
ON PONTRYAGIN DUALITY

by B. J. DAY

(Received 9 June, 1977)

Introduction. The main aim of this article is to discuss the relationship between
Pontryagin duality and pro-objects. The basic idea arises from K. H. Hofmann's articles
[7] and [8] where it is shown that the elementary abelian (Lie) groups are "dense" in the
category of locally compact hausdorff abelian groups.

We commence with a good symmetric monoidal closed category V and a full
sub-T-category sd^V of "elementary" objects. We then build pro-.s#-objects as suitable
projective limits of these elementary objects. This is done with a view to extending
Pontryagin duality to pro-^-objects once it holds in si with respect to some basic
dualising object which we call ft. The actual pro-.s£-objects constructed are relative to a
subcategory % of Vo which, in practice, is usually taken to be some good class of
epimorphisms in To- This is done in Sections 2 and 3.

In Section 4 we discuss to what extent projective limits of pro-j^-objects are again
pro-^-objects. This at least explains one of Kaplan's results [10]; namely, that the
product of locally compact hausdorff abelian groups satisfies Pontryagin duality. Kaplan's
second result [11] remains to be fitted into this context.

In the examples of Section 5 we apply the results of the preceding sections to prove
that Pontryagin duality holds for any abelian group object in the category of compactly
generated spaces which is a suitable projective limit of its elementary Lie quotients. We
also reproduce the duality of Hofman, Mislove and Stralka [9] between semilattices and
compact zero-dimensional semilattices.

For basic notation and terminology we refer the reader to Day and Kelly [3],
Eilenberg and Kelly [5] and Mac Lane [12].

1. Preliminaries. Let V = (Y0, V, ®,/ , [—, —],...) be a complete and cocomplete
symmetric monodial closed category in the sense of Eilenberg and Kelly [5]. This means
that we have at our disposal the calculus of T-ends discussed in Day and Kelly [3] and in
Dubuc [4].

Let %na denote "the" category of small sets and set maps. We denote the X-fold
power, respectively copower, of Xeftna with Ce If by {X, C}, respectively X. C.

We now assume that V:YQ-*'&m is faithful. The effect of this assumption is the
following.

LEMMA 1.1. Suppose sd is a small V-category and S :dop®s4.^> V is a V-functor. Let
S' denote the composite.

Then

\ S'(AA) = [ S(AA).
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Proof. Following the notation of Eilenberg and Kelly [5] we write dQ = V+d. Because
V: YQ^%na is faithful a family aA : C-^S(AA) is T-natural in A e d if and only if it is
8«<>-natural in AedQ since

d(AB) S(A~> >[S(AA), S(AB)]

S(-B)

[S(BB), S(AB)] >[C S(AB)]

commutes if and only if

io(AB) VS(A"'>r0(S(AA), S(AB))

VS(-B) Vo(aA,l)

ro(S(BB), S(AB)) ——*T0(C, S(AB))
Vo(aB.')

commutes. Thus the equaliser of the canonical pair

[ ] S(AA) = t PI W(A, B), S(AB)]
Ae.s4 A,Be.sJ

which is, by definition, $Aest S(AA) coincides with the equaliser of the canonical pair

[I S(AA) ^=J II {do(A,B),S(AB)}

which is, by definition, JAe^,, S'(AA).

Henceforth we shall denote S'(AB) simply by S(AB).
The assumption that V:fo-*'im is faithful allows us, in effect, to "mix" TK-ends

with ordinary

2. Pro-^-objects. Let si c y be a full sub-T-category of V. Let % be a subcategory
of Yo and let %='gC\da.

DEFINITION 2.1. (i) A pro-d-object in V relative to % is an object CeY such that
C=JA e*{«(C,A),A}.

(ii) A strong pro-si-object in "V relative to % is a pro-.s#-object CeY such that
fA e*£(C,A).[A, B]-»[C, B] is an epimorphism for all B e ^ .

