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1. Statement of the Problem

A graph G consists, for the purposes of this paper, of two disjoint sets V(G),
E(G), whose elements are called vertices and edges respectively of G, together
with a relationship whereby with each edge is associated an unordered pair of
distinct vertices (called its end-vertices) which the edge is said to join, and
whereby no two vertices are joined by more than one edge. An edge A and
vertex € are incident if £ is an end-vertex of A. A monomorphism [isomorphism] of
a graph G into [onto] a graph H is a one-to-one function ¢ from V(G)v E(G)
into [onto] V(H)u E(H) such that ¢(V(G))<=V(H), ¢(E(G))=E(H) and an
edge and vertex of G are incident in G if and only if their images under ¢ are
incident in H. G and H are isomorphic (in symbols, G = H) if there exists an
isomorphism of G onto H. A subgraph of G is a graph H such that V(H)< V(G),
E(H)< E(G) and an edge and vertex of H are incident in H if and only if they
are incident in G; if V(H) = V(G), H is a spanning subgraph. A collection of
graphs are edge-disjoint if no two of them have an edge in common. A decomposi-
tion of G is a set of edge-disjoint subgraphs of G which between them include
all the edges and vertices of G. L" is a graph whose vertices are the lattice
points of n-dimensional Euclidean space, two vertices A and B being joined by
an edge if and only if AB is of unit length (and therefore necessarily parallel to
one of the co-ordinate axes). An endless Hamiltonian line of a graph G is a
spanning subgraph of G which is isomorphic to L!. The object of this paper
is to prove that L" is decomposable into n endless Hamiltonian lines, a result
previously established (1) for the case where n is a power of 2.

2. Preliminary Lemmas

Definitions. The set whose elements are a,, a,, ..., a, will be denoted by
{a,, ay, ..., a,}. If A, B are sets, A© B will denote the set of those elements of
A which do not belong to B. The number of elements of 4 will be denoted by
ord A. The set of all real numbers, the set of all integers, the set of all non-
negative integers and the set of all positive integers will be denoted by R, I, J and
P respectively. We shall suppose given an infinite sequence e, e, ... of vectors
forming a basis of an infinite-dimensional real vector space U. Let xe R,
ue U and Q, T be subsets of R, U respectively. Then u+T [Qu] will denote
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the set of all vectors of the form u -+t [gu], where te T'[g e Q); and xQ [Q+x,
O — x] will denote the set of all real numbers of the form xg [¢+ x, g — x], where
ge Q. We shall write I+ =1,J+3=1J,{1,2, .., n}=P,, Asetofn
consecutive elements of I (where n is a positive integer) will be called a string
of length n—e.g. {24, 34, 44} is a string of length 3. If z € U, z; will denote its
‘ith component’, i.e. the coefficient of e*in the unique relation z = z,e* +z,e* +...
Furthermore, ;z will denote the vector z—z,e’. V" will denote the set of all
vectors of the form A,e!+A,e>+... + A", where the A, are integers. It will be
convenient to re-define the graph L” as follows: V(L") = V", and two elements
u, v of V" are joined by an edge of L" if and only if u—v = +e' for some i,
in which case the edge joining them will be denoted by the vector 3(#+v). This
definition is essentially similar to that of § 1; but we have arranged for con-
venience that (i) our ‘ n-dimensional space ” is contained in our * (n+41)-
dimensional space , and (ii) each edge of L" is referred to by what may be
thought of as the position vector of its mid-point. I define a one-ended [endless]
Hamiltonian function for a graph G to be a one-to-one function f: 3J [3/]—
V(G)v E(G) such that f(J) [f(I)] = V(G) and, for every neJ [I], f(n+4%) is an
edge joining f(r) to f(n+1) in G. (If fis an endless Hamiltonian function for
G, the elements of f(1I) clearly form an endless Hamiltonian line of G.) If f
is a one-ended [endless] Hamiltonian function for G and T is a subset of E(G),
A(T) will denote the number of elements of T which do not belong to 1

LAD)-

Lemma 1. Let N be a positive integer. For any subset A of 1, let & ; denote
the set of all strings of length < N which are disjoint from A. Call a Hamiltonian
Sunction f for L" * admissible ” if, for every we V" and i€ P,, there is a finite
subset A of I such that A [(u+ Se )< 3"~2 for every Se & ,. Then, if n22, there
exist both a one-ended and an endless admissible Hamiltonian function for L".

