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Edge-Maximal Graphs on Surfaces

Colin McDiarmid and David R. Wood

Abstract. 'We prove that for every surface X of Euler genus g, every edge-maximal embedding of a
graph in X is at most O(g) edges short of a triangulation of X. This provides the first answer to an
open problem of Kainen (1974).

1 Introduction

For a graph class G, a graph G € § is edge-maximal if adding any non-edge to G
produces a graph not in G. We emphasise that “graph” here means a simple graph
with no parallel edges and no loops. A graph class G is pure if |[E(G)| = |E(H)| for
all edge-maximal graphs G, H € G with |V(G)| = |V(H)|. For example, each of the
following graph classes is pure: forests, outerplanar graphs, planar graphs; and for
each positive integer k, the k-degenerate graphs, the graphs of treewidth at most k,
and the chordal graphs with clique number at most k + 1 (where the last two classes
have the same edge-maximal members, the k-trees). On the other hand, toroidal
graphs are not pure: [2] proved that Kg — E(Cs) is an edge-maximal toroidal graph
but is not a toroidal triangulation (see Figure 1).

Motivated by this example, Kainen [4] posed the following open problem: by how
many edges can an edge-maximal graph embeddable in a given surface fail to be a tri-
angulation? This paper addresses this natural question, which surprisingly has been
ignored in the literature. We prove that for every surface X of Euler genus g, every
edge-maximal graph embeddable in X is O(g) edges short of a triangulation (regard-
less of the number of vertices).

We formulate this result as follows. A graph class G is k-impureif |E(G)|-|E(H)| <
k for all edge-maximal graphs G, H € G with |V(G)| = |V (H)|. Thus, G is 0-impure
means that it is pure. We introduce this notation as a measure of how far G is from
being pure. For h > 0, let S;, be the sphere with /& handles. For ¢ > 0, let N, be the
sphere with ¢ cross-caps. Every surface is homeomorphic to S;, or N.. The Euler genus
of Sy, is 2h. The Euler genus of N, is c. The Euler genus of a graph G is the minimum
Euler genus of a surface in which G embeds. See [8] for definitions and background
regarding graphs embedded in surfaces. The following is our main theorem; see The-
orems 3.3 and 3.4 for fuller forms of this result.

Theorem 1.1  The class of graphs embeddable in a surface T of Euler genus g is
O(g)-impure.
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Figure I: An embedding of Ks — E(Cs) in the torus. Every such embedding has one 4-face,
which induces K4, so no non-edge can be added.

To add some perspective to this result, note that several interesting graph classes
are not at all pure. Consider, for example, the Ks-minor-free graphs. The 8-vertex
Mobius ladder W is Ks-minor-free with 12 edges. Pasting copies of W on edges (in
an arbitrary way) produces a Ks-minor-free graph with n =2 (mod 6) vertices and
(11n —16)/6 edges (see Figure 2). It is edge-maximal with no Ks-minor by Wagner’s
characterisation [16]. On the other hand, every n-vertex edge-maximal planar graph
is edge-maximal with no Ks-minor, yet has 3(n —2) edges for n > 3. Thus, the differ-
ence between the numbers of edges in these two classes of edge-maximal Ks-minor-
free graphs grows with 7, and indeed is Q(n). In general, K;-minor-free graphs can
have as many as ct/log t n edges [5,13,14], but there are edge-maximal K;-minor-free
graphs, namely (t — 2)-trees, with only (t - 2)n — (t;) edges (forn > t - 1).

Figure 2: Pasting copies of W.

Let Gy denote the class of graphs not containing H as a minor. McDiarmid and
Przykucki [6] proved that (ignoring K;) the only connected graphs H such that Gy
is pure are K5, K3, Ky, and P; (the 3-vertex path). Furthermore, for each connected
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graph H, either Gy is k-impure for some k, or there are n-vertex graphs G, and G,
in Gy such that [E(G,)| - |E(G},)| is Q(n).

2 Main Proof

An embedding of a graph G in a surface is edge-maximal if for every non-edge e of
G, it is not possible to add e to the embedding (without changing the embedding of
G or creating parallel edges or loops). Observe that an embedding of a graph G in a
surface is edge-maximal if and only if for each face F, the set of vertices on F induce
a clique in G. Also note that a graph G is edge-maximal embeddable in a surface X
if and only if every embedding of G in X is edge-maximal. We mentioned above that
Theorems 3.3 and 3.4 give fuller forms of Theorem 1.1; in fact, they concern edge-
maximal embeddings (as well as giving explicit constants). The distinction between
edge-maximal embeddings and edge-maximal embeddable graphs is exemplified by
the following fact. An embedding is cellular (or 2-cell) if each face is homeomorphic
to an open disc.

Proposition 2.1  For each surface Z, there are infinitely many planar graphs, each with
an edge-maximal cellular embedding in .