The ^-category of pro-^-objects is denoted by &si{%) while the ^-category of
strong pro-jtf-objects is denoted by Sf&siCg).

LEMMA 2.2. d^tf&siCg).

Proof. If A'ed then A'sJAear{3if(A', A), A} by the representation theorem
applied to AeW, aJA 6*{«(A', A), A}. Similarly j A 6 3 f «(A', A).[A,B] =

', A) . [A, B] = [A', B] by the representation theorem applied to A € 3£

THEOREM 2.3. The inclusion d c 5^»^(«) is Y-codense (= T-coadequatc).
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Proof. For T-codensity we require that C ss JAerf [[C, A], A] for all
by Definition 2.1(ii), there is a monomorphism

17

.But,

[[C, B], B ] ^ [ | « ( C , A) . [A, B],

for each Be si. This gives us a monomorphism

f
since limits of monomorphisms are monomorphisms. Moreover, the codomain of this
monomorphism becomes:

f [fA£ g(C,A).[A,B],Bl=[ f {%(C,A),[[A,B],B-b

= f f {%(C,A),[[A,BIBH

on interchanging ends,

where JB e^0[[A,B],B]sJB e^[[A,B],B] (by Lemma l . l ) s A by the ^-representation
theorem applied to Be si. Thus we obtain a monomorphism

m :f [[C,B],
JBes40

by Definition 2.1(i). However, this monomorphism is left inverse to the canonical
transformation TJ from C to ( B ^ I I C B I B ] by consideration of the following diagram:

f VLC,B],B]>

«(CA).[A,B],B]-»f mC, A), A}.

projn.

A) . [A ,B] ,B] f [

• f {%(C,A),[[A,B],B-b
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where * commutes for obvious reasons (project both legs at A € $f and / e g(C, A)). Thus
CsJ B e ^ n [[C, B], B] = iBesd [[C, B], B] by Lemma 1.1, as required.

3. Duality. Given sd <= Y we can form the Pontryagin closure of sd:

s4 = \ceY;C=\ [[C, A], A] in v\.

PROPOSITION 3.1. sd^sd and d = M.

Proof. If B e sd then B ss JAej4 [[B, A], A] by the T-representation theorem applied to
A&sd. Thus -stfcstf so s£cis&. But C e J implies C=iAesiU.C,A'],A'] where A ' ^
implies A 'sJ A € ^[ [A' ,A] , A]. So

aJ [[C,A'],[ [[A', A], A]]
J A £ 5 L J A € ^ J

- f [ f A e [C A']<g>[A\ A], A ]

by the ^-representation theorem applied to A'eM.

COROLLARY 3.2. The inclusion sd^d is Y-codense and if <€ <= Y with sd c <g being
Y-codense then ^ c ^ .

Given ^ C V and H e ^ such that [[A,n],f l]sA we have:

PROPOSITION 3.3. Pontryagin duality with respect to Clesd holds in sd.

Proof. If Cesd then

C=[ IIQ A], A]

= [ [[c, A], [[A, m cm

A [QA]®[A, n],n]

by the ^-representation theorem applied to A € si.

COROLLARY 3.4. Pontryagin duality with respect to ft holds in

Proof. By Theorem 2.3.

We now examine the case where JAe* £(C, A) . [A, B]—*[C, B] is an isomorphism for
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allCeY and B e i . When this is so 0\stf(g) and SP<3>s&(%) coincide and we can define an
endofunctor P:Y—*Y by any one of the formulas

PC= [ {*(C A), A} = f [[C, A], A] = [[C, ft], ft].

We recall from Day [1] that a category <# is M-complete if ^ is a subcategory of
monomorphisms in <€ such that "S has the following inverse limits and M contains each
monomorphism so formed:

(a) equalisers of pairs of morphisms,
(b) pullbacks of ^-monomorphisms,
(c) the intersection of any family of ./«-monomorphisms with a common codomain.

