TORSION THEORIES INDUCED BY TILTING MODULES

IBRAHIM ASSEM

Introduction. Let k be a commutative field, and A a finite-dimensional k-algebra. By a module will always be meant a finitely generated right module. Following [8], we shall call a module T_A a tilting module if (1) $pdT_A \leq 1$, (2) $Ext_A^1(T, T) = 0$ and (3) there is a short exact sequence

$$0 \to A_A \to T'_A \to T''_A \to 0$$
,

with T' and T'' direct sums of direct summands of T. Given a tilting module T_A , the full subcategories

$$\mathcal{F} = \{M_A | \operatorname{Hom}_A(T, M) = 0\}$$
 and

$$\mathcal{F} = \{ M_A | \operatorname{Ext}_A^1(T, M) = 0 \}$$

of the category $\operatorname{mod} A$ of A-modules are respectively the torsion-free class and the torsion class of a torsion theory $(\mathcal{T}, \mathcal{F})$ on $\operatorname{mod} A$ [8]. The aim of the present paper is to find conditions on a torsion theory in order that it be induced by a tilting module. This problem has already been considered by Hoshino [10] who proved that if $(\mathcal{T}, \mathcal{F})$ is a torsion theory such that \mathcal{T} contains all injectives, and either \mathcal{T} or \mathcal{F} contains only finitely many non-isomorphic indecomposable modules, then $(\mathcal{T}, \mathcal{F})$ is induced by a tilting module. However, while the first condition is obviously necessary, the second is not as the following example shows: let A be a tame one-relation algebra resulting from the glueing of the preinjective component of a tame hereditary algebra with the preprojective component of another [12], then the slice module of a complete slice in the glued component is a tilting module inducing a torsion theory $(\mathcal{T}, \mathcal{F})$ such that both \mathcal{T} and \mathcal{F} contain infinitely many non-isomorphic indecomposable modules. We shall thus start by proving:

THEOREM. A torsion theory $(\mathcal{T}, \mathcal{F})$ on modA is induced by a tilting module if and only if \mathcal{T} contains all injective modules, and either \mathcal{T} is generated, or \mathcal{F} is cogenerated (as subcategories of modA) by a (finitely generated) module.

Section (1) will be devoted to the proof of this theorem. In Section (2), we shall study the case where $(\mathcal{T}, \mathcal{F})$ is a splitting torsion theory induced

Received May 27, 1983.

by a tilting module. It is then possible to give an explicit description of such a tilting module, provided the algebra A has a preprojective component containing all projectives, and the torsion-free modules are preprojective. We shall then apply our results in Section (3), to give a sufficient condition for such an algebra to be a tilted algebra.

Throughout this paper, we shall freely use the properties of the Auslander-Reiten translations $\tau = DTr$ and $\tau^{-1} = TrD$, as in [2]. For tilting modules and their properties, we shall refer to [7] and [8].

1. Tilting torsion theories.

Definition (1.1). A torsion theory $(\mathcal{T}, \mathcal{F})$ on mod A will be called a *tilting torsion theory* if there exists a tilting module T_A such that

$$\mathscr{T} = \mathscr{T}(T_A) = \{M_A | \operatorname{Ext}_A^1(T, M) = 0\}$$

and

$$\mathscr{F} = \mathscr{F}(T_A) = \{M_A | \operatorname{Hom}_A(T, M) = 0\}.$$

Our objective will be to prove the following:

THEOREM (1.2). Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory on modA, the following assertions are equivalent:

- (i) $(\mathcal{T}, \mathcal{F})$ is a tilting torsion theory,
- (ii) T is generated by a (finitely generated) faithful module,
- (iii) \mathscr{F} is cogenerated by a (finitely generated) module N with no injective summands and such that $pd(\tau^{-1}N) \leq 1$.

Remarks (1.3). (1) Assume that \mathcal{T} is generated by the module M_A . Then M_A is faithful if and only if there exists an epimorphism

$$M^{(t)} \to D(_A A) \to 0$$
 for some $t \in \mathbb{N}$.

Thus, we may replace in (ii) the condition that M is faithful by the condition that \mathcal{F} contains the minimal injective cogenerator DA, or, equivalently, all injective A-modules. Again, if \mathcal{F} satisfies (iii), $pd(\tau^{-1}N) \leq 1$ implies that

$$\operatorname{Hom}_{\mathcal{A}}(I, N) = 0$$

for any injective A-module I_4 , by Lemma (2.2) of [7], and hence injectives are torsion. We may therefore reformulate Theorem (1.2) as follows: $(\mathcal{T}, \mathcal{F})$ is a tilting torsion theory if and only if \mathcal{T} contains all injective A-modules, and either \mathcal{T} is generated, or \mathcal{F} is cogenerated by a module.

