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1. Statement of the Problem
A graph G consists, for the purposes of this paper, of two disjoint sets V(G),

E(G), whose elements are called vertices and edges respectively of G, together
with a relationship whereby with each edge is associated an unordered pair of
distinct vertices (called its end-vertices) which the edge is said to join, and
whereby no two vertices are joined by more than one edge. An edge A and
vertex | are incident if ̂  is an end-vertex of A. A monomorphism [isomorphism] of
a graph G into [onto] a graph H is a one-to-one function <j> from V(G)\JE(G)

into [onto] V(H)uE(H) such that <t>(V(G))<=V(H), <j)(E(G))<=E(H) and an
edge and vertex of G are incident in G if and only if their images under <j> are
incident in H. G and H are isomorphic (in symbols, G = H) if there exists an
isomorphism of G onto H. A subgraph of G is a graph H such that V(H) c V(G),
E(H)<=E(G) and an edge and vertex of H are incident in H if and only if they
are incident in G; if V(H) = V(G), His a. spanning subgraph. A collection of
graphs are edge-disjoint if no two of them have an edge in common. A decomposi-
tion of G is a set of edge-disjoint subgraphs of G which between them include
all the edges and vertices of G. L" is a graph whose vertices are the lattice
points of w-dimensional Euclidean space, two vertices A and B being joined by
an edge if and only if AB is of unit length (and therefore necessarily parallel to
one of the co-ordinate axes). An endless Hamiltonian line of a graph G is a
spanning subgraph of G which is isomorphic to L1. The object of this paper
is to prove that L" is decomposable into n endless Hamiltonian lines, a result
previously established (1) for the case where n is a power of 2.

2. Preliminary Lemmas
Definitions. The set whose elements are au a2, ..., an will be denoted by

{au a2 an}. If A, B are sets, ^405 will denote the set of those elements of
A which do not belong to B. The number of elements of A will be denoted by
ord A. The set of all real numbers, the set of all integers, the set of all non-
negative integers and the set of all positive integers will be denoted by R, I, / a n d
P respectively. We shall suppose given an infinite sequence e1, e2, ... of vectors
forming a basis of an infinite-dimensional real vector space U. Let x e R,
ueU and Q, T be subsets of R, U respectively. Then u + T [Qu] will denote
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the set of all vectors of the form u + t [qu], where t e T [q e Q\\ and xQ [Q+x,
Q — x] will denote the set of all real numbers of the form xq [q+x, q—x], where
qeQ. We shall write I+i = /, J+\ = 3, {1, 2, ..., n} = Pn. A set of n
consecutive elements of 1 (where n is a positive integer) will be called a string
of length n—e.g. {2\, 3£, 4£} is a string of length 3. If z e U, zt will denote its
'/th component',i.e. the coefficient of e'in the unique relation z = z^e1 +z2e

2 4-...
Furthermore, fz will denote the vector z-zfi1. V will denote the set of all
vectors of the form A^1 + X2e

2 +... +Xne", where the Af are integers. It will be
convenient to re-define the graph L" as follows: V(L") = V, and two elements
u, v of V are joined by an edge of L" if and only if u-v = ±el for some i,
in which case the edge joining them will be denoted by the vector \{u + v). This
definition is essentially similar to that of § 1; but we have arranged for con-
venience that (i) our " M-dimensional space" is contained in our "(n + 1)-
dimensional space ", and (ii) each edge of L" is referred to by what may be
thought of as the position vector of its mid-point. I define a one-ended [endless]
Hamiltonian function for a graph G to be a one-to-one function / : \J [i/]->
V{G)KJE{G) such that/(/) [/(/)] = V(G) and, for every neJ [/],/(«+£) is an
edge joining/(n) t o / («+ l ) in G. (If/ is an endless Hamiltonian function for
G, the elements of/(^T) clearly form an endless Hamiltonian line of G.) If/
is a one-ended [endless] Hamiltonian function for G and T is a subset of E(G),
Af(T) will denote the number of elements of T which do not belong to f(J)

i

Lemma 1. Let N be a positive integer. For any subset A oft, let Zf A denote
the set of all strings of length ^ iV which are disjoint from A. Call a Hamiltonian
function f for L" " admissible " if, for every u e V and iePn, there is a finite
subset A ofl such that A/ii + Se1')^ 3"~2 for every SeS?A. Then, ifn^l, there
exist both a one-ended and an endless admissible Hamiltonian function for L".