Proof First suppose that = = N,. Let G¢ be a triangulation of the sphere with at least
g faces. Say I, ..., Fy are distinct faces of Gy. Note that K4 has a cellular embedding
in the projective plane with two triangular faces and one face of length 6 (see Figure 3).
Let Qy,..., Qg be g copies of this embedding of K. For i € [1, g], identify F; with
a triangular face of Q;. We obtain a graph G embedded in N, in which each face
induces a clique. Thus, this embedding of G is edge-maximal. Note that G is a planar
triangulation, since it is obtained from G by simply adding a degree-3 vertex inside g
faces of Gy. An analogous proof works for X = S, since K has a cellular embedding
in the torus with one triangular face and one face of length 9 (see Figure 3). |

Figure 3: Embeddings of K4 in N; and S;.
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A pseudograph is a graph possibly with parallel edges and loops. A (pseudograph)
triangulation is a cellular embedded (pseudo)graph in which each face has length ex-
actly 3. Euler’s formula implies that every pseudograph with #n > 3 vertices that em-
beds in a surface of Euler genus g such that each face has length at least 3 has at most
3(n + g — 2) edges, with equality if and only if the embedding is a pseudograph tri-
angulation. Of course, every face in an embedding of a graph (with at least three
vertices) has length at least 3. Thus, every graph with n > 3 vertices that embeds in
a surface of Euler genus g has at most 3(n + g — 2) edges, with equality if and only
if the embedding is a triangulation. Also note that Euler’s formula implies that every
bipartite graph with # > 3 vertices that embeds in a surface of Euler genus g has at
most 2(n + g — 2) edges. We implicitly use these facts throughout the paper.

Given an embedding of an n-vertex graph in a surface ¥ of Euler genus g (where
n+g > 3), we can add edges (if necessary) to obtain a pseudograph triangulation with
exactly 3(n+g—2) edges. Moreover, note as an aside that if n > 3, then we do not need
loops, as shown in Proposition 4.1. When we say that an edge-maximal embedding
in ¥ or an edge-maximal graph embeddable in X is “k edges short of a triangulation”,
we mean that it has exactly 3(n + g — 2) — k edges.

We need the following lemmas about edge-maximal embeddings. The first says
that we can restrict our attention to cellular embeddings.

Lemma 2.2 Let ¢ > 3, and assume that for every g and every surface X of Euler
genus g, every edge-maximal cellular embedding in ¥ is at most cg edges short of a
triangulation of Z. Then for every g and every surface Z of Euler genus g, every edge-
maximal embedding in X is at most cg edges short of a triangulation of X

Proof Consider an edge-maximal embedding of a graph G in some surface X of Eu-
ler genus g. This embedding defines a combinatorial embedding of G, which corre-
sponds to a cellular embedding in some surface £’ of Euler genus g’ < g. Ifanon-edge
of G can be added to this embedding in X', then the same non-edge can be added to
the original embedding in . Since the embedding in X is edge-maximal, so too is the
embedding in ¥’. By assumption, G is at most cg’ edges short of a triangulation in
>'. That is,

E(G)23(IV(G)|+¢ -2) —cg' =3(IV(G)|-2) - (c-3)¢’
>3(1V(G)|-2) = (c-3)g=3(V(G)| +g~2) ~cg.
That is, G is at most cg edges short of a triangulation in X. ]
For a vertex v in a graph G, let N(v) := {w € V(G) : vw € E(G)} be the open
neighbourhood of v and let N[v] := N(v) u {v} be the closed neighbourhood of v.

Lemma 2.3  Every graph G with n > 4 vertices that has an edge-maximal cellular
embedding in some surface is 3-connected.

Proof The graph G is connected, since the embedding is edge-maximal and Euler
genus is additive on components and blocks [8]. If G contains a vertex v of degree 1
and vw is the edge incident to v, then w has a distinct neighbour, so the facial walk
starting with vw is followed by wx for some x ¢ {v, w}, and the edge vx can be added
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to G, contradicting the edge-maximality of the embedding of G. Thus, G has min-
imum degree at least 2. Let 7, denote the cyclic ordering of edges incident to each
vertex v in an embedding of G in X.

Suppose G contains a vertex v of degree 2. Let u and w be the neighbours of v. We
can assume that the edges uv and vw have signature +1. For clarity, observe that the
edge uw must be in G, since if not we could add it. Since G is connected and n > 4,
at least one of u and w, say w, has a neighbour not in {u, v, w}. Consider the cyclic
order m,,: if wu follows wv, then let wx be the edge preceding wv, otherwise, let wx
be the edge following wv. Note that x isnotin {u, v, w}. We can add the edge vx, with
signature +1, as follows. Insert vx in 7, after vw and insert xv in 7, before xw. The
original facial walk W starting xwvu ... is replaced by two facial walks Wy = xwvx
and W, = xvu ..., where W, is obtained from W by replacing the two-edge path xwv
by the single edge xv. By maximality, G has minimum degree at least 3.