(2) Observe also that, by Propositions (4.6) and (4.7) of [4], the torsion theory $(\mathcal{T}, \mathcal{F})$ is such that \mathcal{T} is generated (respectively, \mathcal{F} is cogenerated) by a finitely generated module if and only if \mathcal{T} has a finite cover (respectively, \mathcal{F} has a finite cocover), or equivalently, if and only if mod A

is functorially finite over \mathcal{T} (respectively, over \mathcal{F}). In this case, \mathcal{T} (respectively, \mathcal{F}) has relative Auslander-Reiten sequences [5].

We shall need the following definitions and results from [5] and [6]:

Definition. (1.4). Let \mathscr{C} be a full subcategory of mod A closed under extensions. A module M in \mathscr{C} will be called Ext-projective (respectively, Ext-injective) in \mathscr{C} if

$$\operatorname{Ext}_{4}^{1}(M, -)|_{\mathscr{C}} = 0$$

(respectively, $\operatorname{Ext}_{A}^{1}(-, M)|_{\mathscr{C}} = 0$).

THEOREM (1.5). Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory in modA, and t be the idempotent torsion radical, then:

(i) If $M \in \mathcal{T}$ is indecomposable, then:

$$M$$
 is Ext -projective in $\mathcal{T} \Leftrightarrow \tau M \in \mathcal{F}$

and M is Ext-injective in $\mathcal{T} \Leftrightarrow M \xrightarrow{\sim} tI$ for some indecomposable injective module $I_A \notin \mathcal{F}$.

- (ii) If, moreover, \mathcal{T} is generated by a module G_A , then G is Ext-projective in \mathcal{T} . Also, the number of non-isomorphic indecomposable torsion modules which are Ext-projective, and the number of those which are Ext-injective are finite and equal.
 - (iii) Dually, let $N \in \mathcal{F}$ be indecomposable, then:

N is Ext-injective in
$$\mathscr{F} \Leftrightarrow \tau^{-1}N \in \mathscr{T}$$

and N is Ext-projective in $\mathscr{F} \Leftrightarrow N \xrightarrow{\sim} P/tP$ for some indecomposable projective module $P_A \notin \mathscr{T}$.

(iv) If, moreover, \mathcal{F} is cogenerated by a module H_A , then H is Ext-injective in \mathcal{F} . Also, the number of non-isomorphic indecomposable torsion-free modules which are Ext-projective, and the number of those which are Ext-injective are finite and equal.

Proof of Theorem (1.2). Assume first that the torsion theory $(\mathcal{T}, \mathcal{F})$ is induced by the tilting module T_A . Then \mathcal{T} is generated by T_A [8], which is a faithful module, as can be seen from the short exact sequence:

$$0 \rightarrow A_A \rightarrow T_A' \rightarrow T_A'' \rightarrow 0$$

(with T' and T'' direct sums of summands of T). On the other hand, the torsion-free class is cogenerated by τT which has no injective summands and which satisfies

$$pd(\tau^{-1}(\tau T)) \leq 1.$$

Thus, (i) implies (ii) and (iii).

Let now the torsion theory $(\mathcal{T}, \mathcal{F})$ be such that \mathcal{T} is generated by the (finitely generated) faithful module M_A . We may assume, without loss of

generality, that M is the direct sum of non-isomorphic indecomposables. Let T_1, T_2, \ldots, T_m be a complete set of representatives of the isomorphism classes of indecomposable Ext-projective modules in \mathcal{T} . We claim that

$$T_A = \bigoplus_{i=1}^m T_i$$

is a tilting module.

Let us start by showing that

$$pdT_i \le 1$$
 for $1 \le i \le m$.

We may assume that T_i is not projective. Then $\tau T_i \in \mathcal{F}$ (by (1.5)) and, since injectives are torsion,

$$\operatorname{Hom}_{A}(I, \tau T_{i}) = 0$$

for any injective A-module I_A . Therefore $pdT_i \leq 1$ [7]. Next,

$$\operatorname{Ext}_{A}^{1}(T, T) = 0,$$

because T is Ext-projective in \mathcal{T} . There only remains to construct a short exact sequence:

$$0 \rightarrow A_4 \rightarrow T'_4 \rightarrow T''_4 \rightarrow 0$$

with T', T'' direct sums of summands of T_A . Let $(f_i)_{1 \le i \le t}$ be a basis of the k-vector space $\text{Hom}_A(A, M)$, and put

$$f = (f_i)_i : A \to M^{(t)}$$
.

Then f is a monomorphism (for, M being faithful cogenerates A_A). We claim that for $N \in \mathcal{T}$,

$$\operatorname{Hom}_{A}(f, N) : \operatorname{Hom}_{A}(M^{(t)}, N) \to \operatorname{Hom}_{A}(A, N)$$

is an epimorphism. Since $N \in \mathcal{T}$, there exists an epimorphism

$$p:M^{(s)} \to N$$
 for some $s \in \mathbb{N}$.

Since A_A is projective, to any morphism $u:A \to N$ corresponds

$$v = (v_j)_{1 \le j \le s} : A \to M^{(s)}$$

such that u = pv:

Now $v_i:A \to M$ can be written as

$$v_j = \sum_{i=1}^t \lambda_j^i f_i$$
 for some $\lambda_j^i \in k$.

