ON PONTRYAGIN DUALITY
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Introduction. The main aim of this article is to discuss the relationship between
Pontryagin duality and pro-objects. The basic idea arises from K. H. Hofmann’s articles
[7] and (8] where it is shown that the elementary abelian (Lie) groups are “‘dense” in the
category of locally compact hausdorff abelian groups.

We commence with a good symmetric monoidal closed category ¥ and a full
sub-¥-category o < ¥ of “elementary” objects. We then build pro-s{-objects as suitable
projective limits of these elementary objects. This is done with a view to extending
Pontryagin duality to pro-sf-objects once it holds in & with respect to some basic
dualising object which we call ). The actual pro-sf-objects constructed are relative to a
subcategory € of ¥, which, in practice, is usually taken to be some good class of
epimorphisms in ¥,. This is done in Sections 2 and 3.

In Section 4 we discuss to what extent projective limits of pro-s#/-objects are again
pro-sf-objects. This at least explains one of Kaplan’s results [10]; namely, that the
product of locally compact hausdorff abelian groups satisfies Pontryagin duality. Kaplan’s
second result [11] remains to be fitted into this context.

In the examples of Section S we apply the results of the preceding sections to prove
that Pontryagin duality holds for any abelian. group object in the category of compactly
generated spaces which is a suitable projective limit of its elementary Lie quotients. We
also reproduce the duality of Hofman, Mislove and Stralka [9] between semilattices and
compact zero-dimensional semilattices.

For basic notation and terminology we refer the reader to Day and Kelly [3],
Eilenberg and Kelly [5] and Mac Lane [12].

1. Preliminaries. Let ¥'=(¥%,, V,®,L[—, —],...) be a complete and cocomplete
symmetric monodial closed category in the sense of Eilenberg and Kelly [5]. This means
that we have at our disposal the calculus of ¥ -ends discussed in Day and Kelly [3] and in
Dubuc [4].

Let %no denote “the” category of small sets and set maps. We denote the X-fold
power, respectively copower, of X € €45 with Ce ¥ by {X, C}, respectively X. C.

We now assume that V:¥,— & is faithful. The effect of this assumption is the
following.

LemMma 1.1. Suppose A is a small V'-category and S : A°*Q@A— V' is a V'-functor. Let
S' denote the composite.

Vol X Vo —025 V, (AP R A) 255V, ¥ = ¥,
Then

S’(AA)zj S(AA).

J‘AGV.&! AcdA
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Proof. Following the notation of Eilenberg and Kelly [5] we write &, = V4. Because
V: Vo= &nois faithful a family a, : C—S(AA) is ¥-natural in A € & if and only if it is
&nos-natural in A € o4, since

A(AB) =22 ,[S(AA), S(AB)]

S(-B)l l[ﬂA-I]

[S(BB), S(AB)] TT[C’ S(AB)]

commutes if and only if
VS(A-)

AN(AB)———>V(S(AA), S(AB))
VS('B)I 170(04\-‘)
V(S(BB), S(AB)) ——=>¥4(C, S(AB))
commutes. Thus the equaliser of the canonical pair
[1saa) = T[] [#(A, B), s(AB)]
Aecd A.Besd
which is, by definition, j4.4 S(AA) coincides with the equaliser of the canonical pair
I1 staa) = ]I {«(A, B),S(AB)}
Aed, A.Bed,
which is, by definition, f4 .4, S'(AA).

Henceforth we shall denote S'(AB) simply by S(AB).
The assumption that V:¥;— s is faithful allows us, in effect, to “mix” ¥ '-ends
with ordinary €sx-ends. '

2. Pro-d-objects. Let f < ¥ be a full sub-¥'-category of ¥. Let € be a subcategory
of ¥V, and let =8N H,.

DeriNiTION 2.1, (i) A pro-A-object in ¥ relative to & is an object Ce ¥ such that
C=facx {38(C, A), A}

(ii) A strong pro-sf-object in V relative to € is a pro-#-object Ce ¥ such that
[A<*¥ %(C, A).[A, B]=[C, B] is an epimorphism for all B € &.