The proof will use a technique taken from (2).

Proof. The result is diagrammatically obvious if n = 2; cf. figs. 1 and 2,
which are drawn for the illustrative case n = 2, iv~ = 4. Assume, therefore,
that the result is true for 2 ̂  n g k — 1, where k^ 3. Then we can select admissible
endless Hamiltonian functions g, h for L*"1, L2 respectively. Let </> be the
monomorphism of L2 into Lk defined by

<Kz) = g(z,) + z2e
k (z 6 V2 u E(L2)).

Then (j>h is clearly an endless Hamiltonian function for Lk; we will prove it to be
admissible.

Let u e Vk, and let ku = v, ^>~1(u) = w. Since h is admissible, there is a
finite subset A of / such that, for all SeSPA,

2 (1)

Moreover, if iePk-i, the admissibility of g and h implies that there are finite

https://doi.org/10.1017/S0013091500002753 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002753


DECOMPOSITION OF n-DIMENSIONAL LATTICE-GRAPH 125

:
-ir

: -

-f
i+

-tH-H• - j —

• r
XI-

-if:
n

—
hr14=-

+4-
Flo. 2.

https://doi.org/10.1017/S0013091500002753 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002753


126 C. ST.J. A. NASH-WILLIAMS

subsets B, C of I such that AB(t+5c')^3*-3, Ah(w+SV)gl for all SeSPB,
S'eSTc. Let

(piw+Ce^niu+W) = u+De\ (2)
and let F = BKJD. We will prove that A,̂ (H + re ')^3*~2 for every Te^F;
this result, together with (1), shows that <j>h is admissible.

Suppose, therefore, that Te^F. Then TeSfB and so Ag(v+Te')^3k~3,

which clearly implies that g~ 1(v+Tei) is of the form 7\ u r 2 u . . . u 7^, where the

fr are disjoint strings and 0^R^3k~3 + l. Writing Tr for the string fr-wu

this gives

g-\v + Tei)= u (Tr+Wl), (3)
r = 1

whence

<l>-l(u + Tei)= u (w+Tre
l) (4)

r = 1

By (2) and (4), the hypotheses t e C, t e Tr imply respectively the conclusions

^(w + te1) $ u + (IQD)e', ^(w+te1) e u + Te',

which are incompatible since TeS?F and therefore TczlQD. Therefore
TrnC = 0 . It is also clear from (3) that ord Tr g ord T^ N. Hence Tr e SPC,
and so AA(w + T^1) g 1. Therefore, by (4),

At^u + Te^nMw+le1)) = AM>-1(u + Tel))£R£3k-3 + l (5)

Moreover,
ord [(u + Te^e^iw+le1)] = Agiv + Te')^'3 (6)

By (5) and (6),

Hence <j>h is admissible.
A similar argument shows that the composition of <j> with any one-ended

admissible Hamiltonian function for I? is a one-ended admissible Hamiltonian
function for Lk. So Lemma 1 is now proved by induction on n.

Lemma 2. If n^.2, there exists a one-ended Hamiltonian function f for L"
such thatf(0) = 0 and, for every u e V, i e Pn, the set {x e / | w + xel e / (2P- i)}
is unbounded above and below.