Therefore $v = \Lambda f$, where $\Lambda = [\lambda_j^i]$ is an $s \times t$ scalar matrix, hence an A-linear map from $M^{(t)}$ to $M^{(s)}$. We thus have:

$$u = pv = (p\Lambda)f = \operatorname{Hom}_A(f, N)(p\Lambda)$$

which proves our claim.

Setting C = Coker f, we have a short exact sequence:

$$0 \to A_A \xrightarrow{f} M^{(t)} \to C \to 0.$$

Since M is Ext-projective in $\mathcal{T}(\text{by }(1.5))$, $M^{(t)}$ is a direct sum of summands of T. Applying the functor $\text{Hom}_A(-, N)$, with $N \in \mathcal{T}$, to the previous sequence, we obtain an exact sequence:

$$0 \to \operatorname{Hom}_{A}(C, N) \to \operatorname{Hom}_{A}(M^{(t)}, N) \xrightarrow{\operatorname{Hom}_{A}(f, N)} \operatorname{Hom}_{A}(A, N)$$
$$\to \operatorname{Ext}_{A}^{1}(C, N) \to \operatorname{Ext}_{A}^{1}(M^{(t)}, N) \to \operatorname{Ext}_{A}^{1}(A, N) = 0.$$

Since $Hom_A(f, N)$ is an epimorphism, we deduce that:

$$\operatorname{Ext}_{A}^{1}(C, N) \xrightarrow{\sim} \operatorname{Ext}_{A}^{1}(M^{(t)}, N) = 0$$

because M is Ext-projective. Hence C is also Ext-projective, thus is a direct sum of summands of T. This completes the proof that T_A is a tilting module. Finally, $\mathcal{T}(T_A) = \mathcal{T}$: since M_A is a summand of T, $\mathcal{T} \subseteq \mathcal{T}(T_A)$, and since T is generated by M, we have $\mathcal{T} = \mathcal{T}(T_A)$ which implies that $\mathcal{F} = \mathcal{F}(T_A)$, and $(\mathcal{T}, \mathcal{F})$ is a tilting torsion theory. We have thus proved that (ii) implies (i).

Assume now that \mathscr{F} is cogenerated by the module N_A with no injective summands and such that $\operatorname{pd}(\tau^{-1}N) \leq 1$. As already observed, this implies that injectives are torsion. Let N_1, N_2, \ldots, N_r be a complete set of representatives of the isomorphism classes of the indecomposable Ext-injectives in \mathscr{F} . Since no N_i is injective, $\tau^{-1}N_i \in \mathscr{F}$ is not zero and, since

$$\tau(\tau^{-1}N_i) \stackrel{\sim}{\to} N_i \in \mathscr{F},$$

 $\tau^{-1}N_i$ is in fact Ext-projective in \mathcal{T} . On the other hand, let P_1, P_2, \ldots, P_s be the non-isomorphic indecomposable projective torsion modules, and put:

$$T_A = \left(\bigoplus_{i=1}^r \tau^{-1} N_i \right) \oplus \left(\bigoplus_{j=1}^s P_j \right).$$

Obviously, T_A is Ext-projective. We claim that in fact T_A is the direct sum of all non-isomorphic indecomposable Ext-projectives in \mathscr{T} . Indeed, if M_A is an indecomposable Ext-projective torsion module, then either M is projective, in which case $M \xrightarrow{\sim} P_j$ for some $1 \le j \le s$, or else $\tau M \ne 0$, and then $\tau M \in \mathscr{F}$. Since

$$\tau^{-1}(\tau M) \stackrel{\sim}{\to} M \in \mathscr{T},$$

 τM is indecomposable Ext-injective in \mathcal{F} , hence

$$\tau M \stackrel{\sim}{\to} N_i$$
 for some $1 \le i \le r$

and consequently

$$M \stackrel{\sim}{\rightarrow} \tau^{-1} N_i$$
.

Our claim follows.

We now show that T_A is a tilting module. First, it is evident that

$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

On the other hand, for every injective module I_4 ,

$$\operatorname{Hom}_{A}(I, \tau T) = \operatorname{Hom}_{A}(I, \bigoplus_{i=1}^{r} N_{i}) = 0,$$

and therefore $\operatorname{pd} T_A \leq 1$. There only remains to prove that r+s=n, where n is the number of non-isomorphic simple A-modules [7]. By (1.5), r equals the number of non-isomorphic indecomposable Ext-projective torsion-free modules, and $L \in \mathscr{F}$ is indecomposable Ext-projective if and only if $L \stackrel{\sim}{\to} P/tP$ for some indecomposable projective module $P_A \notin \mathscr{F}$ (where t denotes the idempotent torsion radical). Therefore r=n-s, and T_A is indeed a tilting module.