The ¥'-category of pro-sf-objects is denoted by P(%) while the ¥-category of
strong pro-#-objects is denoted by PPA(E).

Lemma 2.2, dc PPA(E).

Proof. If A’esdd then A'=[,_{#(A', A), A} by the representation theorem
applied to Ae¥, =[a.l{8(A’,A), A} Similarly [**¥g(A’, A).[A, B]=
fA<* %(A', A).[A, B]=[A’, B] by the representation theorem applied to A € ¥.

THEOREM 2.3. The inclusion 4 < PPA(%) is V-codense (= V-coadequate).
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Proof. For ¥-codensity we require that C={, .4 [[C, A], A]for all Ce $PA(%). But,
by Definition 2.1(ii), there is a monomorphism

[[C, B, B]— [J'Ae*sg(c, A).[A, B], B]

for each B e d. This gives us a monomorphism

B

ccts U ", 4).04,B) B]

since limits of monomorphisms are monomorphisms. Moreover, the codomain of this
monomorphism becomes:

Le% “Ae%ig(c, A).[A, B], B] = {2(C, A),[[A, B], B]

‘Bedd, J:\a%

0

{¢(C, A),[[A, B], B}

JAe¥ J‘B edy
on interchanging ends,

,

= {%(C, A),j

YAe¥X Besd,

4, B, BT}

where (g 4 [[A, B], Bl={g.«[[A, B], B] (by Lemma 1.1)=A by the ¥-representation
theorem applied to B € &f. Thus we obtain a monomorphism

m: L _ [C.B1 5]~ LE% {8(C, A), A}=C

by Definition 2.1(i). However, this monomorphism is left inverse to the canonical
transformation n from C to fg. 4, [[C, B], B] by consideration of the following diagram:

C n , L‘, ([C, B), B] m C

L H’ €(C, A).[A, B], B]=> L {8(C, A), A}

0

"~ H%EE(C, A).[A, B), B] L L" {8(C, A).[[A, B), B}
[[C, B, B] : %L {8(C, A),[[A, B], B}
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where * commutes for obvious reasons (project both legs at A € ¥ and f€ §(C, A)). Thus
C={geu,[[C Bl, Bl={g.4[[C B], B] by Lemma 1.1, as required.

3. Duality. Given &£ < ¥ we can form the Pontryagin closure of «:

a‘e={c€v;c§j

Aecd

[[C, A] Alin °V}.

ProrposTION 3.1. A< sf and A = 4.

Proof. 1f B € f then B={,.4[[B, A], A] by the ¥-representation theorem applied to
Aco. Thus fcd so A But Ced implies C=f,..7[[C,A'], A'] where A'e
implies A'={,.4[[A’, A], A]. So

C= L'EQ lic.an Led (', A1, A1l

i

Led UA e anera’, A Al

=[ mcaia

by the ¥-representation theorem applied to A’e .

CoroLLary 3.2. The inclusion o c o is V-codense and if €<V with s <€ being
V-codense then €< A. .

Given £ < ¥ and Qe o such that [[A, Q], Q)= A we have:

ProrosiTiON 3.3. Pontryagin duality with respect to Qe s holds in .

Proof. If Ce of then

C

I

| mcapal

Aed

[

| rcarmaaan

N

Aed
[[1c a1e14,01.0)
=[[C ], 0]
by the ¥ -representation theorem applied to A € .
COROLLARY 3.4. Pontryagin duality with respect to Q) holds in $PA(%).
Proof. By Theorem 2.3.

We now examine the case where f4<* €(C, A).[A, B]—[C, B] is an isomorphism for
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all Ce ¥ and B € o. When this is so PHA(%) and FPHA(%) coincide and we can define an
endofunctor P: ¥ — ¥ by any one of the formulas

pc=|

Ae¥

{(C, A), A}= I [[C, Al Al=[[C, QJ, Q).

