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In this paper we continue the investigation of minimal conditions on semigroups
begun by J. A. Green [3] and taken up by Munn [5]. A unified account of the results in [3]
and [5], together with some additional material, is presented in the text-book by Clifford
and Preston [1, §6.6]. All terminology and notation not introduced explicitly will be as in
[1].

Let S be a semigroup. The relation *£ defined on the set SIZE of all iC-classes of S by
the rule that

(a,beS)
is a partial ordering. Similar partial orderings are defined on the sets S/9i and Sl$. (No
ambiguity will result from the use of the same symbol =s for all three partial orderings and
for others introduced below.) Following Green [3], we say that S satisfies the condition
ML[MR, M J ] if and only if every nonempty collection of ££-classes [9l-classes, ^-classes]
contains a minimal member. It is easy to verify that ML[MR, Mj] is equivalent to the
condition that every strictly descending chain of ^-classes [2ft-classes, ^-classes] must be
finite.

Now consider the relation =£ defined on the set Sffl of all ̂ -classes of S as follows:

Ha « H b O L a =sLb and i ^ =£l?b (a, beS).

Evidently this is again a partial ordering. At the centre of our discussion is the corres-
ponding minimal condition MH: every nonempty set of 3f-classes contains a minimal
member (equivalently, every strictly descending chain of 2C-classes must be finite).

It is convenient for our purpose to consider three further conditions on S, namely
\f£, M£ and GB. As in [5; 1, §6.6], we say that S satisfies M£[M%] if and only if, for all
J € Sl$, the set of all i£-classes [9l-classes] of S contained in J contains a minimal
member. An element a e S is said to be group-bound if and only if a" lies in a subgroup
of S for some positive integer n. Clearly, every periodic element is group-bound. We say
that S itself is group-bound, or that S satisfies the condition GB, if and only if each of its
elements is group-bound. It should be noted that in an earlier paper [6] (based, in turn, on
[2]) group-bound elements of a semigroup were termed "pseudo-invertible".

The paper is in two sections. In the first of these we examine the interdependence of
the seven conditions ML, MR, M,, MH, Mj , M£, GB. Green [3, Theorem 4; 1, Theorem
6.49] has shown that ML and MR together imply Ms: we extend this result by proving that
the conjunction of ML and MR is logically equivalent to the conjunction of M, and MH, to
the conjunction of M, and GB, and to the conjunction of M,, Mf and M% (Corollary 1.3).
Exactly thirteen pairwise inequivalent conditions can be formed from the given seven by
taking conjunctions. A complete picture of their interrelationship is provided by a Hasse
diagram (1.5).
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134 T. E. HALL AND W. D. MUNN

The second section concerns Schiitzenberger groups [1, §2.4]. We show that in a
semigroup S satisfying MH the Schiitzenberger group of an arbitrary ?f-class must be a
homomorphic image of a subgroup of S (Theorem 2.1): thus each ^-class of S has
cardinal not exceeding that of some subgroup of S. We also prove that in a group-bound
semigroup whose subgroups are all trivial the relation %£ must itself be trivial (Theorem
2.3). These theorems extend a result of Rhodes [7] for finite semigroups and examples
show that they cannot be improved within the context of the conditions studied here.

1. Interdependence of the seven conditions. Let X and Y be semigroup conditions.
We write X=s Y ("X implies Y") if and only if every semigroup satisfying X also satisfies
Y: furthermore, we write X = Y ("X is equivalent to Y") if and only if X=£ Y and Y=£X.
With equality of conditions thus defined as logical equivalence, the relation =£ is readily
seen to be a partial ordering of any set of semigroup conditions. The conjunction of a
finite family (A1; A 2 , . . . ,An) of semigroup conditions will be denoted by A J A A 2 A . . .A
An and is defined as follows: a semigroup satisfies AiAA2A...AAn if and only if it
satisfies each of the conditions A, (i = 1, 2, . . . , n). Evidently if A, B, C are semigroup
conditions such that A^B then A A C ^ B A C .