Finally, since N is Ext-injective in \mathcal{F} , its indecomposable summands are summands of

$$\bigoplus_{i=1}^r N_i = \tau T,$$

hence $\mathscr{F} \subseteq \mathscr{F}(T_A)$. Since $\tau T \in \mathscr{F}$, we deduce that $\mathscr{F} = \mathscr{F}(T_A)$, and therefore $(\mathscr{T}, \mathscr{F})$ is induced by the tilting module T_A . This completes the proof of the theorem.

COROLLARY. (1.6). Let A be a representation-finite algebra. A torsion theory $(\mathcal{T}, \mathcal{F})$ on modA is a tilting torsion theory if and only if all injectives are torsion.

COROLLARY (1.7). Let A be a finite-dimensional algebra, and M_A a faithful module such that $\operatorname{Hom}_A(M, \tau M) = 0$. Then there exists a module X_A such that $T = M \oplus X$ is a tilting module.

Proof. Let \mathcal{T} be the subcategory of mod A generated by M. Since

$$\operatorname{Hom}_4(M, \tau M) = 0,$$

 \mathcal{T} is closed under extensions [5] and is therefore, since M is faithful, the torsion class of a tilting torsion theory $(\mathcal{T}, \mathcal{F})$. Moreover, the direct sum T'_A of all non-isomorphic indecomposable Ext-projective torsion modules is a tilting module inducing $(\mathcal{T}, \mathcal{F})$. However, M_A is itself Ext-projective in \mathcal{T} . Therefore its indecomposable summands are also summands of T', and the corollary follows.

2. Splitting tilting torsion theories.

Definition (2.1). A tilting module T_A will be called separating if the torsion theory $(\mathcal{F}(T_A), \mathcal{F}(T_A))$ in mod is splitting. In other words, if any indecomposable module M_A is such that either

$$\operatorname{Hom}_{A}(T, M) = 0$$
 or $\operatorname{Ext}_{A}^{1}(T, M) = 0$.

The following are examples of separating tilting modules: the APR tilts studied in [3], the slice modules of complete slices in tilted algebras [8], the tilting modules used in the proof of the sufficiency part of the main theorem in [1]. If T_A is a tilting module and $B = \operatorname{End} T_A$, it follows directly from the Brenner-Butler theorem [8] that T_A is separating if and only if ${}_BT$ is splitting in the sense of [1]. Thus, an algebra A is iterated tilted of type Δ if and only if there exists a sequence of algebras $A_0 = A, A_1, \ldots, A_m$ with A_m hereditary of type Δ , and a sequence of separating tilting modules $T_{A_i}^{(i)}$ $(0 \le i < m)$ such that $\operatorname{End} T_{A_i}^{(i)} = A_{i+1}$.

We shall need the following result from [9]:

LEMMA (2.2). Let T_A be a tilting module. The following assertions are equivalent:

- (i) T_A is a separating tilting module.
- (ii) If $M_A \in \mathcal{F}(T_A)$, then $\tau M \in \mathcal{F}(T_A)$. (iii) If $N_A \in \mathcal{F}(T_A)$, then $\tau^{-1}N \in \mathcal{F}(T_A)$.

Proposition (2.3). Let T_A be a separating tilting module, then:

- (i) Two non-isomorphic indecomposable summands of T_A lie in distinct τ -orbits of the Auslander-Reiten quiver of A.
- (ii) Let T_0 and T_1 be indecomposable summands of T_A such that there exist s, $t \ge 0$ and an irreducible map $\tau^{-s}T_0 \to \tau^t T_1$. Then, if T_1 is not projective, both s and t equal zero.
- *Proof.* (i) Let T_0 and $T_1 = \tau^{-t}T_0$ $(t \ge 0)$ be two indecomposable summands of T lying in the same τ -orbit. Since $\operatorname{Ext}_A^1(T, T_0) = 0$, (2.2) implies that

$$\operatorname{Ext}_{A}^{1}(T, \tau^{-i}T_{0}) = 0 \quad \text{for every } i \geq 0.$$

In particular, if $t \neq 0$,

$$\operatorname{Ext}_{A}^{1}(T, \, \tau^{-(t-1)}T_{0}) \, = \, 0.$$

But

$$\tau^{-(t-1)}T_0 \xrightarrow{\sim} \tau T_1$$
 and $\operatorname{Ext}_A^1(T_1, \tau T_1) \neq 0$.

Therefore t = 0 and $T_0 \stackrel{\sim}{\to} T_1$.

(ii) Let the indecomposable summands T_0 and T_1 of T be such that there exist s, $t \ge 0$ and an irreducible map

$$\tau^{-s}T_0 \to \tau^t T_1$$
.