Aed

We recall from Day [1] that a category € is M -complete if M is a subcategory of
monomorphisms in € such that € has the following inverse limits and 4 contains each
monomorphism so formed:

(a) equalisers of pairs of morphisms,

(b) pullbacks of #-monomorphisms,

(¢) the intersection of any family of #{-monomorphisms with a common codomain.

A functor T:€— % is AM-continuous if it preserves these inverse limits in 6.

ProrosiTioNn 3.5. If V' is M-complete for some system M of monomorphisms then
PA(E) < V is reflective if [—, Q): V°°— V preserves suitable colimits.

Proof. Basically we require that [—,QF":¥— %" be J{-continuous and that
[—, Q): V°°— ¥ preserve linear colimits. The effect of the first requirement is that P4(%)
is M-complete and the inclusion PA(%)< V" is M-continuous. Thus we can apply Day [1,
Theorem 2.2] provided P:¥—¥ is a suitable boundary functor. But the canonical
morphism n¢ : C— PC gives us:

C—<5PC5P2C—s. .. —>P"C

where P"*!'C=[[P"C,0}, 0] If [—,Q] preserves linear colimits then P“C=
colim P"*'C =colim[[P"C, 0], Q] =[lim{ P"C, ], ]=[[colim P"C, ], Q]=[[P“C, 0], Q].
Thus P*C lies in Ps4(%) for all Ce¥. This implies (by Day [1, Theorem 2.2]) that
PA(E) V is reflective and the reflection of Ce ¥ is the intersection in ¥ of all the
PA(B)-M-subobjects of P°C through which the resultant canonical transformation
Bc : C— P~C factors.

We recall that Qe ¥ is said to be a strong V-cogenerator for V if [—,Q]: VP>V
reflects isomorphisms.

CoroLLArY 3.6. If Q) is a strong V'-cogenerator for V' then PA(E)=V if and only if
[—,Q]: ¥°°— ¥ preserves colimits.

Proof. If [—, Q] preserves colimits then P4(€)< ¥V is ¥ -reflective hence is closed
under ¥-limits. Thus, if ) is a strong ¥'-cogenerator then every object of ¥ is a ¥ -limit
of copies of Q. Thus P(€) = V. Conversely, if PZ(%) =T then Pontryagin duality holds
in ¥ with respect to Q. Thus colim[A,, Q]=[lim A,, 2] because [colim[A,, 2], ] =
lim[[A,, O], Q]=1im A, =[[lim A,, Q], Q] where Q is a strong ¥-cogenerator so that
[—, Q] reflects isomorphisms.
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4. Strong of-limits. A strong sf-limit relative to & is a limit lim C, in ¥, such that
the canonical morphisms

Y €(C,, A)—>%(im C,, A), Y. [C, Al=[limC,, A]

are epimorphisms for all A €.
ProposITION 4.1. A strong A-limit of strong pro-sl-objects is a strong pro-s{-object.

Proof. The morphism } &(C,, A)—%(lim C,, A) is a surjection if and only if the
canonical morphism colim €(C,, A)— €(lim C,, A) is an epimorphism. This gives a
monomorphism

I {€(1im C,, A), A}—>I {colim €(C,, A), A}
Ac¥ A

eX
Aed
=lim C,.

Moreover, this monomorphism is left inverse to the canonical morphism from lim C, to
facse {8(lim C,, A), A} hence it is an isomorphism. The fact that lim C, is a strong
pro-s-object now follows from consideration of the following diagram:

j ) Y €(C\. A) .[A, B] Y [C, B]

|

Ae¥
J g(lim C,, A).[A, B]-------- » [lim G,, B].

Here the dotted arrow is an epimorphism because the diagonal is an epimorphism.

S. Examples.

ExampLE 5.1. Let V' be the symmetric monoidal closed category és£é of abelian
group objects in the category € of all convergence spaces (i.e. limit spaces). Let
A={R"OR/Z)"®G; m,necN and G discrete}. Let Q=R/Z and let € be the cate-
gory of identification maps.

