may
not be produced from interactions between microbes and host
diet or other exposures (e.g. medications). Additionally, some
pathological pathways may not be activated given the study
exclusion criteria and focus on healthy individuals. Larger
prospective studies are warranted to confirm or refute our
findings, as this analysis was exploratory in nature and none
of our findingswere significant following adjustment formultiple
testing.

The biological processes underlying diet–microbiome inter-
actions that modulate inflammation are not fully known. With
a diet enriched with more anti-inflammatory components such
as fibre- and polyphenol-rich plant foods, saccharolytic fermen-
tation of carbohydrates by gut microbes can produce SCFA
(i.e. butyrate, acetate and propionate). SCFA promote anti-
inflammatory responses in the host through a series of mecha-
nisms, including intestinal homeostasis, genetic/epigenetic
regulation and immunomodulatory signalling(16). Conversely,
a pro-inflammatory diet (e.g. high in fat, simple carbohydrates
and meat but low in fibre-rich plant foods) creates a pro-
inflammatorymilieu of protein catabolites and deconjugated bile

acid residues, leading to increased inflammation-related pheno-
types in the host(16). These include impairment of the mucosal
barrier and altered gut permeability and immune responses(18).
A local inflammatory environment further alters gut microbiota
to affect systemic inflammation via adherence to the gut epi-
thelium, passage through the gut barrier to enter systemic circu-
lation, activation of an immune response through toll-like
receptor binding and/or activation of regulatory T cells and
through the synthesis and secretion of cytotoxic biomolecules
or metabolites(16,18,69). Additional human research is needed to
elucidate the microbial pathways and metabolites that modulate
diet-induced inflammation.

Interestingly, despite our findings for specific microbes and
functional pathways, we did not observe significant or striking
associations between gut microbial (α and β) diversity and E-
DII score in either the crude or adjusted analyses. While this
could be attributed to insufficient variation, sample size or
residual confounding due to unmeasured factors, several studies
comparing faecal microbiota diversity across participants follow-
ing distinct diets (e.g. vegetarian, vegan and omnivore) also
reported no, or only modest, differences in microbial diversity
between diet groups(70–74). Notably, the DII focuses on a
balance of dietary components similar to other diet indices,
but it may not be directly comparable to other studies due to
its specific focus on inflammation. The Healthy Eating Index
and Mediterranean Diet Score were significantly associated with
various α-diversity metrics in an assessment of three different
dietary indices based on FFQ data from 2070 members of the
TwinsUK cohort(8). One(9) of three additional observational
studies focused on increased adherence to the Mediterranean
Diet Score or other diet quality indices reported a concurrent
increase or difference in microbial α-diversity(11,12). Similarly, a
dietary intervention among overweight and obese subjects,
as well as a companion observational study focused on healthy
v. unhealthy dietary patterns, reported increased faecal microbial
gene richness (total gene counts) among participants with
healthier diets(1,75).

Our study is novel in its specific focus on diet-related inflam-
mation and its interaction with microbiome, a hypothesis rooted
in biologically plausible relationships that are highly relevant to
host health(14,76). Using a construct-validated tool which converts
major inflammation-related dietary factors commonly consumed
by Americans to an overall interpretable diet score, the E-DII
provides a comprehensive summary of the dietary inflammatory
potential of participants’ entire diets(41–43). Although not all of
the DII components were queried in our study, the majority of
the missing dietary components, like spices, are typically con-
sumed in very low amounts in the USA. As previously reported,
the range of DII scores may rely more on the amount of foods
actually consumed rather than on the number of available DII
components(77). Furthermore, misclassification in dietary inflam-
matory potential due to the missing dietary factors would likely
be non-differential, thus attenuating our results toward the null.
Other limitations of nutritional epidemiological studies also
apply here, as the FFQ is prone to response bias and measure-
ment error. Importantly, other important factors or exposures
that may affect the microbiota composition (e.g. medications)
were carefully collected in personal interviews and medical
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charts. However, we are still learning the complexity and
breadth of factors that affect the microbiome or mask observed
diet–microbiome associations, and our sample size limited our
ability to explore multiple factors simultaneously. At the time
of recruitment, we excluded individuals who reported antibiotic
use in the past month; however, this may not have been
sufficient for some individual’s microbial communities to ‘return
to normal’. Recent studies demonstrate that the recovery
time may vary by the type, dose and duration of antibiotic
use(78,79). Our inclusion of cancer-free patient and community
volunteers was designed to maximise the variation needed to
identify associations of diet with the microbiome. However,
homogeneity due to exclusion criteria coupled with limitations
in sample size could explain the low variation observed in α-
diversity, β-diversity and other associations. Also, it may have
been easier to detect differences had the range inDII scores gone
towards their theoretical extremes (i.e. –9 toþ 8). We were par-
ticularly limited in our subset analysis of patients with residual
fasting blood samples, for which we also conducted WGS
sequencing of the gut microbiome. To address this, we used
LASSO, which is an efficient method to select species and path-
ways given a small number of subjects and the large number
of zero-inflated species revealed in WGS sequencing. Taken
overall, the present study is of a preliminary and hypothesis-
generating nature given the cross-sectional design with evalu-
ation of diet, microbiome and blood markers at a single time
point, as well as the lack of significant associations following
adjustment formultiple comparisons, all of which prohibit causal
and mechanistic inferences.