We now prove that G is locally Hamiltonian; that is, for each vertex v the subgraph
induced on N (v) has a Hamilton cycle. Without loss of generality, the edges incident
to v have signature +1. Let (vv1, vva,...,vv4) be the cyclic ordering of the edges in-
cident to v, where d > 3. We claim that v1v, ... v, is a cycle. For suppose that say v;
and v, are not adjacent. If F is the face with facial walk starting (viv, vv,,...), then
we can add the edge v;v; across F, which is a contradiction. Thus G is locally Hamil-
tonian. Finally, every connected locally Hamiltonian graph is 3-connected. This was
shown in [15, Proposition 7.1], but we give a proof here for completeness since it is
short. Clearly G cannot have a separating vertex. Suppose G has a separating pair of
vertices u,v. Thus, V(G) \ {u,v} can be partitioned into two non-empty parts U
and W such that there are no U-W edges. Then v must have a neighbour a € U and
b € W (otherwise u is a separating vertex), and there are two internally disjoint ab-
paths in G — v (around a Hamilton cycle in N(v)). But both paths must go through
u, a contradiction. Hence G is 3-connected. [ |

Lemma 2.4 Let G be a graph with at least four vertices that has an edge-maximal
cellular embedding in a surface. Then every non-triangular face contains four distinct
vertices that are consecutive on the facial walk. Furthermore, for each string of six ver-
tices that are consecutive on the facial walk, at least one of the three substrings of length
4 consists of distinct vertices.

Proof If a, b, c are consecutive vertices on a face F, then a, b, ¢ are distinct, as oth-
erwise deg(b) = 1, which would contradict Lemma 2.3. Thus, if F has length 4 or
5, then all the vertices on F are distinct, and we are done. Now assume that F has
length at least 6. Let v,...,vs be consecutive vertices on F. If v; = v4 and v, = vs
and v; = v, then the sequence is vy, v2, V3, v1, V2, V3, and the graph is K5 (embedded
in N). Without loss of generality, v; # v4, implying that vy, v, v3, v4 are distinct. W

We noted earlier that Euler genus is additive on components and blocks. The main
tool used in our proof is the following, more general, additivity theorem, proved in-
dependently by several authors.
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Theorem 2.5 ([1,7,10]) If graphs G, and G, have at most two vertices in common,
then the Euler genus of Gy U G, is at least the Euler genus of Gy plus the Euler genus
Osz.

Say a sequence vy, ..., v, of vertices in a graph G is ordered if for each i € [2, 5],
i-1
INviln (U Ny | <2.
1
Theorem 2.5 implies the following result.

Corollary 2.6 ([3,9]) Ifvi,...,v;isan ordered sequence of vertices in a graph G, and
each N[v;] is a clique on at least five vertices, then the Euler genus of G is at least s.

We prove in (2.2) that given integers ¢ > 0 and s > 1, there is an integer b such
that for every bipartite graph G with Euler genus at most g, if (A, B) is a bipartition
of G such that |B| > b and every vertex in B has degree at most 4, then B contains
an ordered sequence of s vertices. Let fg(s) be the least such integer b. We now give
some illustrative examples. Since one vertex forms an ordered sequence, f;(1) = 0 for
each g > 0. The planar bipartite graph Q shown in Figure 4 has a colour class B with
three vertices, each pair of which has three common neighbours. Thus, B contains
no ordered sequence of length 2. Thus, f(2) > 3. It is easily seen that fy(2) < 3
(using a straightforward adaptation of the proof of Lemma 3.1). Thus, fo(2) = 3. Now
consider general g > 0. Ringel [11,12] proved that the Euler genus of K3 4., equals g.
If B is the colour class of degree-3 vertices in K3 34,2, then each pair of vertices in B
has three common neighbours. Thus, B contains no ordered sequence of length 2, and
f¢(2) > 2g+2. Lemma 3.1 proves this inequality is tight for g > 1. These constructions
can be combined as follows. Fix g > 0 and s > 2. Let G be the graph obtained from
K3,24+2 by adding s — 2 disjoint copies of Q. Then G has Euler genus g, and G has a
bipartition (A, B) where |B| = 2g+2+3(s—2), and every ordered sequence in B has at
most one vertex from each of the s — 1 components of G. Thus B contains no ordered
sequence of length s, and

(2.1) fo(s) >2g+3s—4.

The next lemma motivates the definition of f4(s).

Lemma 2.7  Every edge-maximal embedding of a graph G in a surface X of Euler
genus g > Lis at most 5fg(g + 1) — 1 edges short of a triangulation of 3.

Proof Note that f,(g +1) > 5¢ —1by (2.1), which implies that 5f,(g + 1) =1 > 3g.
Thus, we can assume this embedding is cellular by Lemma 2.2. Let n := |V(G)|. If
n < 7g, then the number of edges in a triangulation, 3(n + g — 2), is at most 24g - 6 <
5(5¢-1)-1< 5f4(g+1)-1by (2.1),and the result holds. Now assume that n > 7g+1 > 8.

By Lemma 2.3, G has minimum degree at least 3. We can assume the embed-
ding of G is not a triangulation. Let G’ be the embedded pseudograph obtained from
G as follows. Consider in turn each face F in G with length t > 4. We shall add
edges to G across F so that each of the resulting faces in G’ still contains at least four
distinct vertices. By Lemma 2.4, F contains four distinct consecutive vertices. Let
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Figure 4: The graph Q.

(v0, V1, V2, ..., vi1) be afacial walk of F, where vy, v1, v2, v3 are distinct. Add the edge
vovi to G whenever i =3 (mod 5) and 3 < i < £ - 5; this divides F into | %] faces in
G', each containing at least four distinct vertices (since vy, v1, v2, v3 are distinct, and
every other face contains six consecutive vertices in F, and thus, by Lemma 2.4, has
at least four distinct vertices).