Throughout the remainder of the paper we shall denote the family

(ML, MR, Mj, MH, Mj, MR, GB)

by Cl and the set of all conjunctions of nonempty subfamilies of il by A(fl). Clearly A(fi)
is a finite lower semilattice with respect to =£, the greatest lower bound of the pair (A, B)
being the conjunction A A B . This section is concerned with the structure of A(fi).

We begin with a restatement of an elementary property of the conditions M£ and M^
[5, Lemma 2.2; 1, Lemma 6.41].

LEMMA 1.1. Let S be a semigroup satisfying Mj[Mi£]. Then, for all aeS, La[JRa] is
minimal in the set of all ^-classes [@t-classes] of S contained in Ja.

The following theorem establishes various basic relationships between the members
of A(a).

THEOREM 1.2.

(i)
(ii)

(iii)
(iv) M L A < « M H ; M R A M £ = S M H ;

(v)
(vi)

Proof. We note first that the assertions in (i) are immediate consequences of the
definitions and that the result in (ii) is due to Green [3, Theorem 4; 1, Theorem 6.49].

(iii) Let S be a semigroup satisfying Mr and Mf. Consider a nonempty set ^ of
i?-classes of S. Since S satisfies M, there exists aeS such that Lae<£ and, for all xeS, if
L* e ^ and Jx^Ja then Jx = Ja. Suppose that b e S is such that Lh e <# and Lh*zLa. Then
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and so Ja=Jb. But since S satisfies M* it follows from Lemma 1.1 that La is
minimal in the set of all i£-classes contained in Ja. Hence Lb = La. Consequently La is
minimal in (€. This shows that S satisfies ML: thus M , A M * S £ M L . A similar argument
shows that M,AMR

!SSMR.
(iv) Let S be a semigroup satisfying ML and M^. Consider a sequence au a2, a3 , . . .

of elements of S such that

We have that Lai s* L^ 5* La3 s*... and so, since S satisfies ML, there exists a positive
integer k such that the elements ak, ak+l, ak+2,... are ^-equivalent. Thus
ak, afc+J, ak + 2, . . . are ^-equivalent. But R^ 2* R^^ s* R^^ 3=... and so, by Lemma 1.1,
the elements ak, ak+1, ak+2,... are 2ft-equivalent. It follows that H^ = H^t = Hak+2 = . . . .
This shows that S satisfies MH. Hence MLAM%^MH. By duality, MRAM£*&MH.

(v) Let S be a semigroup satisfying MH. Consider any element aeS. Since H a >
Hai 55 Ha3 > . . . there exists a positive integer n such that Ha~ = Ha-*< = Ha~+* = . . . . But
this means that (an, a2n) e 3C and so, by [1, Theorem 2.16], Ha. is a group. Thus S is
group-bound. Hence M H ^GB.

(vi) Let S be a group-bound semigroup. We shall show that S satisfies M*. Let
a, beS be such that (a, b)&$ and l^^L^ Then there exist elements u, D, c e S 1 such that
a = ubv and fc = ca. Thus a = (uc)av and so a = (uc)navn for all positive integers n. Now
S1 is group-bound and so we can choose n such that n > 1 and (uc)n lies in a subgroup of
S1, with identity element e, say. Write g = (uc)n and let g"1 denote the inverse of g in the
subgroup He of S1. Then

ea = e(gavn) = (eg)avn = gavn = a

and so
1uft = g~1(uc)"~1uca = g-1ga = ea = a.

Hence La =£ Lb, from which it follows that La = Lb. Consequently, S satisfies M£. By
duality, S also satisfies M£. Thus J£

COROLLARY 1.3.

Proof. By (ii), M L A M R ^ M , and, by (i) and (iv), M L A M R =SM*AMR =SMH. Thus
M L A M R « M J A M H . On the other hand, by (v), (vi) and (iii),

This gives the result.