Assume moreover that T_1 is not projective. Then $T_0 \in \mathcal{T}(T_A)$ implies that $\tau^{-s}T_0 \in \mathcal{T}(T_A)$, and therefore

$$\tau^t T_1 \notin \mathscr{F}(T_A).$$

Since $(\mathcal{T}(T_A), \mathcal{F}(T_A))$ is splitting,

$$\tau^t T_1 \in \mathscr{T}(T_A).$$

Hence, if $t \neq 0$,

$$\tau^{-(t-1)}\tau^t T_1 = \tau T_1 \in \mathcal{T}(T_A).$$

But this is impossible, since $\operatorname{Ext}_{\mathcal{A}}^{1}(T_{1}, \tau T_{1}) \neq 0$. Therefore t = 0. There remains to show that s = 0 as well. If $s \neq 0$, we have a chain of irreducible maps

$$T_0 \to \ldots \to \tau^{-(s-1)} T_0 \to \tau T_1.$$

But $\operatorname{Ext}_{A}^{1}(T_{1}, \tau T_{1}) \neq 0$ implies that $\tau T_{1} \in \mathscr{F}(T_{A})$, hence

$$\tau^{-(s-1)}T_0 \in \mathscr{F}(T_A),$$

and we deduce that $T_0 \in \mathcal{F}(T_A)$, an absurdity.

It follows that if, in a τ -orbit of the Auslander-Reiten quiver of A, there exists an indecomposable summand T_i of the separating tilting module T, then an indecomposable M_A in this τ -orbit belongs to $\mathcal{T}(T_A)$ if and only if there exists $t \ge 0$ such that

$$M \stackrel{\sim}{\to} \tau^{-t}T_i$$

and an indecomposable N_A in the same τ -orbit belongs to $\mathcal{F}(T_A)$ if and only if there exists s > 0 such that

$$N \stackrel{\sim}{\to} \tau^s T_i$$
.

On the other hand, if there is no indecomposable summand of T in this τ -orbit, it is entirely contained either in $\mathcal{F}(T_A)$, or in $\mathcal{F}(T_A)$. In particular,

no indecomposable summand of T_A lies in a periodic τ -orbit. We also have:

COROLLARY (2.4). Let T_A be a separating tilting module. Then, for any chain of indecomposable modules and irreducible maps of the form

$$T_0 = M_0 \rightarrow M_1 \rightarrow \ldots \rightarrow M_r \rightarrow M_{r+1} = \tau^s T_1$$

with $s, r \ge 0$, T_0 and T_1 indecomposable summands of T, and no M_i ($1 \le i \le r$) an indecomposable summand of T, we must have s = 0 and, moreover, if $r \ge 1$, T_1 must be projective.

Proof. Indeed, in such a chain, all modules lie in $\mathcal{T}(T_A)$, since $T_0 \in \mathcal{T}(T_A)$. In particular,

$$\tau^{s}T_{1} \in \mathscr{T}(T_{A}).$$

Hence s=0. Let us now suppose that $r \ge 1$, and that T_1 is not projective. Observe that no M_i is projective, since an indecomposable projective torsion module is a summand of T. Thus, the irreducible map $M_r \to T_1$ induces an irreducible map $\tau M_r \to \tau T_1$. Since $\tau T_1 \in \mathcal{F}(T_A)$, $\tau M_r \in \mathcal{F}(T_A)$ as well. But then M_r is Ext-projective in $\mathcal{F}(T_A)$, that is to say, M_r is an indecomposable summand of T, a contradiction.

Definition (2.5). Let $\Gamma = (\Gamma_0, \Gamma_1, \tau)$ be a translation quiver. A separating slice $\Sigma = (\Sigma_0, \Sigma_1)$ of Γ is a full subquiver such that:

- (1) Σ_0 contains exactly one representative from each τ -orbit in Γ .
- (2) For every sequence of arrows of the form

$$x = z_0 \rightarrow z_1 \rightarrow \ldots \rightarrow z_r \rightarrow z_{r+1} = \tau^s y$$

with $s, r \ge 0, x, y \in \Sigma_0$ and $z_i \notin \Sigma_0$ for $1 \le i \le r$, we have that s = 0 and moreover, if $r \ge 1$, y is projective.

Observe that any algebra having a preprojective component admits separating slices in that component (consider for instance the full subquiver consisting of the projective indecomposables). Also, a path from one connected component of a separating slice Σ to another must factor through a projective, but each connected component is not necessarily path-complete: we may have a path

$$x = z_0 \rightarrow z_1 \rightarrow \ldots \rightarrow z_r \rightarrow z_{r+1} = y$$

with x, y in the same connected component of Σ , and $z_i \notin \Sigma_0$ for $1 \le i \le r$. For instance, in the Auslander-Reiten quiver of the algebra of the quiver (following) bound by $\alpha\beta = \gamma\delta = 0$, the modules P(4), P(5), $\tau^{-1}P(1)$, $\tau^{-1}P(3)$ and $\tau^{-2}P(2)$ define a separating slice which is connected but not path-complete. Finally, the existence of separating slices in a component of the Auslander-Reiten quiver does not imply the absence of oriented cycles in that component.