For each non-triangular face F of G’, add a vertex inside F adjacent to four distinct
vertices of F. Let B be the set of these added vertices, and let G” be the resulting
embedded graph. Since the embedding of G is edge-maximal, each face of G induces
a clique. Thus, Ng~[v] induces Ks for each v € B.

Consider a non-triangular face F of length ¢ in G. Then B contains exactly | 52
vertices corresponding to F. Note that £ —3 < SL%J —1edges are sufficient (and nec-
essary) to triangulate F. Thus, the embedding of G can be extended to a triangulation
by adding at most 5|B| — 1 edges.

Let G" be the induced bipartite subgraph of G” with bipartition { B, Uyeg N~ (v) }.
By construction, G"’ embeds in ¥ and every vertex in B has degree 4.

Suppose for a contradiction that |B| > f,(g +1). Thus, B contains an ordered
sequence vy, ..., Vg in G”. Since Ng~[v;] induces Ks, by Corollary 2.6, the Euler
genus of G” is at least g + 1, which is a contradiction. Thus, |B| < f;(g +1). Hence G
is at most 5f, (g + 1) — 1 edges short of a triangulation. [ |

t+2 J

It remains to show how to find ordered sequences. The next lemma is useful.

Lemma 2.8 Fix an integer ¢ > 7. Let G be a bipartite graph with bipartition A, B and
with Euler genus at most g. If B is non-empty and |B| > 2% (g — 2), then some vertex
in B has at most two neighbours with degree at least c.

Proof Let A be the set of vertices in A with degree at least c. Suppose for a contra-
diction that every vertex in B has at least three neighbours in A’. Double-counting
the edges with endpoints in A’ and B gives c|A’| < 2(|A"| + |B| + g — 2) and 3|B| <
2(JA'| + |B| + g — 2). Adding 2 times the first inequality plus ¢ — 2 times the second
inequality gives |B| < i—cﬁ (g —2), which is the desired contradiction. ]

We have the following recursive upper bound for f,(s).
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Lemma 2.9 Forintegers g > lands>2andc > 7,
2c
fo(s) < max{ﬁ(g—Z),Zc—3+fg(s—l)}.

Proof Let G be a bipartite graph with Euler genus at most g, where (A, B) is a bi-
partition of G such that |B| > max { 2% (g —2),2c — 3+ fo(s — 1)} and every vertex
in B has degree at most 4. Our goal is to show that B contains an ordered sequence of
s vertices. Since B is non-empty and |B| > i—cé(g —2), by Lemma 2.8, some vertex v;
in B has at most two neighbours with degree at least c. If deg(v;) < 2 then let X := &.
Otherwise, let X be the set of neighbours of v, other than two of highest degree. Thus
|X| € 2 and each vertex u € X has degree at most ¢ — 1. Let G’ be obtained from G
by deleting N[u] for each u € X. Let A’, B be the bipartition of G’ inherited from G.

Note that

IB'| > |B| - (2¢ - 3) > max{ 26 (g-2),2c -3+ fy(s - 1)} —(2c-3) > fy(s—1).
Thus, B’ contains an ordered sequence vi, ..., vs_1 in G’. By construction, v has at
most two neighbours in G’. Thus vy,. .., v, is an ordered sequence in G. ]

Since f,(1) = 0, Lemma 2.9 implies that for all integers ¢ > 7 and s > 1,
(2.2) fe(s) < (2¢-3)(s-2) + max CZ_—Cé(g—Z),Zc—S}.

With any choice of ¢ > 7, this implies that f,(g +1) is O(g). Lemma 2.7 then implies
that every edge-maximal embedding in a surface X of Euler genus g is O(g) edges
short of a triangulation of . Therefore the graphs embeddable in X are O(g)-impure,
which is the main result of this paper (Theorem 1.1). For example, with ¢ = 8and g > 4,

fe(g+1) <13(g-1) + max {8(g - 2),13} = 21g - 29,

and by Lemma 2.7 every edge-maximal graph embeddable in a surface of Euler genus
g > 4 is at most 105¢ — 146 edges short of a triangulation.

3 Improving the Constants

Our proof of Theorem 1.1 shows that the class of graphs embeddable in a given surface
of Euler genus g > 4 is (105¢ — 146)-impure. In this section we shall improve this
bound; see Theorems 3.3 and 3.4. We first give a precise result for ordered sequences
of length 2, improving on the bound in (2.2) with s = 2.

Lemma 3.1 fg(2)=2g+2forg>1

Proof We proved above that K3 54, shows that f,(2) > 2g + 2 for g > 1. We now
prove the corresponding upper bound.

Let G be a bipartite graph G with Euler genus at most g. Assume that (A, B) is a
bipartition of G such that every vertex in B has degree at most 4 and |B| > 2g + 3.
We claim that B contains an ordered sequence of two vertices. That is, B contains two
vertices with at most two common neighbours. Suppose for a contradiction that each
pair of vertices in B has at least three common neighbours.
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By adding degree-1 vertices in A, we can assume that every vertex in B has degree
exactly 4. Without loss of generality, A = Upep N(b). We have 4|B| < [E(G)]| <
2(|A| +|B| + g — 2) implying |B| < |A| + g -2 and |A] > (2¢g+3) - (g-2) =g+52>6.