It is straightforward to check that, in view of Theorem 1.2, A(ft) has at most thirteen
elements We proceed to show by means of examples that it has exactly thirteen.
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First, we require some further notation. For an arbitrary semigroup S let S""" denote
the semigroup with the same set of elements as S but with the multiplication reversed.
Also, for any two semigroups S and T let S + T denote the 0-direct union of S° and T°
[1, §6.3].

The next lemma is almost immediate.

LEMMA 1.4. Let S and T be semigroups and let X be a member of ft. Then S + T
satisfies X if and only if both S and T satisfy X.

We now consider four semigroups St(i = 1,2, 3,4) defined as follows: Si, S2 and S3

are, respectively, an infinite cyclic semigroup, an infinitely descending semilattice and a
Croisot-Teissier semigroup of the form CT(A, %, p, p) [1, §8.2], while S4 is the semigroup
with zero 0, nonzero elements the ordered pairs (i, j) of positive integers i, / such that i </,
and multiplication of nonzero elements according to the rule that

i,s) if j = r,
0 if i*r

[5; 1, §6.6, Example 1].
These semigroups, and four others derived from them, label the rows of the following

table, the columns of which are labelled by the members of ft. The entry in the table
corresponding to a semigroup S and a condition X is 1 or 0 according as S satisfies or fails
to satisfy X. It is a routine matter to check the entries in the first four rows (see [1,
Theorem 8.11] for S3): the remaining entries are then easily obtained with the aid of
Lemma 1.4 and duality.

S,
s2
s3

si+s3
S3+S3

PP

S3 + S2PP

St+sr

ML

0
0
0
1

0
0
0
0

MR

0
0
1
0

0
0
1
0

M}

0
0
1
0

0
1
0
0

MH

0
0
0
1

0
0
0
1

M*

1
1
0
1

0
0
0
1

M*

1
1
1
1

1
0
1
1

GB

0
1
0
1

0
0
0
1

From Theorem 1.2 and Corollary 1.3, together with the above table, duality and the
observation that the trivial semigroup satisfies all the members of ft, we see that A(ft) has
the Hasse diagram shown below.
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( 1 . 5 )

Note that the seven members of ft are distinct and that A(ft) can be obtained from
the free semilattice on ft by imposing precisely the relationships listed in Theorem 1.2.

REMARK 1.6. There exist semigroups satisfying none of the conditions in ft: for
example, Si + (S3 + S§pp).

REMARK 1.7. By [1, Theorem 6.45] the condition M J A M ] £ on a semigroup S implies
that 2) = $ on S. Now take the Croisot-Teissier semigroup S3 to be such that 2) j=$. Then
the examples S3 and S3

PP show that M ^ A M J is the weakest conjunction of members of ft
to imply that 2> = $, in the sense that any other conjunction implying the condition 2) = $
also implies M J A M ^ .

Furthermore, the proof of [5, Theorem 2.3] (see [1, Theorem 6.45]) shows that the
condition MJAMJH on a semigroup implies that each [0-] simple principal factor of the
semigroup is completely [0-] simple. Again the examples S3 and S3

PP demonstrate that
M £ A M ] £ is the weakest conjunction of members of ft to imply this condition on principal
factors.

REMARK 1.8. Let S be a regular semigroup. Then, for all a and b in S, La **L,, if and
only if to each idempotent eeLa there corresponds an idempotent feLb such that e s» /
[4, Remark 2]. Thus, on S, the conditions ML, MR and MH are each equivalent to the
condition that every nonempty set of idempotents of S contains a minimal member with
respect to the usual partial ordering.

2. The Schiitzenberger group oi an %-class. Let S be a semigroup and H an 3f-class
of S. Write T = {xeS1:HxQH\. Then T is a subsemigroup of S1 containing the identity
1. Corresponding to each l e T w e define an element 7, of 2TH (the full transformation
semigroup on H) by the rule that hy, = ht for all heH . Next, we define y:T —>3~H by
setting ty = y, for all t e T. Then 7 is a homomorphism and the image Ty is a group of
permutations of H; moreover, |T-yl = |W| and if H is a subgroup of S then Ty = H
[1, §2.4]. We call Ty the Schiitzenberger group of H.