Theorem (2.6). Let A be a finite-dimensional k-algebra having a preprojective component containing all projective A-modules, and T_A be a preprojective module. The following assertions are equivalent;

- (i) T_A is a separating tilting module.
- (ii) T_A satisfies the conditions of Proposition (2.3).
- (iii) The indecomposable summands of T_A form a separating slice in the preprojective component of A.

Proof. We have already seen that (i) \Rightarrow (iii) \Rightarrow (iii). There only remains to prove that (iii) \Rightarrow (i). Let Σ be a separating slice, and T_1, T_2, \ldots, T_n be a complete set of representatives of the isomorphism classes of modules in Σ . Let us put

$$\mathcal{F}_0 = \{ \tau^s T_i | s > 0, 1 \le i \le n \}$$
 and $\mathcal{F}_0 = \operatorname{ind} A \setminus \mathcal{F}_0$

(where ind A denotes the full subcategory of mod A consisting of a set of representatives of the isomorphism classes of indecomposable A-modules), and let \mathcal{T} , \mathcal{F} denote respectively the additive subcategories of mod A generated by \mathcal{T}_0 , \mathcal{F}_0 . We claim that $(\mathcal{T}, \mathcal{F})$ is a torsion theory (necessarily splitting) in mod A. It suffices in fact to prove that the classes \mathcal{T} and \mathcal{F} are orthogonal, that is to say, that

$$\operatorname{Hom}_{A}(M, N) = 0 \text{ for } M \in \mathcal{F} \text{ and } N \in \mathcal{F},$$

since the maximality of \mathcal{T} and \mathcal{F} follows from the fact that ind A is the disjoint union of \mathcal{T}_0 and \mathcal{F}_0 . Let us thus assume that $M \in \mathcal{T}_0$ and $N \in \mathcal{F}_0$ are such that

$$\operatorname{Hom}_{A}(M, N) \neq 0.$$

Since N is preprojective, so is M, and there exist s > 0, $t \ge 0$, and $1 \le i, j \le n$ such that

$$N \stackrel{\sim}{\to} \tau^s T_i$$
 and $M \stackrel{\sim}{\to} \tau^{-t} T_i$.

Also, there exists a path in the preprojective component from the vertex corresponding to M to the vertex corresponding to N, and hence a chain of indecomposable modules and irreducible maps:

$$T_i \to \ldots \to \tau^{-1} T_i \xrightarrow{\sim} M \to \ldots \to N \xrightarrow{\sim} \tau^s T_i$$

Since T_i , T_j belong to Σ , and T_i is not projective (because s > 0), at least one of the modules between T_j and N must belong to Σ . The previous chain may then be substituted by a subchain:

$$T_h = M_0 \rightarrow M_1 \rightarrow \ldots \rightarrow M_r \rightarrow M_{r+1} = \tau^s T_i$$

with T_h , T_i in Σ , and M_i not in Σ for $1 \le i \le r$. This, however, contradicts the fact that Σ is a separating slice. Therefore

$$\operatorname{Hom}_A(M, N) = 0$$
 for all $M \in \mathcal{T}_0, N \in \mathcal{F}_0$

and hence for all $M \in \mathcal{F}$ and $N \in \mathcal{F}$.

We now prove that

$$T_A = \bigoplus_{i=1}^n T_i$$

is a tilting module inducing the torsion theory $(\mathcal{T}, \mathcal{F})$. Observe that, by definition, all injectives are torsion. Since, on the other hand, $\tau T_i \in \mathcal{F}$ for any non-projective indecomposable summand T_i of T, we have

$$\operatorname{Hom}_{A}(I, \tau T_{i}) = 0$$
 for any injective I_{A} ,

hence $pdT \le 1$. Moreover, for any two indecomposable summands T_i and T_i of T, we have

$$\operatorname{Ext}_{A}^{1}(T_{i}, T_{i}) = D\operatorname{Hom}_{A}(T_{i}, \tau T_{i}) = 0.$$

Finally, the number n of non-isomorphic indecomposable summands of T is equal to the number of τ -orbits in the preprojective component, and therefore to the number of non-isomorphic simple A-modules. Hence T_A is a tilting module. There remains to show that $\mathscr{T} = \mathscr{T}(T_A)$ and $\mathscr{F} = \mathscr{F}(T_A)$. If $M \in \mathscr{T}$,

$$\operatorname{Ext}_{A}^{1}(T, M) = D\operatorname{Hom}_{A}(M, \tau T) = 0,$$

since $\tau T \in \mathcal{T}$, hence $M \in \mathcal{T}(T_A)$. Similarly, if $N \in \mathcal{F}$, then

$$\operatorname{Hom}_{A}(T, N) = 0.$$

This proves that $\mathcal{T} \subseteq \mathcal{T}(T_A)$ and $\mathcal{F} \subseteq \mathcal{F}(T_A)$. Since $(\mathcal{T}, \mathcal{F})$ is splitting, we deduce that

$$\mathscr{T} = \mathscr{T}(T_A)$$
 and $\mathscr{F} = \mathscr{F}(T_A)$,

and the proof of the theorem is now complete.