Leta,b e Bhave N(a) # N(b).Let X = N(a)nN(b)and Y = N(a)uN(b). Then
|X|=3and |Y| =5. Let N(a) = X u{a’} and N(b) = X u {b'}. Since |A| > 6, there
is a vertex ¢ € B with N(c) not contained in Y. If a’ € N(c), then [N(c) n N(b)| <2,
so a’ ¢ N(c); and similarly b’ ¢ N(c). Hence N(c) n' Y = X, so we can write N(c) =
X u{c'}. Note that a’, b’, ¢’ are distinct and not in X, so we have symmetry between
(a,a’), (b,b"),and (¢, ).

Now foranyv € B, N(v) cannot contain {a’, b’, ¢’} (since then for example [N (v)n
N(a)| < 2); so assume without loss of generality that ¢’ ¢ N(v). But then we must
have N(v) N N(c) = X, and so N(v) contains X. We have shown that N(v) contains
X for each v € B. But now the induced bipartite graph with parts X and B is complete.
Hence 3|B| < 2(3 + |B| + g — 2), implying |B| < 2¢ + 2 < 2¢ + 3. This contradiction
completes the proof. ]

Lemmas 2.9 and 3.1 imply that for g > 1and s > 2,

3.1) B 2g+2 ifs=2,

. s) <
fe min{mau({cz—i‘6 g—2),2c3—3+fg(s—1)}:c5>7} ifs > 3.
For non-orientable surfaces, Table 1 shows the optimal choice of ¢, . . ., cg41 in (3.1)

for each value of g < 20, along with the corresponding lower bound on the number
of edges in an edge-maximal graph.

The next lemma shows a method for choosing the constants ¢, in (3.1). All loga-
rithms are natural.

Lemma 3.2 Let A = 25— 11(52222 + 1S]og2) ~ 16.6533- - to four decimal places.
Then for g > 2,

fe(g+1) <)t(g—2)+2[\/§(g—2)] +33,

Proof Fori>7,let

ad 12

2

S G GeNG-6)(2j-3)

[0 #3

Then
0.758757 -+« =7 > ag > g > -

These numbers «; are used below to calculate the values ¢, in (3.1). For example,
a7 ~ 0.76 means that ¢; = 7 roughly for 0.76¢ < s < g, and ag ~ 0.30 means that ¢, = 8
roughly for 0.30g < s < 0.76¢. This behaviour is evident in the lower rows of Table 1.
The definition of «; is designed to minimise the “max” operation in (3.1).

We now upper bound aj. Since (j— 6)(2j—3) > 2(j—7)*for j > 7,

& 12 > 6 © 6 . 3
L TG0 2 G S o=
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Table 1: Number of edges in an edge-maximal graph embeddable in a non-orientable

surface.

g surface €35...5Cq41 impurity < |E(G)| >
1 N; 19 3n-22

2 N, 7 84 3n -84

3 N; 7,7 149 3n — 146
4 Ny 8,7,7 224 3n - 218
5 N; 8,8,7,7 299 3n —290
6 Ng 98,8,7,7 384 3n - 372
7 N, 9,8,8,7,7,7 459 3n - 444
8 Ng 10,8,8,8,7,7,7 534 3n - 516
9 Ny 10,9,8,8,8,7,7,7 619 3n —598
10 Ny 10,9,8,8,8,8,7,7,7 699 3n - 675
11 Nj 11,9,8,8,8,8,8,7,7,7 784 3n—-757
12 N, 11,9,9,8,8,8,8,7,7,7,7 864 3n - 834
13 Nj3 11,10,9,8,8,8,8,8,7,7,7,7 944 3n-911

14 N4 12,10,9,8,8,8,8,8,8,7,7,7,7 1024 3n —988
15 Nis 12,10,9,9,8,8,8,8,8,8,7,7,7,7 1109 3n -1070
16 Ny 12,10,9,9,8,8,8,8,8,8,8,7,7,7,7 1189 3n — 1147
17 Ny, 13,10,9,9,8,8,8,8,8,8,8,7,7,7,7,7 1269 3n —1224
18 Nig 13,10,9,9,9,8,8,8,8,8,8,8,7,7,7,7,7 1359 3n —1311
19 N 13,11,10,9,9,8,8,8,8,8,8,8,8,7,7,7,7,7 1439 3n —1388
20 Ny 13,1,,10,9,9,8,8,8,8,8,8,8,8,8,7,7,7,7,7 1519 3n — 1465

With k := |\/3/2(g - 2)| + 7, we have
(k-7)*>3/2(g-2) and ar(g-2)<3/(k-7)*(g-2)<2.