The proof will use a technique taken from (2).

Proof. The result is diagrammatically obvious if n = 2; cf. figs. 1 and 2,

which are drawn for the illustrative case n = 2, N = 4. Assume, therefore,
that the result is true for 2<n<k—1, where k= 3. Then we can select admissible
endless Hamiltonian functions g, & for L*~!, L? respectively. Let ¢ be the
monomorphism of L? into L* defined by

$(2) = glz)+z,¢" (z€ VZUE(L?).

Then ¢k is clearly an endless Hamiltonian function for L¥; we will prove it to be
admissible.

Let ue V*, and let ,u = v, ¢~ '(u) = w. Since h is admissible, there is a
finite subset 4 of I such that, for all Se%,,

Ap(u+Se¥) = Ayw+SeH)S1<3*72 )
Moreover, if i € P,_,, the admissibility of g and 4 implies that there are finite

https://doi.org/10.1017/50013091500002753 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500002753

DECOMPOSITION OF n-DIMENSIONAL LATTICE-GRAPH 125

|
|
2T,
1
i
FiG. 1
P e fe e BRSPS
ohy LT AT
T, T
|
1 I
|
1

https://doi.org/10.1017/50013091500002753 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500002753

126 C. ST.J. A. NASH-WILLIAMS

subsets B, C of I such that A,(v+Se’)<3*73, A (w+S’e")<1 for all SeFy,
S'Eyc. Let

pw+Ce)n(u+le) = u+De’, ..cococvvveerennnn @)
and let F = BuD. We will prove that A, ,(u+Te’)<3*~2 for every T e 5;

this result, together with (1), shows that ¢4 is admissible.
Suppose, therefore, that Te%r. Then T ey and so A, (v+Te')< 3%-3,

which clearly implies that g~ *(v+ Te') is of the form 7, UT, U...u T, where the

T, are disjoint strings and 0L R<3* 34 1. Writing 7, for the string f‘,—wl,
this gives

R
gTHO+TE) = U (T+wy), oo, €))
r=1
whence
R
P w+T)= U W+Te'). oo, 4
r=1

By (2) and (4), the hypotheses ¢ € C, t € T, imply respectively the conclusions
d(w+te') ¢ u+(IOD)e', P(w+tel) e u+Te,
which are incompatible since Te%r and therefore T<I©D. Therefore

T,nC = . Itis also clear from (3) that ord 7, < ord T<N. Hence T, € &,
and so Ay(w+T,e')<1. Therefore, by (4),

Ap((w+Te)nd(w+let)) = Ao~ (u+Te) <RI 3+1. ... )

Moreover,
ord [(u+Te)Od(w+Ie)] = A, (v+Te)<3* 73 e, (6)

By (5) and (6), .
Apn(w+Te)<(3* 3 +1)+3573<3572,
Hence ¢4 is admissible.
A similar argument shows that the composition of ¢ with any one-ended
admissible Hamiltonian function for L? is a one-ended admissible Hamiltonian
function for L*. So Lemma 1 is now proved by induction on .

Lemma 2. If n=2, there exists a one-ended Hamiltonian function f for L"
such that f(0) = 0 and, for everyueV", i € P,, the set {x €I | u+xe' e f(2P—1)}
is unbounded above and below.