Dietary inflammatory potential was associated with differen-
tial composition of specific microbes but not overall gut micro-
biota diversity in this well-defined sample of 101 individuals. Our
analysis highlighted several biologically plausible microbes
potentially related to diet-induced inflammation. R. torques,
E. nodatum, A. intestini and C. leptum were more abundant in
subjects consuming the most pro-inflammatory diets, while
A. muciniphila was enriched in subjects with the most anti-
inflammatory diets. Correlations between E-DII, microbes, func-
tional gene content pathways and inflammatory biomarkers in
an exploratory subset further support the role of diet–microbiota
interactions in modulating systemic inflammation in the host.
Future prospective studies of dietary inflammatory potential
and its interactions with the microbiome are warranted. It is
increasingly important to understand howdiet as awhole shapes
the composition and function of the gut microbiome tomodulate
host inflammation, an important mechanism in the development
of cancer and other major chronic diseases.

Acknowledgements

The authors would like to acknowledge the UT MD Anderson
Center for Energy Balance in Cancer Prevention and
Survivorship, the Center for Translational and Public Health
Genomics, as well as Dr G. S. Raju, gastroenterologist at MD
Anderson, and Jonathan Busquets, summer intern from Rice
University.

This work was supported by a grant from The University of
Texas MD Anderson Cancer Center Duncan Family Institute

for Cancer Prevention and Risk Assessment (to C. R. D.). The
authors were supported by grants from the American Cancer
Society RSG-17-049-01-NEC (C. R. D.), the Cancer Prevention
and Research Institute of Texas RP170259 Postdoctoral
Training Fellowship (J. Z.), Chandler Cox Foundation (S. M.
S.), the National Cancer Institute Cancer Prevention Research
Training Program R25 CA056452 (A. S.) and R25 CA057730 (K.
L. H.) and the National Cancer Institute Cancer Center Support
Grant to MD Anderson CCSG5P30 CA016672-37 Risk,
Detection and Outcomes Program (C. R. D., S. H.). The funders
had no role in the design, analysis or writing of this article.

J. Z. and C. R. D. designed the research and drafted the manu-
script; J. Z. conducted the analysis; J. Z., K. L. H., P. W., S. M. S.
and C. R. D. contributed to the design of the analysis and inter-
pretation of results. K. L. H., J.-S. C. and P. W. provided statistical
support. C. R. D., S. M. S. and J. F. P. designed and carried out the
initial studies; N. S. and J. R. H. contributed to the scoring of the E-
DII and helped with E-DII score interpretation; D. D. D., G. J. B.
and K. L. H. were involved in the collection and processing of the
data. S. H. and J. F. P. provided essential reagents or materials. All
authors contributed to the critical revision and approval of the
manuscript. C. R. D. had primary responsibility for final content.

J. R. H. owns a controlling interest in Connecting Health
Innovations LLC (CHI), a company has licensed the right to
his invention of the dietary inflammatory index (DII®) from
the University of South Carolina in order to develop computer
and smartphone applications for patient counselling and dietary
intervention in clinical settings. N. S. is an employee of CHI. The
other authors have no conflicts of interest to disclose.