Proof. Taking N = 2.3"" 2 + 2, let/' be an admissible one-ended Hamiltonian
function for L" in the sense of Lemma 1. Then, for any ue V, Ie Pn, there is
a finite subset A of 1 such that A/.(« + 5'ei)^3B"2 for every SeSPA, which
implies that every string of length 2.3"~2 + 2 and disjoint from A includes two
consecutive elements 9, 6+1 such that u + 0el and u+(9+l)e' belong to f'(3).
These must clearly be images under/' of successive elements of J; hence one
of them belongs to / ' ( 2 P - | ) . Thus the set {xel\ u+xe'ef'(2P~i)} is
unbounded above and below. Writing/(a) = / ' (a)- / ' (0) for every a e \J, we
clearly obtain an/which meets our requirements.

https://doi.org/10.1017/S0013091500002753 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500002753


DECOMPOSITION OF n-DIMENSIONAL LATTICE-GRAPH 127

Definitions. Z will denote the set of all ordered pairs {t, y) such that t e I,
ye), i s y+±(mod 2) and either t = 0 or 11 \ >y. An edge u of IP will be
called an i-edge if utel (i.e. if u joins vertices v, w such that v—w = +e').
#, Af will denote the subgraphs of L2 defined by

V(M) = V(K) ={ueV2\ u2Z0}, E(K) = {« e

(Thus all edges of M are 1-edges.) An i-couple of Z," is a pair {«, »} of /-edges
of IP such that w—o = +e' for somey ^ i. A couple of IP is a pair of edges of
L" which is an /-couple for some value of /. If x, y e 1, 5(x, y) is defined to be the
1-couple of L2 consisting of the edges xe1 + (y±$)e2. If c is an /-couple of L"
consisting of the edges u±ieJ (where the vector « has necessarily just two non-
integral components), the conjugate couple c' is defined to consist of the edges
w+i^'; geometrically speaking, c and c' are the two pairs of opposite sides
of a unit square. Let C be a set of couples of IP, S be the union of these couples
(i.e. a subset of E{LP)), S" be the union of their conjugates and H be a subgraph of
IP such that ScE(H). Then H*C will denote the subgraph of IP defined by

V(H*C) = V(H), E(H*C) = (E(H)QS)vS'.

Lemma 3. Let x: Z-+1 be a function such that the inequalities

x(-2cc+l, 2a-f)<x(0, 2cr-i)<*(2a-l, 2a- |)

hold for every positive integer a and the inequalities

hold for every pair of positive integers /?, y such that fi — yeU. Let C be the set
of all couples of the form 5(x(t, y), y), where (t, y) e Z. Then M*C ^ L1.

A detailed formal proof would be tedious; but it is thought that a sufficient
indication is given by fig. 3, which is drawn for the illustrative case in which x
is defined by x(t, y) = 3t+±.

3. The Main Result
We shall now prove that IP is decomposable into n endless Hamiltonian

lines. Since this result is trivial for n = 1 and easily established diagrammatically
[(1), fig. 1] for n = 2, we shall henceforward assume that «^3 . Le t /be a
one-ended Hamiltonian function for IP'1 such that/(O) = 0 and, for every
ue V~x, ie Pn_u the set {xel \ u+xel ef(2P~i)} is unbounded above and
below. (Such an / exists by Lemma 2.) Let 0' be the monomorphism of K
into LP defined by

for every z e V(K)uE(K), where//0) is theyth component of/(0). We shall write
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n(i, x, y) for <j)\5(x, y)), where xel, y e 3. (Thus n(i, x, y) is an i-couple of
£".) For a fixed i e Pn and j> e J, n(/, 1, y) will denote the set of all couples of
the form n(i, x, y), xel. A couple c of L" will be called admissible if c' = n(i, x, y)
for some i e Pn, x e 1, y e J, and goorf if c' - %(i, x, y) for some i ePn,xe 1,
y e 2P-\. If c = 7r(/, x, y), we define 7(c) to be y.

Lemma 4. For every i ePn,ye 3, the set of those x el for which n(i, x, y) is
good is unbounded above and below.