Proof. Taking N = 2.3"~2+2,letf’ be an admissible one-ended Hamiltonian
function for L" in the sense of Lemma 1. Then, for any u € V", I € P,, there is
a finite subset A of I such that A,(u+Se)<3""2 for every Se¥,, which
implies that every string of length 2.3"~?+2 and disjoint from 4 includes two
consecutive elements 8, 8+ 1 such that u+60e’ and u+(0+ 1)e’ belong to f'(J).
These must clearly be images under f* of successive elements of J; hence one
of them belongs to f'(2P—1%). Thus the set {xel|u+xe' ef (2P—13)} is
unbounded above and below. Writing f{«) = f'(a)—f'(0) for every a € 3J, we
clearly obtain an f which meets our requirements.
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Definitions. Z will denote the set of all ordered pairs (z, y) such that r€ ],
yel, t = y+4(mod 2) and either t =0 or | t|>y. An edge u of L” will be
called an i-edge if u; el (i.e. if u joins vertices v, w such that o—w = +e¢).
K, M will denote the subgraphs of L? defined by

V(M) = V(K) = {ue V?|u,20}, E(K)= {ue E(L?|u,20},
EM) = {ue E(L® | u, eJ}.

(Thus all edges of M are 1-edges.) An i-couple of L" is a pair {u, v} of i-edges
of L" such that u—v = +e’ for somej # i. A couple of L" is a pair of edges of
L" which is an i-couple for some value of i. If x, y I, 8(x, y) is defined to be the
1-couple of L? consisting of the edges xe!+(y+3)e?. If ¢ is an i-couple of L”
consisting of the edges u+4e’ (where the vector u has necessarily just two non-
integral components), the conjugate couple ¢’ is defined to consist of the edges
u+ie'; geometrically speaking, ¢ and ¢’ are the two pairs of opposite sides
of a unit square. Let C be a set of couples of L”, S be the union of these couples
(i.e. a subset of E(L")), S’ be the union of their conjugates and H be a subgraph of
L" such that Sc E(H). Then H*C will denote the subgraph of L"” defined by

V(H+*C) = V(H), E(H*C) = (E(H)eS)us'.
Lemma 3. Let x: Z—1I be a function such that the inequalities
x(—20+1, 20—3) <x(0, 20—3) <x(a—1, 20—~ 3)
hold for every positive integer o and the inequalities
(B, 1= <x(B+1, y+H<x(B+2, y—1)
x(—B-2, y—PH<x(—B-1, y+P<x(-B, y-%)
kold for every pair of positive integers B, y such that f—y e 2J. Let C be the set
of all couples of the form 6(x(t, y), ), where (t, y) € Z. Then M+C = L*,

A detailed formal proof would be tedious; but it is thought that a sufficient
indication is given by fig. 3, which is drawn for the illustrative case in which x
is defined by x(¢, y) = 3¢+13.

3. The Main Result

We shall now prove that L" is decomposable into n endless Hamiltonian
lines. Since this result is trivial for » = 1 and easily established diagrammatically
[(D), fig. 1] for n = 2, we shall henceforward assume that n=3. Let fbe a
one-ended Hamiltonian function for L"~! such that f(0) = 0 and, for every
ue V" Y, ie P,_,, the set {xel| u+xe'ef(2P—1)} is unbounded above and

below. (Such an f exists by Lemma 2.) Let ¢’ be the monomorphism of K
into L" defined by

i-1
#(@)= ¥ filz)e'+zie'+

Hfj- 1(Zz)ej

J=i

for every z e V(K)VE(K), where f;(0) is the jth component of f(f). We shall write
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n(i, x, y) for ¢'(5(x, y)), where xel, yeJ. (Thus n(i, x, y) is an i-couple of
L") For a fixed i e P, and y € J, n(i, I, y) will denote the set of all couples of
the form z(i, x, ), x € I. A couple ¢ of L" will be called admissibleif ¢’ = n(i, x, y)
for some i€ P,, xel, yeJ, and good if ¢’ = n(i, x, y) for some i€ P,, xel,
ye2P-1. If ¢ = n(i, x, y), we define Y{c) to be y.

Lemma 4. For every i€ P,, y € J, the set of those x €1 for which n(i, x, y) is
good is unbounded above and below.