A functor T:^—»S8 is M-continuous if it preserves these inverse limits in C6.

PROPOSITION 3.5. If Y is M-complete for some system M of monomorphisms then
&s&(t)CV is reflective if [ - , ft]: Y°P^>Y preserves suitable colimits.

Proof. Basically we require that [- , f t ]°p :T-»To p be ^-continuous and that
[ - , ft]: V°p—» V preserve linear colimits. The effect of the first requirement is that ZPs^CS)
is ^-complete and the inclusion 0\s#(£)c Y is ^-continuous. Thus we can apply Day [1,
Theorem 2.2] provided P:Y-*Y is a suitable boundary functor. But the canonical
morphism TJC:C—*PC gives us:

C-^->PC^->P2C *... >P"C >...

where P n + l C = [[P"C,fi],ft]. If [- ,f t] preserves linear colimits then PUIC =
colim Pn+1C = colim[[PnC, ft], ft] = [lim[PnC, ft], ft] = [[colim PnC, ft], ft] = [[P"C, ft], ft].
Thus P"C lies in &d($) for all CeY. This implies (by Day [1, Theorem 2.2]) that

Y is reflective and the reflection of C e T is the intersection in Y of all the
-subobjects of P^C through which the resultant canonical transformation

pc:C-*P"C factors.

We recall that (leY is said to be a strong Y-cogenerator for Y if [-,Sl]:Yop^>Y
reflects isomorphisms.

COROLLARY 3.6. If ft is a strong Y-cogenerator for Y then &$&(%) = Y if and only if
[ - , ft]: Y**'—* Y preserves colimits.

Proof. If [- ,ft] preserves colimits then W ( ? ) c f is T-reflective hence is closed
under T"-limits. Thus, if ft is a strong T-cogenerator then every object of Y is a T-limit
of copies of ft. Thus 0\stf(&) = Y. Conversely, if &s£{%) = Y then Pontryagin duality holds
in °V with respect to ft. Thus colim[Ax, ft] = [lim Ax, ft] because [colim[Ax, ft], ft] s
lim[[Ax, ft], ft]slim AAs[[limAA, ft], ft] where ft is a strong T-cogenerator so that
[—,ft] reflects isomorphisms.
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4. Strong ^-limits. A strong M-limit relative to % is a limit lim Ck in To such that
the canonical morphisms

, A)->»(Hm Q, A), £[CX, A]^[lim Cx, A]

are epimorphisms for all As si.

PROPOSITION 4.1. A sfrong si-limit of strong pro-si-objects is a strong pro-si-object.

Proof. The morphism £ 3?(CX, A)—»S?(lim Cx, A) is a surjection if and only if the
canonical morphism colim^(Q, A)—»S?(lim Cx, A) is an epimorphism. This gives a
monomorphism

f {S(lim Q, A), A } ^ [ {colim «(Q, A), A}

alimf
JAeStr

= lim Cx.

Moreover, this monomorphism is left inverse to the canonical morphism from lim Q to
JAE* {$0im CX, A), A} hence it is an isomorphism. The fact that lim CK is a strong
pro-j^-object now follows from consideration of the following diagram:

S - I [C X ,B]

«(lim Cx, A) . [A, B] > [lim Q, B].

Here the dotted arrow is an epimorphism because the diagonal is an epimorphism.

5. Examples.

EXAMPLE 5.1. Let V be the symmetric monoidal closed category ^dft of abelian
group objects in the category ^ of all convergence spaces (i.e. limit spaces). Let
^ = {Rm©(R/Z)"0G; m, n e N and G discrete}. Let fi = R/Z and let % be the cate-
gory of identification maps.

PROPOSITION 5.1.1. Each locally compact hausdorff abelian group is a strong pro-si-
object.