Proof. Let i e Pn and ye 3. Then for any xel, clearly
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which consists of the edges

4>%{x±±V+ye2) = u+(x±i)ei, (7)

where u = <j>l{ye2). Let u be ay-edge; then clearly j ^ i. If a e J, 7t(y, up a)
consists of the edges

and so coincides with (7) if the pairs of vectors ^((a + i)e2), jU + (x±i)e'
coincide. These pairs of vectors are the pairs of end-vertices of the edges
<t>J(ue2), jU+xe' respectively, and so coincide if jU + xe' = <j>J(ae2), i.e. if v+xek

=/(a), where

v = u1

and k = i or i — 1 according as i<j or i>j respectively. So «(/, x, y)' = n(J, Uj, a)
if v+xek = /(a), and hence n{i, x, y) is good if v+xek ef(2P-$). But, by our
choice of/, this last property holds for a set of x-values unbounded above and
below. Thus the lemma is proved.

Lemma 5. Ifn{i, x, y)' = n(j, x, y), then \ x | ^y.

Proof. The hypothesis clearly implies that i # j . Let k = j ovj— 1 according
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asj<i or j>i respectively. Clearly n(i, x, y)' = <t>'(S(x, y)'), which consists of
the edges <f>X(x±%)el +ye2); the 7th component of each of these vectors is, by
the definition of (/>', equal to fk(y). But n(j, x, y) consists of the edges
$(xel + (y ±i)e2), and the jth component of each of these vectors is, by the
definition of 4>], equal to 3c. Hence x = fk(y). But, since /(0) = 0, it is clear
that | / * 0 ' ) | ^ ^ ; hence \x\^y.

Definition. If, for each meP, Sm denotes the finite sequence aml, am2, • ••,
<Wo»)> then St S2 S3 ... will denote the infinite sequence

2 1 > ° 2 2 > ••• a 2 i M 2 ) > " 3 1 . a 3 2 > • • • »

For any positive integer a, there are only finitely many elements (t, y) of Z
for which \ t \ = a; hence these elements of Z can be arranged in a finite
sequence sx. Let s denote the sequence

where sx is the sequence whose only term is (0, 2a - £ ) ; thus s is an arrangement
of the elements of Z in an infinite sequence. Let (tm, ym) be the wth term of s.
Let a be the infinite sequence at(T2a3..., where am denotes the finite sequence

0 . tm, ym), (2, tm, ym), ..., (n, tm, ym).

Thus a is a sequence of ordered triples; let (/r, xr, rir) be its rth term.

Lemma 6. Ifq<r, iq = ir and xr = 0, then rjr^riq + 2.

Proof. The above hypotheses imply that (xq, r\q) is an earlier term of s
than (0, t]r), which, by the definitions of Z and s, clearly implies that rjr^.nq+2.

We shall now select in succession admissible couples cu c2, c3, ... of L".
For each r, cT will be n{iT, £r, nr) for some £rel; so the selection of cr will be
determined by that of ̂ r and vice-versa. First, we take ct to be a good element
of 7t(/|, / , r/j); this is possible by Lemma 4. Suppose we have selected the
admissible couples c,, c2, ..., cr_x (and the associated numbers £u %2, ..., C_i),
where/-^2. Let

r - l
Ar = max max (| $, |, nq, Y(c'q)).

4 = 1

(Y(cq') is defined since c, is admissible.) We now choose £,r (or cr) in accordance
with the following instructions; the possibility of the choice in Cases (i)-(iii)
follows from Lemma 4.

(i) If T P > 0 , choose ^r so that cr = n{ir, £„ nr) is good and £,r>Ar.
(ii) If Tr<0, choose <̂ r so that cr is good and < r̂< — Ar.

(iii) If xr = 0 and none of ci, c'2, ..., c,'_! belongs to n(ir, 1, nr), choose £,,
so that cr is good and | £,, \>Ar.

(iv) If xr = 0 and at least one c£ (^ < r) belongs to 7t(/r) 7, ^r), let cr be one
such c'q.

Then c, is certainly admissible since it is good in Cases (i)-(iii) and conjugate to
some n(iq, £q, rjq) in Case (iv).