Supplementary material

For supplementarymaterials referred to in this article, please visit
https://doi.org/10.1017/S0007114520001853

References

1. Cotillard A, Kennedy SP, Kong LC, et al. (2013) Dietary inter-
vention impact on gut microbial gene richness. Nature 500,
585–588.

2. Wu GD, Chen J, Hoffmann C, et al. (2011) Linking long-term
dietary patterns with gut microbial enterotypes. Science 334,
105–108.

3. Flint HJ (2012) The impact of nutrition on the human
microbiome. Nutr Rev 70, Suppl. 1, S10–S13.

4. Ley RE, Lozupone CA, Hamady M, et al. (2008) Worlds within
worlds: evolution of the vertebrate gut microbiota. Nat Rev
Microbiol 6, 776–788.

5. Kinross JM, Darzi AW & Nicholson JK (2011) Gut microbiome-
host interactions in health and disease. Genome Med 3, 14.

6. Daniel CR & McQuade JL (2019) Nutrition and cancer in the
microbiome era. Trends Cancer 5, 521–524.

7. Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut
microbiota in nutrition and health. Nat Rev Gastroenterol
Hepatol 9, 577–589.

8. Bowyer RC, Jackson MA, Pallister T, et al. (2018) Use of dietary
indices to control for diet in human gut microbiota studies.
Microbiome 6, 77.

9. Maskarinec G, Hullar MAJ, Monroe KR, et al. (2019) Fecal
microbial diversity and structure are associatedwith diet quality

940 J. Zheng et al.

https://doi.org/10.1017/S0007114520001853  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520001853
https://doi.org/10.1017/S0007114520001853


in the multiethnic cohort adiposity phenotype study. J Nutr
149, 1575–1584.

10. Tindall AM, Petersen KS & Kris-Etherton PM (2018) Dietary
patterns affect the gut microbiome-the link to risk of cardiome-
tabolic diseases. J Nutr 148, 1402–1407.

11. Garcia-Mantrana I, Selma-Royo M, Alcantara C, et al. (2018)
Shifts on gut microbiota associated to mediterranean diet
adherence and specific dietary intakes on general adult
population. Front Microbiol 9, 890.

12. De Filippis F, Pellegrini N, Vannini L, et al. (2016) High-level
adherence to a Mediterranean diet beneficially impacts
the gut microbiota and associated metabolome. Gut 65,
1812–1821.

13. Shivappa N, Steck SE, Hurley TG, et al. (2014) Designing and
developing a literature-derived, population-based dietary
inflammatory index. Public Health Nutr 17, 1689–1696.

14. O’Keefe SJD, Li JV, Lahti L, et al. (2015) Fat, fibre and cancer risk
in African Americans and rural Africans. Nat Commun 6, 6342.

15. Mehta RS, Nishihara R, Cao Y, et al. (2017) Association of
dietary patterns with risk of colorectal cancer subtypes classi-
fied by Fusobacterium nucleatum in tumor tissue. JAMA
Oncol 3, 921–927.

16. O’keefe SJ (2016) Diet, microorganisms and their metabolites,
and colon cancer. Nat Rev Gastroenterol Hepatol 13, 691.

17. Hardman WE (2014) Diet components can suppress inflamma-
tion and reduce cancer risk. Nutr Res Pract 8, 233–240.

18. Liu L, Tabung FK, Zhang X, et al. (2018) Diets that promote
colon inflammation associate with risk of colorectal carcinomas
that contain Fusobacterium nucleatum. Clin Gastroenterol
Hepatol 16, 1622–1631.e1623.

19. Yang J & Yu J (2018) The association of diet, gut microbiota and
colorectal cancer: what we eat may imply what we get. Protein
Cell 9, 474–487.

20. Louis P, Hold GL & Flint HJ (2014) The gut microbiota, bacterial
metabolites and colorectal cancer. Nat Rev Microbiol 12, 661.