Proof. LetieP,and yeJ. Then for any x €1, clearly
2, x, 3) = $'(8(x, »)),

¥
N

FiG. 3.

which consists of the edges

P ((xtDet +ye®) = ut(xt e’ @)
where u = ¢(ye?). Let u be a j-edge; then clearly j # i. If aeJ, n(j, u;, @)
consists of the edges

(e’ + (@t 4)e®) = p((atde?) +usel,
and so coincides with (7) if the pairs of vectors ¢/((a+4)e?), ju+(xi<})e‘
coincide. These pairs of vectors are the pairs of end-vertices of the edges

J(xe?), ju+xe' respectively, and so coincide if ;u+xe’ = ¢’(xe?), i.e. if v+ xe*
J J
= f(a), where

v=wueltuel+. w0 @ a4 et
and k = iori—1according as i<j or i>j respectively. So (i, x,y)" = n(j,u;, «)
if v+ xe* = f(&), and hence n(i, x, y) is good if v+ xe* € f(2P~14). But, by our

choice of £, this last property holds for a set of x-values unbounded above and
below. Thus the lemma is proved.

Lemma 5. If n(i, x, y)' = n(j, X, §), then | % | S y.
Proof. The hypothesis clearly implies thati 3 j. Letk = jorj—1according

https://doi.org/10.1017/50013091500002753 Published online by Cambridge University Press

N


https://doi.org/10.1017/S0013091500002753

DECOMPOSITION OF »n-DIMENSIONAL LATTICE-GRAPH 129

as j<i or j>i respectively. Clearly n(i, x, ¥)' = ¢'(8(x, »)), which consists of
the edges ¢'((x+1)e' +ye?); the jth component of each of these vectors is, by
the definition of ¢, equal to f,(y). But n(j, X, ) consists of the edges
¢'(xe! +(5+1)e?), and the jth component of each of these vectors is, by the
definition of ¢/, equal to X. Hence X = fi(y). But, since f(0) = 0, it is clear
that | fi(y) |[Sy; hence | X [Zy.

Definition. 1If, for each m e P, S,, denotes the finite sequence a1, @n2, ---»
Gy m), then Sy S, Sy ... will denote the infinite sequence

Q115 Q125 -5 Ay (1) Q215 Q225 +-+ G2y (2)> G315 D325 -5 AIP(3)s «=o0
For any positive integer «, there are only finitely many elements (¢, y) of Z
for which | ¢| = «; hence these elements of Z can be arranged in a finite
sequence s,. Let s denote the sequence

518,52578354535586545758...,
where §, is the sequence whose only term is (0, 22 —4); thus s is an arrangement

of the elements of Z in an infinite sequence. Let (¢, »,,) be the mth term of s.
Let o be the infinite sequence ¢,6,05..., where o,, denotes the finite sequence

(1’ tm’ ym)', (21 tma ym)’ eeey (n’ tma ym)
Thus ¢ is a sequence of ordered triples; let (i,, 7,, #,) be its rth term.
Lemma 6. Ifgq<r,i, =i, and 1, = 0, then n,2n,+2.

Proof. The above hypotheses imply that (z,, n,) is an earlier term of s
than (0, 1,), which, by the definitions of Z and s, clearly implies that n,2n,+2.

We shall now select in succession admissible couples ¢, ¢, ¢3, ... of L"
For each r, ¢, will be n(i,, &,, 5,) for some &, €I; so the selection of ¢, will be
determined by that of £, and vice-versa. First, we take ¢, to be a good element
of n(i,, I, n,); this is possible by Lemma 4. Suppose we have selected the
admissible couples ¢,, ¢,, ..., ¢, (and the associated numbers &, &, ..., §,_y),
where r=2. Let

r—1
4, = maxmax (| &1, n,, ¥(c)):
g=

(¥(c,) is defined since c, is admissible.) We now choose ¢, (or ¢,) in accordance
with the following instructions; the possibility of the choice in Cases (i)-(iii)
follows from Lemma 4.
() If 7,>0, choose ¢, so that ¢, = =n(i,, ,, #,) is good and &> A4,.
(i) If 7,<0, choose £, so that ¢, is good and &, < — 4,.
(iii) If 7, = 0 and none of ¢}, ¢3, ..., ¢/ belongs to n(i,, 1, n,), choose ¢,
so that ¢, is good and | £, | > 4,.
(iv) If 7, = 0 and at least one ¢ (g <r) belongs to n(i,, I, 1,), let ¢, be one
such c;.