COROLLARY (2.7). Let A be a finite-dimensional k-algebra having a preprojective component containing all projective A-modules, and $(\mathcal{T}, \mathcal{F})$ a torsion theory in modA. The following assertions are equivalent:

- (i) $(\mathcal{T}, \mathcal{F})$ is induced by a preprojective separating tilting module.
- (ii) $(\mathcal{T}, \mathcal{F})$ is a splitting tilting torsion theory, with all torsion-free modules preprojective.
- (iii) $(\mathcal{T}, \mathcal{F})$ is a splitting torsion theory such that \mathcal{T} contains the injectives, and \mathcal{F} contains only finitely many non-isomorphic indecomposable modules.

Proof. It follows immediately from (2.6) that (i) implies (ii) and (iii). If $(\mathcal{T}, \mathcal{F})$ is a splitting torsion theory, induced by the tilting module T_A , with all torsion-free modules preprojective, then, in particular, τT is preprojective. Since an indecomposable torsion-free module is a predecessor of τT , there are only finitely many non-isomorphic indecomposable torsion-free modules, and (ii) implies (iii).

Let $(\mathcal{T}, \mathcal{F})$ satisfy the hypothesis of (iii), then all torsion-free modules are preprojective. Indeed, if $M_A \in \mathcal{F}$ is not preprojective, there must exist a projective module P_A such that

$$\operatorname{Hom}_A(P, M) \neq 0$$
,

and therefore a chain of indecomposable modules and irreducible maps of arbitrary length *t*:

$$P = N_0 \xrightarrow{f_1} N_1 \xrightarrow{f_2} N_2 \rightarrow \dots \xrightarrow{f_t} N_t$$

with a map $g:N_t \to M$ such that $gf_t \dots f_1 \neq 0$ [11]. Now, all N_i are preprojective and, since $M \in \mathcal{F}$, all N_i are also torsion-free. But then the arbitrariness of t contradicts the fact that \mathcal{F} contains only finitely many non-isomorphic indecomposables. This proves that any torsion-free module M must be preprojective. Let now T_A be the direct sum of all non-isomorphic indecomposable Ext-projective torsion modules. They are clearly preprojective, since they are either projective, or of the form $\tau^{-1}M$, with $M \in \mathcal{F}$ indecomposable. Since \mathcal{F} contains the injectives, we have again $pdT \leq 1$. It is evident that

$$\operatorname{Ext}_{A}^{1}(T, T) = 0.$$

Finally, the number of non-isomorphic indecomposable summands of T is equal to the number n of non-isomorphic simple A-modules: indeed, if r is the number of non-isomorphic indecomposable projective torsion modules, the number of non-isomorphic indecomposable Ext-projectives in \mathcal{F} , which is equal to the number of non-isomorphic indecomposable Ext-injectives in \mathcal{F} , is n - r (by (1.5)). Since an indecomposable summand of T is either projective or of the form $\tau^{-1}N$, with N indecomposable

Ext-injective in \mathscr{F} , the number of non-isomorphic summands of T is r + (n - r) = n. Therefore T_A is a tilting module, and it is easily seen that $\mathscr{F} = \mathscr{F}(T_A)$, $\mathscr{F} = \mathscr{F}(T_A)$.

3. Application to tilted algebras.

PROPOSITION (3.1). Let A be a finite-dimensional k-algebra having a preprojective component containing all projectives and define

$$\mathcal{T} = \{ M_A | \mathrm{id} M \leq 1 \},$$

$$\mathscr{F} = \{M_4 | \mathrm{id}M > 1\}.$$

If $(\mathcal{T}, \mathcal{F})$ is a torsion theory in modA, then A is a tilted algebra.

Proof. If $(\mathcal{T}, \mathcal{F})$ is a torsion theory in mod A, it is, by definition, a splitting torsion theory in which all injectives are torsion. Also, an indecomposable module M_A is torsion-free if and only if

$$\text{Hom}_{A}(\tau^{-1}M, A_{A}) \neq 0$$
 [7].

Let thus $M \in \mathcal{F}$. There exists an indecomposable projective module P_A such that

$$\operatorname{Hom}_{A}(\tau^{-1}M, P) \neq 0,$$

therefore $\tau^{-1}M$, and consequently M are preprojective, and we have a chain of irreducible maps from M to P. It follows that there are only finitely many non-isomorphic indecomposable torsion-free modules. By (2.7), $(\mathcal{F}, \mathcal{F})$ is induced by the separating tilting module

$$T = \bigoplus_{i=1}^n T_i$$

where T_1, T_2, \ldots, T_n is a complete set of representatives of the isomorphism classes of indecomposable Ext-projective torsion modules. Observe that the T_i are all preprojective.