Let k be the minimum integer such that ay (g — 2) < 2. Thus, k < |v/3/2(g-2)| + 7.
For i € [7, k], define

Bi=lai(g-2)] and yi:=pi-ai(g-2).
We claim that § = 2. If not, then ay (g — 2) <1, implying

12
(k-7)(k-6)(2k - 3)

=op1(g-2)-ar(g-2)>2-1=1,

which has no solution. Thus, B = 2. Define 54,5 := 1.
For i € [7,2¢ + 2], define

Lo (Bi+1,Bi+2,...,0i1) ifie[8,2¢+2],
' (Br+L,B7+2,...,g+1) ifi=7.
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Then Lagyz, ..., L7 is a partition of [2, g +1]. Define ¢; := |L;|. Then for i € [8,2g +2],

(32)¢; = (ais1— ;i) (g=2) + (yicr—yi) = (i 7)1(21(45 ;)2()21 3 +(yic1 = ¥i)s

(B3);=g+1-Pr=g+l-as(g-2)-y7=(1-a7)(g-2) —y7 +3.

It may be that ¢; = 0 for some values of i. (For example, that there is no 12 in
€35 ..., Cg41 in the final row of Table 1 corresponds to £, = 0.) If £; > 0 and i < 2g +2,
thenlet i* := min{j > i: €; > 0}. Since €54, > 0, this is well defined. Note that £; = 0
for je[i+1,i* —1] and i+ + €;» = ;. For s € [2, g + 1], there is a unique integer i
such that ¢; > 0 and s € L;, in which case define ¢, := i. Thus, ¢, > 7. Note that s can
be uniquely written s = ; + z for some i € [7,2g+2] with £; > 0 and z € [1, £;]. These
definitions are summarised as follows:

Lygiz = (2= Pagea +1),
Lygn1 =2,

Lk+1:®)
Lk:(3=ﬁk+1,/3k+2,...,ﬁk+€k:ﬁk_l),

Lic = (Bie + 1, Bix +2,..., Bix + €= = Bi),
L,‘*_l =,

Li+l =4,

Li=(Bi+LBi+2,.... 0+ =Piz1),

Lg = (ﬁ8+1,ﬁ8+2,...,/38+£8 :/37),
L; = (ﬁ7+1,ﬂ7+2,...,ﬂ7+€7 :g+1).
Define
2g+2 ifs=2,
/ .
fe(s): {max{fss(g ~2),26,-3+ fi(s - 1)} if s > 3.
It follows by induction on s that fo(s) < fg(s). Thus, to prove the desired upper
bound on f,(s) it suffices to prove the same upper bound on fy(s). It is helpful to
note that f;(s) is calculated by a row-by-row traversal of the above table, where the

row corresponding to L; uses ¢, = i in the calculation of fy(s). Thus, fors = B; +z
where z € [1,¢;],

(34) fe(Bi+2) = fe(Bi+1) + (z-1)(2i - 3).

Thus, our focus is on estimating f,(B; + 1), which equals

max{ %(g—Z),Zi -3 +fg'(ﬁ1)}
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In Claim 1 below, we show that % g~—2)is close’ to 2i =3+ fz(f:). To do so, define
the following recursive “error” function. First, let Eg. := 0 and let Ey := 0. Then for

i such that £; > 0, let

i*-1
El‘ = max{ 0,( Z 2)’]) + (21 - 1))/, - (21* - 3))/,‘* + E,‘*}.

j=i+1

Claim 1 Forse[2,g+1],ifs=f;+zwhereze[1,¢;], then

fe(Bi+2) < %(g—Z) +(z-1)(2i -3) + E;.

Proof We proceed by induction on s. First consider the base case s = 2. Then with

i=2g+2wehaves =S, +1= (g -2),and the claim holds with E;., = 0.
Now assume that s > 3, and the claim holds for s —1. By (3.4), it suffices to consider

the z = 1 case, and we can assume that £; > 0. Thens—1= §8; = 8;» +£;+. By induction,

2i*
FiBir + ) < <(g-2)+ (& ~1)(20" =3) + Ep
P
21
- (g-2) € (20" = 3) = (21" =3) + B
P

Since £; = 0 for je [i+1,i* - 1],

2i* i
fo(Bir + £2) < l,*l_6(g—2)+( ¥ (2j-3)8)) - (21" -3) + Ese.
j=itl
By (3.2) and since 2i — 3 < 2i* - 3,
fo(Bix + &) +2i =3
2 S 12(g-2)
e 2 CN GG )
2t 282 s o .
—i*—6(g 2)+(j;'+1(j_7)(j_6))+(j=;rl(y]71 i) (2] 3))+E,*
_ (e 2G-D 2
= (e-2)+ (g z>(};+l(j_1)_6 )

+( IZ (Vj—l—)’j)(2j—3)) + Eix

j=i+l
2i* i o o
i*—é(g )+(g )(1—6 l‘*—6)+(j;+1 y])
+(2i-1)yi —yi+(2i" =3) + Ei
2i it-1 . .
- z(g_z) * ( Z 2)}]) + (21 _1)))1' - (21 _3)))1'* +Ei*'
j=i+l
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Since ¢ = i and by (3.2),
()

e a2 0 )

2i 2i
< —(g-2), —(g—-2
max{ -~ (g-2), = (¢-2)
i-1
+(X 295) + (2i=1)yi - (24" = 3)yie + Eie |
j=i+l
2i & , .
= m(g—z) +max{0,( > Zyj) +(2i -1y — (2" = 3)y;» +E,w}
j=itl
2i
= 2 (¢-2)+E;.
—(g-2)+
This completes the proof of the claim. ]

We now upper bound the E;.