ProposrTioN 5.1.1. Each locally compact hausdorff abelian group is a strong pro-s4-
object.

Proof. Each locally compact hausdorff abelian group C is a pro-s{-object by the
Lie-group approximation theorem: see Hofmann [7]. Secondly, each continuous
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homomorphism f:C— B, B € o, factors as
C—»Cl/ker f—B

where Clker f is a locally compact hausdorff group, hence is a Lie group (see Hochschild
[6, Chapter VIII]), so C/ker fe . This implies that {*<* &(C, A).[A, B]=[C,B] is a
surjection, as required.

CoroLLARY 5.1.2. Pontryagin duality in €s{6 holds for locally compact hausdorff
abelian groups.

A strong projective limit in 7, the category of topological spaces and continuous maps,

is a limit lim C, over a cofiltered index category A such that each projection p, :lim C, —
AeA

C, is an identification map. For example, a product [] C, may be regarded as a strong limit
cofiltered by the set of finite subsets of A.

LemMma 5.1.3. Given a strong projective limit in Ts46, with projections p, :lim C, —» C,,
the collection {ker p,; A € A} is a filter base on lim C, which converges to zero.

Proof. Since A is cofiltered the collection {py'(V); V open in C,} is a base for the
topology on lim C, in 946 Thus {ker p,}—0.

PROPOSITION 5.1.4. A strong projective limit lim C, in T § is a strong A-limit in €46.

Proof. For each A esf, the canonical morphisms ¥ 4(C,, A)—%(lim C,, A) and
Y [C, Al—[lim C,, A] are epimorphisms by Lemma 5.1.3 and the fact that each A e &f
has no small subgroups.

CoroLLARY 5.1.5. A product of locally compact hausdorff groups satisfies Pontryagin
duality in 6s6.

ExaMPLE 5.2. Let V' =X 46, be the category of hausdorff abelian group objects in

the category # of k-spaces. With o and () as in Example 5.1 let € consist of all
epimorphisms in H6,.

ProposiTiON 5.2.1. Pontryagin duality holds for pro-s{-objects

Proof. Each pro-s-object is now strong because any morphism f: C— B factors as
C—»Clker f =

where e is an epimorphism and m is a closed subspace. Thus Clker fe .

It is actually possible to show that each locally compact hausdorff abelian group is a
pro--object for this € on HAé,; this we leave to the reader.

ExaMpLE 5.3. Let K be a discrete field and let ¥ be the category of K-vector spaces
in ¥. Let £ < ¥ be the full subcategory determined by {K"; neN}. Then Pontryagin
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duality holds in & with respect to {1 = K. Let & be the category of strong epimorphisms in
V. Then each map f:C— K" factors as

C—»Clker f——K"
where e is a strong epimorphism and C/ker f is of the form K® for some p eN. Thus
{A<* €(C, A).[A, B]-[C, B] is an epimorphism for all Ce ¥ and Be .
ProrosiTiON 5.3.1. Pontryagin duality with respect to Q= K holds for pro-s-objects.

ExampLE 5.4. Let K be a topological field in % and let ¥ be the category of K-vector
spaces in #. Let & consist of 0 and K and let Q=K. Let & be the category of
epimorphisms in ¥. Now each map f:C— B, B e ¥, factors

C—»Cl/ker f-"»B

where e is an epimorphism and C/ker f is either 0 or K.
ProrosiTioN 5.4.1. Pontryagin duality with respect to () =K holds for pro-sd-objects.

ExampLE 5.5. Let ¥ be the symmetric monoidal closed category of semilattices in ¥
(see Hofmann, Mislove and Stralka [9]). Let & be the finite discrete semilattices in ¥ and
let € be the category of strong epimorphisms. Also let Q=2¢€ 4.