Proof. Each locally compact hausdorff abelian group C is a pro-^-object by the
Lie-group approximation theorem: see Hofmann [7]. Secondly, each continuous
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homomorphism /:C—»B, Be si, factors as

where C/ker / is a locally compact hausdorff group, hence is a Lie group (see Hochschild
[6, Chapter VIII]), so C/keifssi. This implies that lAe*%(C,A) .[A,B]^>[C,B~\ is a
surjection, as required.

COROLLARY 5.1.2. Pontryagin duality in ^siS holds for locally compact hausdorff
abelian groups.

A strong projective limit in 3~, the category of topological spaces and continuous maps,
is a limit lim Q over a cofiltered index category A such that each projection px : lim Cx -»

XeA

Q is an identification map. For example, a product fl Q may be regarded as a strong limit
cofiltered by the set of finite subsets of A.

LEMMA 5.1.3. Given a strong projective limit in &~si6, with projections pk :lim CK^*CK,
the collection {ker px; A e A} is a filter base on lim Q which converges to zero.

Proof. Since A is cofiltered the collection {p^'(V); V open in Cx} is a base for the
topology on lim Q in 3~siS. Thus {kerpx}—»0.

PROPOSITION 5.1.4. A strong projective limit lim Q in 9~si# is a strong si-limit in

Proof. For each Aesd, the canonical morphisms £ ?(CX, A)-»£(lim Q, A) and
X [Cx, A]-»[lim Cx, A] are epimorphisms by Lemma 5.1.3 and the fact that each A esd
has no small subgroups.

COROLLARY 5.1.5. A product of locally compact hausdorff groups satisfies Pontryagin
duality in %sif>.

EXAMPLE 5.2. Let Y=t3Cs£62 be the category of hausdorff abelian group objects in
the category X of k-spaces. With si and H as in Example 5.1 let % consist of all
epimorphisms in

PROPOSITION 5.2.1. Pontryagin duality holds for pro-si-objects

Proof. Each pro-j^-object is now strong because any morphism f:C—*B factors as

•Oker / -=-B

where e is an epimorphism and m is a closed subspace. Thus Qkerfesi.

It is actually possible to show that each locally compact hausdorff abelian group is a
pro-j^-object for this % on dCs462\ this we leave to the reader.

EXAMPLE 5.3. Let K b e a discrete field and let V be the category of K-vector spaces
in X Let sic Y be the full subcategory determined by {Kn;neN\. Then Pontryagin
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duality holds in si with respect to Cl = K. Let % be the category of strong epimorphisms in
V. Then each map / :C-»K" factors as

C-^C/ke r f - ^K"

where e is a strong epimorphism and C/ker / is of the form K" for some peN. Thus
jA<=ar g ( C A ) |-A) s]^ .[c , B] is an epimorphism for all CeT and Be si.

PROPOSITION 5.3.1. Pontryagin duality with respect to Cl = K holds for pro-si-objects.

EXAMPLE 5.4. Let K b e a topological field in 3if and let V be the category of .K-vector
spaces in 3if. Let si consist of 0 and K and let Cl = K. Let % be the category of
epimorphisms in Y. Now each map f:C-+B, Be si, factors

C—'-*> C/ker f-^B

where e is an epimorphism and C/ker / is either 0 or K.

PROPOSITION 5.4.1. Pontryagin duality with respect to Cl = K holds for pro-si-objects.

EXAMPLE 5.5. Let V be the symmetric monoidal closed category of semilattices in 3if
(see Hofmann, Mislove and Stralka [9]). Let si be the finite discrete semilattices in V and
let % be the category of strong epimorphisms. Also let fl = 2 e si.

Once again every pro- si -object is strong because any morphism f:C-*B in V
factors as

C - ^ C/ker f^B

where C/ker/ is finite since B is finite.
For any compact zero-dimensional semilattice C in 3if we have

=[
JAear

because this is true in the category of topological semilattices (see Numakura [13] and
Hofmann, Mislove and Stralka [9]). Thus, if 2t denotes the category of compact zero-
dimensional semilattices we have:

PROPOSITION 5.5.1. Pontryagin duality with respect to Cl = 2 holds for each object of2£.