Claim 2  Fori € [7,k] such that £; > 0, there are integers 0, . .., O, such that
k
E;i <), 07y)
j=i

and if A; is the multiset {8; > 0: je [i,k]} and ¥ A; == ¥ ;1 8> then ¥ A; < 2k=3.
Moreover, if E; > 0, then §; = 2i — 1.

Proof We proceed by inductiononi =k, k—1,...,2. Inthe base case i = k, we have
Ex = 0 and the claim holds with §; = 0 and X} = 0. Now assume that i € [7,k — 1]
with ¢; > 0, and the claim holds for i*. Thus, there are integers J;x, ..., 8 such that
E;« < Z?:i* 0jyj and 3 A+ < 2k — 3. Moreover, if E;+ > 0, then §;+ = 2i* — 1. By
definition,

it-1

E;= max{ 0,(2i -1)y; + ( > 2)/]-) = (20" =3)yix + E,-*}.

j=itl

If E; = 0, then the claim holds with §;, ..., 8 = 0. Now assume that E; > 0.
First suppose that E;« = 0. Then

ir-1
Ei=Qi-1yi+( Y 29)) - 2" =3)yie,

j=i+1

and the claim holds with §; = 2i—1and &+ = —(2i*-3) and §; = 2for j € [i+1,i* 1],
inwhichcase A; = {2i -1, (i* -1-i)x2}and ¥ A; = 2i* -3 <2k -3.
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Now assume that E;+ > 0. Then §;+ = 2i* —1and
i*-1 k
Ei<i-Dyi+( 3 295) - @i" =3)yie + (2 0j))
j=i+l j=i*

i*-1

= (2i—1)y,~+( > 2)’;‘) +((2i" = 1) = (2i" = 3))ys +( Zk: 5;‘)’;’)

j=i+l j=ir+1
i*-1 k
:(Zi—l)yi+( Z 2)/]) +2y,’* +( Z 8]))])
j=i+l j=i*+1
Let §; :=2i —1land §;» :=2and §; := 2 for j € [i +1,i* — 1], Observe that
Ai= (D~ {20 1)) u{2i-1,2,(i* -1-i) x 2}.

Thus, 3> Ai1 = 3 A;, which is at most 2k -3 by assumption. Thus the claim is satisfied.
|

Claim 2 with i = 7 implies that there are integers 7, .. ., 8 such that
&Si&w
=7
and Y A; < 2k - 3. Since y; € [0,1), E; < 3> A7 < 2k - 3. Claim 1 and (3.3) then imply
thatfors=g+1=f; + ¢,
fe(g+1) < fo(g+1) <14(g-2) +11(¢7 -1) + E;
<l4(g-2)+1((1-a7)(g-2) -y, +3-1) + (2k -3)
<l4(g-2)+1((1-a7)(g-2) +2) + (2k -3)
= (25-1lay)(g —2) +2k +19

= (25-11(2882 4 B og2)) (g-2) + 2k +19

:A(g—2)+2[\/%(g—2)] +33.

This completes the proof. ]

Note that (2.1) implies that fo(g +1) > 5g — 1. Since A < 20, this shows that

3 bl
Lemma 3.2 is within a factor of % of optimal.

Theorem 3.3  For every surface X of Euler genus g, every edge-maximal embedding
of a graph in ¥ is at most 84g edges short of a triangulation of X.

Proof By Lemma 2.7, it suffices to show that 5f,(g +1) — 1< 84g. For g < 299, this
is verified by direct calculation of the upper bound on f,(g +1) in (3.1). For g > 300,
by Lemma 3.2,

ng(g+1)—1$5(16.6534(g—2)+2(1+\/%(g—2)) +33) ~1<84g. m

Note that for each surface X of Euler genus g, Proposition 2.1 provides examples
of edge-maximal cellular embeddings of graphs in X that are 3¢ edges short of a tri-
angulation of X. Thus the 84 in Theorem 3.3 cannot be reduced to less than 3. Also
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note that K3, which is edge-maximal embeddable on any surface £, is 3g edges short
of a triangulation of X (since every 3-vertex pseudograph triangulation of > has 3¢ +3
edges).

3.1 Orientable Surfaces

Further improvements are possible if we restrict our attention to orientable surfaces.
Let G be an edge-maximal graph embeddable in an orientable surface X. Recall
from Lemma 2.4 that among six consecutive vertices on a face of G, there are at
least four distinct vertices, as otherwise a facial walk would contain abcabc, imply-
ing deg(b) = 2. When X is orientable, among five consecutive vertices on a face of G,
there are at least four distinct vertices, as otherwise a facial walk would contain abcab,
repeating ab. This enables us to add more edges to G’ in the proof of Lemma 2.7. Con-
sider a face F of G of length ¢ > 4. By Lemma 2.4, F contains four distinct consecutive
vertices. Let (v, V1,2, ..., v;—1) be a facial walk of F, where vg, v1, v, v3 are distinct.
Add the edge vov; to G’ whenever i = 3 (mod 4) and 3 < i < t — 4; this divides
F into [%IJ faces in G’ each containing four distinct vertices (since vg, vy, v,, v3 are
distinct, and every other face contains five consecutive vertices in F, and thus has at
least four distinct vertices). Define the graph G” and set B as above. Consider a face
F of G of length > 4. Then B contains exactly | % | vertices corresponding to F, and
t—3 < 4] 2] - 1. Thus G can be triangulated by adding at most 4|B| — 1 edges. By
the same argument used in the proof of Lemma 2.7, G is at most 4f, (g + 1) — 1 edges
short of a triangulation. This leads, by (3.1), to the results shown in Table 2 and the

following theorem.