21. Zitvogel L, Pietrocola F & Kroemer G (2017) Nutrition, inflam-
mation and cancer. Nat Immunol 18, 843.

22. Seidell JC & Flegal KM (1997) Assessing obesity: classification
and epidemiology. Br Med Bull 53, 238–252.

23. Melkonian SC, Daniel CR, Hildebrandt MAT, et al. (2014) Joint
association of genome-wide association study–identified sus-
ceptibility loci and dietary patterns in risk of renal cell carci-
noma among Non-Hispanic whites. Am J Epidemiol 180,
499–507.

24. Block G, Coyle LM, Hartman AM, et al. (1994) Revision of
dietary analysis software for the Health Habits and History
Questionnaire. Am J Epidemiol 139, 1190–1196.

25. VenookAP, Papandreou C, Furuse J, et al. (2010) The incidence
and epidemiology of hepatocellular carcinoma: a global and
regional perspective. Oncologist 15, Suppl. 4, 5–13.

26. Subar AF, Midthune D, Kulldorff M, et al. (2000) Evaluation
of alternative approaches to assign nutrient values to food
groups in food frequency questionnaires. Am J Epidemiol
152, 279–286.

27. Phillips C, Shivappa N, Hébert J, et al. (2018) Dietary inflamma-
tory index and biomarkers of lipoprotein metabolism, inflam-
mation and glucose homeostasis in adults. Nutrients 10, 1033.

28. Shivappa N, Wirth MD, Murphy EA, et al. (2019) Association
between the Dietary Inflammatory Index (DII) and urinary
enterolignans and C-reactive protein from the National
Health and Nutrition Examination Survey-2003–2008. Eur
J Nutr 58, 797–805.

29. Sinha R, Chen J, Amir A, et al. (2016) Collecting fecal samples
for microbiome analyses in epidemiology studies. Cancer
Epidem Biomarkers Prev 25, 407–416.

30. Caporaso JG, Lauber CL, Walters WA, et al. (2011) Global
patterns of 16S rRNA diversity at a depth of millions of
sequences per sample. Proc Natl Acad Sci U S A 108, Suppl.
1, 4516–4522.

31. Hoffman KL, Hutchinson DS, Fowler J, et al. (2018) Oral
microbiota reveals signs of acculturation in Mexican American
women. PLOS ONE 13, e0194100.

32. Edgar RC (2013) UPARSE: highly accurate OTU sequences from
microbial amplicon reads. Nat Methods 10, 996–998.

33. Zhang Z, Schwartz S,Wagner L, et al. (2000) A greedy algorithm
for aligning DNA sequences. J Comput Biol 7, 203–214.

34. Stewart CJ, Ajami NJ, O’Brien JL, et al. (2018) Temporal devel-
opment of the gut microbiome in early childhood from the
TEDDY study. Nature 562, 583–588.

35. Kanehisa M & Goto S (2000) KEGG: Kyoto encyclopedia of
genes and genomes. Nucleic Acids Res 28, 27–30.

36. Morgan XC & Huttenhower C (2012) Human microbiome
analysis. PLoS Comput Biol 8, e1002808.

37. Segata N, Izard J, Waldron L, et al. (2011) Metagenomic bio-
marker discovery and explanation. Genome Biol 12, R60.

38. Friedman J, Hastie T & Tibshirani R (2010) Regularization paths
for generalized linear models via coordinate descent. J Stat
Softw 33, 1–22.

39. Paradis E, Claude J & Strimmer K (2004) APE: Analyses of
Phylogenetics and Evolution in R language. Bioinformatics
20, 289–290.

40. Tabung FK, Steck SE, Zhang J, et al. (2015) Construct validation
of the dietary inflammatory index among postmenopausal
women. Ann Epidemiol 25, 398–405.

41. Wirth MD, Shivappa N, Davis L, et al. (2017) Construct
validation of the dietary inflammatory index among African
Americans. J Nutr Health Aging 21, 487–491.

42. Shivappa N, Steck SE, Hurley TG, et al. (2014) A population-
based dietary inflammatory index predicts levels of C-reactive
protein in the Seasonal Variation of Blood Cholesterol Study
(SEASONS). Public Health Nutr 17, 1825–1833.

43. Halmos EP, Christophersen CT, Bird AR, et al. (2015) Diets
that differ in their FODMAP content alter the colonic luminal
microenvironment. Gut 64, 93–100.

44. Schneeberger M, Everard A, Gómez-Valadés AG, et al. (2015)
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