Proof. Pontryagin duality with respect to ft = 2 holds in si by [9, Chapter I, Lemma
3.8].

In his example 2£ has an explicit dual category, namely the category Sf of semilattices
and semilattice morphisms (see [9, Chapter I]). This is so because we have (e, TJ) :F<-\
R-%ov-+y given by R = [ - , Ci] and F = [- , ft]°". Because Pontryagin duality holds in 3£
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we have E :FRs l : f ->2f . To prove T| : l-»i?F:Sf-»Sf is an isomorphism note that
F:Sf-*2£op reflects isomorphisms because £1 = 2 is a (strong) cogenerator in 5f (see [9,
Chapter I, Proposition 1.4]). Thus it suffices to prove that Ft] :F^*FRF is an isomorph-
ism. But this follows from the triangle identity

FRF

In [9, Chapter I] it is shown that Sf is symmetric monoidal closed. This puts us in the
situation of Proposition 3.5 and Corollary 3.6 because JA€* «(C, A) x Sf(A, B)-+Sf(C, B)
is easily seen to be an isomorphism for all Be si (as before) and CeSf; % denotes the
category of (strong) epimorphisms. Noting again that 2 is a strong cogenerator of Sf we
have that SPsdCS) = Sf. Thus Pontryagin duality for Sf could be shown directly by proving
that [ - , 2]:Sf°p—*& preserves colimits; as it is, this is a consequence of duality in Sf as
derived from the duality in 2£.

EXAMPLE 5.6. Let Y = R-M#c£be the category of R-modules over a principal ideal
domain R. Let si be determined by the free R -modules of finite rank, and let Cl = R.
Then Pontryagin duality holds in si with respect to fi = R. If % is the category of (strong)
epimorphisms in Y = R-JM&J then JAeSlf%(C,A).[A,B]—*[C,B] is an epimorphism for
all CeR-Mat and Be si. A pro-^-object (= a strong pro-sl-object) is called a pro-free
R -module.

PROPOSITION 5.6.1. Pontryagin duality with respect to Q, = R holds for pro-free R-
modules.

EXAMPLE 5.7. It is clear that the calculations in Sections 1, 2, 3 and 4 can be carried
out with %na replaced by an arbitrary base category W which is symmetric monoidal
closed and complete and cocomplete. As an example, let °W be si.6, the category of
abelian groups. Now let JR be a commutative topological ring in 3if. Let V be R -modules
in X and let si comprise R alone as a full subcategory of V. Let % be all "maps" in YQ'
(now a "W-category). Then every pro- si -object is strong and jRn is a pro-.s#-object for all
n G N because

Rn" I {Y0(R»,A),A}

since Y0(R", A) = @Y0(R, A). Here of course {X, A} denotes ^^-cotensoring of Xesit

EXAMPLE 5.8. It is worth noting to what extent Example 5.5 can be generalised. Let
Y be the category of algebras in X for some commutative algebraic 9if-theory and let si
be the category of finite discrete algebras in Y. Then, by Theorem 2.3, si is T-codense in
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24 B. J. DAY

the full sub-T-category Ps^CS) of pro-finite algebras in Y (% is the category of strong
epimorphisms and all pro- si -objects relative to this % are strong). Thus C=Jn [[C, n], n]
for C pro-finite. This may be regarded as a form of Pontryagin duality in which there is
generally no basic dualising object ft in sd. The actual duality is between 0\s£(g) and a full
sub-T-category of the T-functor category [si, Y].

Examples are easily obtained. For instance let Y be the category of algebras for the
theory of commutative semigroups or the theory of distributive lattices. Then, by
Numakura [13], this form of Pontryagin duality holds for the compact zero-dimensional
objects of Y. For further examples see Hofmann [8].
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