We claim that the set $\mathscr{S} = \{T_i | 1 \le i \le n\}$ forms a complete slice in the preprojective component. Since T is a separating tilting module, \mathscr{S} contains exactly one representative from each τ -orbit. Thus we only have to show that if

$$T_0 \to M_0 \to \ldots \to M_t \to T_1$$

is a chain of indecomposable modules and irreducible maps with T_0 , $T_1 \in \mathcal{S}$, then all the M_i belong to \mathcal{S} . Suppose indeed that this is not the case. We may assume that T_0 and T_1 are chosen so that no M_i belong to \mathcal{S} . Then, by the properties of separating tilting modules, T_1 is projective. Observe that, since $T_0 \in \mathcal{F}$ and $(\mathcal{F}, \mathcal{F})$ is splitting, all the M_i are torsion.

Also, M_t cannot be projective (for, a projective torsion module is a summand of T), hence $\tau M_t \neq 0$. Since M_t does not belong to \mathcal{S} , $\tau M_t \notin \mathcal{F}$, therefore $\tau M_t \in \mathcal{F}$. But, on the other hand,

$$\operatorname{Hom}_{A}(\tau^{-1}(\tau M_{t}), A_{4}) \stackrel{\sim}{\to} \operatorname{Hom}_{A}(M_{t}, A) \neq 0$$

because $\operatorname{Hom}_A(M_t, T_1) \neq 0$ and T_1 is projective. We have thus reached a contradiction which completes the proof of our claim, and hence of the proposition.

Remark (3.2). The converse of this proposition is not true, indeed the algebra A of the quiver:

bound by $\alpha \delta = \beta \delta = 0$, is tilted of type \mathbf{D}_5 , but $(\mathcal{T}, \mathcal{F})$ does not form a torsion theory. In fact, the projective module P(4) has injective dimension 2, while its submodule P(3) has injective dimension 1. On the other hand, its opposite algebra A^{op} satisfies the assumptions of (3.1). Such tilted algebras have an interesting property:

PROPOSITION (3.3). Let A be a tilted algebra such that its opposite algebra A^{op} satisfies the assumptions of (3.1), then, for any tilting module M_A , End M_A is also a tilted algebra.

Proof. By hypothesis, A has a complete slice $\mathscr S$ in its preinjective component such that all modules on the right of $\mathscr S$ have projective dimension 2. Let $(T_i)_{1 \le i \le n}$ be the non-isomorphic indecomposable A-modules in $\mathscr S$, and

$$T_A = \bigoplus_{i=1}^n T_i$$

be the slice module. Then $B = \operatorname{End} T_A$ is hereditary, $T_B = D(_BT)$ is a tilting module and it follows from the Brenner-Butler theorem [8] that

$$Tor_1^A(N, T') = 0$$

if and only if N_A does not lie on the right of \mathcal{S} , while

$$N \bigotimes_{A} T' = 0$$

if and only if N lies on the right of \mathcal{S} . Let now

$$M_A = \bigoplus_j M_j$$

be an arbitrary tilting module, with the M_j indecomposable. Since $pdM_j \leq 1$ for all j, no M_j lies on the right of \mathcal{L} . Therefore, for each j, there exists a B-module M'_i such that

$$M_j = \operatorname{Hom}_B(T', M'_j).$$

We claim that $M'_B = \bigoplus_j M'_j$ is a tilting module. Since B is hereditary, this

follows from the fact that, for any two summands M_i and M_h of M_a :

$$\operatorname{Ext}_{B}^{1}(M'_{i}, M'_{h}) \stackrel{\sim}{\to} \operatorname{Ext}_{A}^{1}(M_{i}, M_{h}) = 0.$$

Since clearly $\operatorname{End} M_B \xrightarrow{\sim} \operatorname{End} M_A$, we infer that $\operatorname{End} M_A$ is a tilted algebra.

Note. After the completion of this paper, the author has learned that S. O. Smalø had also characterised the tilting torsion theories in [13], obtaining a result equivalent to Theorem (1.2).

REFERENCES

- 1. I. Assem and D. Happel, Generalized tilted algebras of Type A_n , Comm. Algebra 9 (1981), 2101-2125.
- M. Auslander and I. Reiten, Representation theory of artin algebras III and IV, Comm. Algebra 3 (1975), 239-294 and 5 (1977), 443-518.
- 3. M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46.
- M. Auslander and S. O. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980), 61-122.
- 5. —— Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454.
- Addendum to almost split sequences in subcategories, J. Algebra 71 (1981), 592-594.
- K. Bongartz, Tilted algebras, Proc. ICRA III (1980), Springer Lecture Notes 903 (1982), 26-38.
- 8. D. Happel and C. M. Ringel, *Tilted algebras*, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- 9. M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427-440.
- Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), 334-336.
- C. M. Ringel, Report on the Brauer-Thrall conjectures, Proc. ICRA II (1979), Springer Lecture Notes 831 (1980), 104-136.
- Tame algebras, Proc. ICRA II (1979), Springer Lecture Notes 831 (1980), 137-287.
- 13. S. O. Smalø, Torsion theories and tilting modules, preprint.

University of Ottawa, Ottawa, Ontario