E.M.S.—K
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We now prove that, if q<r, cq and cr are disjoint (i.e. have no edge in
common). Since this is obvious if iq ¥= ir from the fact that cq is an /9-couple
and cr an /r-couple, we shall assume that iq = ir. Then cq = n(ir, t,q, rjq) and
cr = n(ir, £„ t]r) are disjoint if 5(£q, rjq), <5(£r, rjr) are disjoint, which is the case
if either £, # £r or »/, ^»/ , + 2. But, in Cases (i)-(iii), \^r\>Ar^\^\ while,
in Case (iv), r\r^.r\q+2 by Lemma 6.

We next prove that, in Case (iv), there can in fact have been only one possible
choice for c.r. For suppose, if possible, that T, = 0, p<q<r and c'p, c'q both
belong to n(ir, 1, rjr). By Lemma 6, there is no p <r such that ip — ir and r\p = r\r\
hence cp $n(ir, 1, rjr) for any p<r. Therefore there is no p<r (and hence a
fortiori no p<q) such that cp = c'q ; so cq cannot have been chosen according
to the rule for Case (iv). We therefore have, by Lemma 5,

contrary to the hypothesis that Y(c'p) = Y(c'q) = r\r; this contradiction proves
that the choice of cr must have been uniquely determined.

We now show that, for each r e P, c'r is a term of the sequence (cm). If cr

was chosen by Rule (iv), this is immediate. In all other cases, cr is good and so
c'ren(j, 1, y) for some jePtt, ye2P—%. By the definition of cr, there is a
unique p such that (ip, rp, rjp) = (J, 0, y). Since the conjugate of an /r-couple
cannot be an /r-couple, ir # j = ip and hence p # r. Moreover, p<r would
imply that

y=tlp^Ar<\^r\^Y(c'r)

by Lemma 5, contrary to the assumption that Y(c'r) = y. Therefore p>r.
Since T P = 0, p>r and c'r e n(lj, 1, y) = n(ip, I, t]p), cp must be chosen by Rule
(iv), and, since we have just shown that Rule (iv) in fact gives only one choice,
it follows that cp = c'r; hence c'r is a term of our sequence (cm).

If (r, y) e Z, ie Pn, there is a unique r such that (/, t, y) = (/„ xr, rjr); define
xJlj, y) to be ̂ r for this value of r.

Lemma 7. If(t, y), (I, y) eZ and (?, y) is a later term of s than (t, y), then

(a) xi(l,y)>xi(t,y)ifl>0,
(b) xi(l,y)<xi(t,y)ifi<0.

Proof. The hypotheses imply that (/, t, y) = (iq, xq, t]q), (i, I, y) = (/„ xr, t\,)
for some q, r such that q<r. Moreover, if ?>0, i.e. Tr>0, then £,r is chosen in
accordance with Rule (i) and so ^r>Ar^q, which, since ^r = *,-(?, y),
£q = xfc, y), establishes (a). Similarly, if t = r r < 0 , ^r is chosen in accordance
with Rule (ii) and so £r< — Ar^q, which establishes (b).

Let Hi be the spanning subgraph of L" whose edges are precisely the /-edges
of L". Let St be the set of all /-couples in the sequence (cm). Since we have
seen that the terms of this sequence are disjoint and that the conjugate of each
term of the sequence is also a term of the sequence, it follows that the sub-
graphs Hi*St constitute a decomposition of IP. Since, moreover, the.se are
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spanning subgraphs of L", it suffices to prove that they are all isomorphic to L1.
But Hh St are the images under <f>1 of M, Ct respectively, where Cf is the set of
all couples of the form d(xt{t, y), y), (t, y) e Z. Therefore i/f*Sj is the image of
M*Ch and so it suffices to prove that M*C{ s i 1 , To do this, it suffices, by
Lemma 3, to show that the hypotheses of that lemma are satisfied by the function
x,: Z->1. But this follows at once from Lemma 7.
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