Theorem 3.4  For every orientable surface ¥ of Euler genus g, every edge-maximal
embedding of a graph in X is at most 67¢ edges short of a triangulation of X.

Proof By the above discussion it suffices to show that 4f,(g +1) — 1 < 67g. For
g < 670, this is verified by direct calculation of the upper bound on f,(g +1) in (3.1).
For g > 671, by Lemma 3.2,

4fg(g+1)—1<4(16.6534(g—2)+2(1+ %(g—z))+33)—1<67g. n

4 Multigraph Triangulations

In this section we give the result mentioned as an aside in Section 2 about not needing
to introduce loops.

Proposition 4.1  For every simple graph G with at least three vertices, embedded in a
surface Z, we can add non-loop edges to extend this embedding to a multigraph trian-

gulation.

Proof Suppose that H is a multigraph containing G, and embedded in X such that
each face has at least three distinct vertices in each boundary component. We claim
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Table 2: Number of edges in an edge-maximal graph embeddable in an orientable

surface.

g surface impurity< |E(G)| >
2 S 67 3n—-67

4 S, 179 3n-173

6 Ss3 307 3n —295
8 Sy 427 3n - 409
10 Ss 559 3n - 535

12 Se 691 3n - 661

14 S; 819 3n—-783

16 Sg 951 3n-909
18 So 1087 3n —1039
20 Sp 1215 31 — 1161
22 Su 1339 3n —1279
24 S12 1483 3n — 1417
26 Sis 1607 3n —1535
28 Sia 1743 3n —1665
30 Sis 1875 3n-1791
32 Sis 2007 3n —-1917
34 Si7 2139 3n —2043
36 Sis 2275 3n —2173
38 Sto 2411 3n —2303
40 Sz 2539 3n — 2425

that the embedding extends to a multigraph triangulation. Suppose that this is false,
and suppose that H is a counterexample with as many edges as possible.

Since H is not a triangulation, there is a face F for which either (a) there is a single
facial walk f of length at least 4, or (b) there are at least two boundary components B
and B’ of F, or (c) the boundary of F is a single triangle but the face is not plane.

(a) It suffices to show that there are distinct vertices a and b in the walk f such that
both the segment of f from a to b and the return segment of f from b to a contain
a vertex not in {a, b}; for then we can add the edge ab in the face. This replaces F
by either (i) a single new face with the same vertices in the boundary, or (ii) two new
faces both with a single boundary component containing at least 3 distinct vertices,
yielding a contradiction.

If some vertex a occurs exactly once in f, then we can take b to be any vertex other
than the predecessor or successor of a. So assume that no vertex occurs exactly once
in f. Consider three consecutive vertices uvw in the walk f (where v ¢ {u, w}, since
there are no loops). If u = w, we can let a = v and let b be any vertex in f not in
{v,w}: for then a # b, w ¢ {a, b}, and w occurs in both relevant segments of f. If
u+w,wemayleta =wuandb =w: forthena # b,v ¢ {a,b}, and v occurs in both
relevant segments.
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(b) Pick a vertex x in B and a (distinct) vertex y in B/, and add the edge x y across
the face. This replaces F by a single new face F’, replaces B and B’ by their union
as a boundary component, and leaves any other boundary component untouched,
yielding a contradiction.

(c) The face F is either S, or N, for some g > 1, with a triangular disk cut out.
To handle the orientable case, take a 3-vertex multigraph triangulation of S, and
glue a face onto F. Similarly, in the non-orientable case, take a 3-vertex multigraph
triangulation of Ng, and glue a face onto F. In both cases we obtain a contradiction.

|

5 Open Problems

We conclude the paper with a few open problems.

* Let ¢; be the infimum of all numbers ¢ such that every edge-maximal graph em-
beddable in a surface ¥ of Euler genus g is at most cg edges short of a triangulation
of 3. Let c; be the infimum of all numbers ¢ such that every edge-maximal embed-
ding in a surface X of Euler genus g is at most cg edges short of a triangulation of .
Trivially, ¢; < c;. We have proved that 3 < ¢; < ¢; < 84. Can these inequalities be
improved?

* Are projective planar graphs pure? Are there examples, other than Kg — E(Cs),
showing that the class of graphs embeddable in a given surface is impure? Note that
[2] conjectured that apart from the sphere, no orientable surface yields a pure class of
graphs. This conjecture remains wide open.

* For a surface ¥ of Euler genus g, what is the least number k such that for every
edge-maximal graph G embeddable in %, there is a (simple) triangulation G’ of ¥ with
the same vertex set as G such that E(G) and E(G’) have symmetric difference of size
at most k? Is k in O(g)?
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