Then c, is certainly admissible since it is good in Cases (i)-(iii) and conjugate to
some n(i,, &, 1,) in Case (iv).
E.M.S.—K
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We now prove that, if g<r, ¢, and ¢, are disjoint (i.e. have no edge in
common). Since this is obvious if i, # i, from the fact that ¢, is an i,-couple
and c, an i,-couple, we shall assume that i, = i.. Then ¢, = =n(i, £, n,) and
¢, = n(i, ¢&,, n,) are disjoint if 6(¢,, n,), 6(¢,, n,) are disjoint, which is the case
if either {, # &, or n,2#n,+2. But, in Cases (i)-(iii), | &, |> 4,2 ¢, | while,
in Case (iv), n,2n,+2 by Lemma 6.

We next prove that, in Case (iv), there can in fact have been only one possible
choice for ¢,. For suppose, if possible, that 7, = 0, p<g<r and c,, ¢; both
belong to n(i,, I, 5,). By Lemma 6, there is no p <r such that i, =1iandn, = 1n,;
hence ¢, ¢ n(i,, I, n,) for any p<r. Therefore there is no p<r (and hence a
JSortiori no p<gq) such that ¢, = c; ; so ¢, cannot have been chosen according
to the rule for Case (iv). We therefore have, by Lemma 5,

Ye)z |&| > 4,2 Y,

contrary to the hypothesis that Y(c,) = Y(c;) =#,; this contradiction proves
that the choice of ¢, must have been uniquely determined.

We now show that, for each r € P, c; is a term of the sequence (c,). If ¢,
was chosen by Rule (iv), this is immediate. In all other cases, ¢, is good and so
c.en(j, I, y) for some je P, ye2P—4%. By the definition of o, there is a
unique p such that (i,, 7,, 1,) = (/, 0, ). Since the conjugate of an i,-couple
cannot be an i-couple, i, # j = i, and hence p # r. Moreover, p<r would
imply that

Y = 1,S4,<| & |S¥(C)

by Lemma 5, contrary to the assumption that ¥{(c;) = y. Therefore p>r.
Since 7, = 0, p>r and ¢} € n(lj, I, ) = n(i,, I, n,), ¢, must be chosen by Rule
(iv), and, since we have just shown that Rule (iv) in fact gives only one choice,
it follows that ¢, = c;; hence c, is a term of our sequence (c,,).

If (¢, y) € Z, i € P, there is a unique r such that (i, t, y) = (i, 1,, n,); define
x;(t, y) to be &, for this value of r.

Lemma 7. If (¢, y), (}, y) € Z and (i, ) is a later term of s than (t, y), then
(a) xi(i: y)>xi(ts y) ifi>0’
(b) xi(i’ y)<xi(t5 y) ifi<0'

Proof. The hypotheses imply that (i, ¢, y) = (iy, 75 1), (0, £, 9) = (i, o 1))
for some ¢, r such that g<r. Moreover, if >0, i.e. 7,>0, then &, is chosen in
accordance with Rule (i) and so {,>4,=¢,, which, since ¢, = x(, ),
&, = x(t, ), establishes (a). Similarly, if = 7,<0, ¢, is chosen in accordance
with Rule (ii) and so £, < — 4, <&,, which establishes (b).

Let H; be the spanning subgraph of L"” whose edges are precisely the i-edges
of L". Let S; be the set of all i-couples in the sequence (c,). Since we have
seen that the terms of this sequence are disjoint and that the conjugate of each
term of the sequence is also a term of the sequence, it follows that the sub-
graphs H xS, constitute a decomposition of L". Since, moreover, these are
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spanning subgraphs of L", it suffices to prove that they are all isomorphic to L!.
But H,, S; are the images under ¢’ of M, C, respectively, where C; is the set of
all couples of the form 6(x(t, ¥), »), (t, y) € Z. Therefore H;*S, is the image of
M+*C,, and so it suffices to prove that M*C; = L!. To do this, it suffices, by
Lemma 3, to show that the hypotheses of that lemma are satisfied by the function
x;: Z—1. But this follows at once from Lemma 7.
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