Once again every pro-sf-object is strong because any morphism f:C—B in ¥
factors as

C—=»Cl/ker f—B

where Clker f is finite since B is finite.
For any compact zero-dimensional semilattice C in % we have

C= J {8(C, A), A}

because this is true in the category of topological semilattices (see Numakura [13] and
Hofmann, Mislove and Stralka [9]). Thus, if Z denotes the category of compact zero-
dimensional semilattices we have:

ProrostTion 5.5.1. Pontryagin duality with respect to 1 =2 holds for each object of Z.

Proof. Pontryagin duality with respect to {3=2 holds in & by [9, Chapter I, Lemma
3.8].

In his example Z has an explicit dual category, namely the category & of semilattices
and semilattice morphisms (see [9, Chapter I]). This is so because we have (g, n): F
R -Z®*— % given by R=[—, Q] and F=[—, Q. Because Pontryagin duality holds in &
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we have ¢:FR=1:Z—>Z%. To prove n1:1->RF:¥— % is an isomorphism note that
F:$—>%°" reflects isomorphisms because =2 is a (strong) cogenerator in & (see [9,
Chapter I, Proposition 1.4]). Thus it suffices to prove that Fn:F— FRF is an isomorph-
ism. But this follows from the triangle identity

F—2FRF

le eF

F

In [9, Chapter I] it is shown that & is symmetric monoidal closed. This puts us in the
situation of Proposition 3.5 and Corollary 3.6 because j*<¥* €(C, A)X ¥(A, B)— ¥(C, B)
is easily seen to be an isomorphism for all Be o (as before) and Ce ¥; € denotes the
category of (strong) epimorphisms. Noting again that 2 is a strong cogenerator of & we
have that Ps{(%) = &. Thus Pontryagin duality for & could be shown directly by proving
that [ —, 2]: #°°— & preserves colimits; as it is, this is a consequence of duality in & as
derived from the duality in Z.

ExaMPLE 5.6. Let ¥V = R-AMloo be the category of R-modules over a principal ideal
domain R. Let & be determined by the free R-modules of finite rank, and let Q=R.
Then Pontryagin duality holds in & with respect to {0 = R. If & is the category of (strong)
epimorphisms in ¥ = R-Mod then [2<* &(C, A).[A, B]—[C, B] is an epimorphism for
all Ce R-Mad and B e A. A pro-sf-object (= a strong pro-sd-object) is called a pro-free
R-module.

ProposrTioNn 5.6.1. Pontryagin duality with respect to Q=R holds for pro-free R-
modules.

ExampLE 5.7. It is clear that the calculations in Sections 1, 2, 3 and 4 can be carried

out with €»s replaced by an arbitrary base category W which is symmetric monoidal
closed and complete and cocomplete. As an example, let W be 4, the category of

abelian groups. Now let R be a commutative topological ring in #. Let ¥ be R-modules
in ¥ and let o/ comprise R alone as a full subcategory of V. Let € be all “maps” in ¥
(now a W-category). Then every pro-«-object is strong and R" is a pro-s{-object for all
n €N because

Rr=[ (R, ), A)
Ae¥X
since Vo(R", A)= @"VO(R, A). Here of course {X, A} denotes &/ #-cotensoring of X € o6
with Le .

ExampLE 5.8. It is worth noting to what extent Example 5.5 can be generalised. Let
¥ be the category of algebras in & for some commutative algebraic ¥ -theory and let o
be the category of finite discrete algebras in ¥ Then, by Theorem 2.3, o is ¥'-codense in
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the full sub-¥-category PA(€) of pro-finite algebras in ¥ (€ is the category of strong
epimorphisms and all pro-sf-objects relative to this & are strong). Thus C=f{, [[C, n], n]
for C pro-finite. This may be regarded as a form of Pontryagin duality in which there is
generally no basic dualising object () in &f. The actual duality is between P(%) and a full
sub-¥ -category of the ¥'-functor category [, ¥].

Examples are easily obtained. For instance let ¥ be the category of algebras for the
theory of commutative semigroups or the theory of distributive lattices. Then, by
Numakura [13], this form of Pontryagin duality holds for the compact zero-dimensional
objects of V. For further examples see Hofmann [8].
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