The following theorem generalises a result on finite semigroups due to Rhodes (see
[7, Proposition 1.1, equivalence of (a) and (c)]).
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THEOREM 2.1. Let S be a semigroup satisfying MH and let H be an %t-class of S. Then
the Schiitzenberger group of H is a homomorphic image of a subgroup of S.

Proof. Let T,y,(teT) and 7 be defined as above. Evidently the 3f-classes of S1 are
just those of S, together with {1} in the case where S^S1. Thus S1 satisfies MH and hence
the set {H, e S 1 / ^ : * eT} contains a minimal member H', say. Consider an arbitrary
element a in H'C\T. Since H' = Ha 2=Ha* in S1 and a2e T, it follows from the minimality
of H' that a and a2 are ^-equivalent in S1. Therefore H' is a subgroup of S1, by [1,
Theorem 2.16], and so H'C\ T is a subsemigroup of S1. Now let a"1 denote the inverse of
a in H'. Then, since Ht = H for all teT [1, Lemma 2.21], we have that Ha~1 =
(Ha2)a-l = H(a2a'1) = Ha = H. Hence a^eT. Thus H'HT is a subgroup of H'.

Denote the identity of H' by e. Then e e H ' n i Now consider an arbitrary element t
of T. Clearly elesT and Hete^He = H' in S1. Hence eteeH', by the minimality of H'.
Thus ete eH'HT. But since 7 is a homomorphism and e2 = e, ye must be the identity
element of the group Ty. Hence y, = 7e7,7e = yae e (H' fl T)y. Consequently Ty £
(H'nT)y and so Ty = (H'nT)y. The Schiitzenberger group Ty of H is thus the image
under 7 of a subgroup of S1, namely H'HT.

The stated result now clearly holds if S1 = S. It also holds if |T-y| = 1: for S must
contain at least one idempotent, by Theorem 1.2(v). We therefore assume that S1 ̂  S and
that 17"-y I > 1 - To complete the proof it is enough to show that, with these hypotheses,
H T l T c S . Now | H ' n T | > l , since Ty = (H'nT)y. Hence # ' ^ = {1} in S1 and so
H' c S. Thus H' n T s S, as required.

COROLLARY 2.2. Let S be a semigroup satisfying MH and let H be an dK-class of S.
Then S has a maximal subgroup G such that |G|^ |H| .

It follows from Corollary 2.2 that if S is a semigroup satisfying MH and if every
subgroup of S is trivial then 3f is trivial on S. A better result can, however, be obtained
directly:

THEOREM 2.3. Let S be a group-bound semigroup in which every subgroup is trivial.
Then % is trivial on S.

Proof. Let H be an ^-class of S and let T, y,(teT) and 7 be defined as before. Let
teT. Since S1 is also a group-bound semigroup in which every subgroup is trivial there
exists a positive integer n such that tn is an idempotent of S1. Hence (". t"+1 = f"+1 and
r + l . t2n'1 = tn, from which it follows that tn+1eHr. But Hr is a group and so tn+1 = tn.
Thus 7,- = 7,-7, and so, since Ty is a group, 7, is the identity of Ty. Consequently |7V|= 1-
But \Ty\ = \H\ and therefore \H\ = 1.

We conclude by showing that, in a certain sense, the results of Theorems 2.1 and 2.3
are best possible.

EXAMPLES 2.4. Let (T, •) be a semigroup, let (H, *) be a group and let <j): T—> H be a
surjective homomorphism. We assume that the sets T, H and {0} are pairwise disjoint and
we write S = TUHU{0}. By means of the following rules we extend the binary operation
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on T to an operation on S:

s0 = 0s = 0, gh = O, gt = g*t<j>, tg = (t<t>)*g

for all s e S, all g, h e H and all t e T. It is straightforward to verify that S is a semigroup
with H and {0} as two of its ^-classes, the remaining Sf-classes being precisely those of T.
Clearly H is also a $ -class of S.

By making particular choices for T, H and <f> in this construction we obtain three
examples ((a), (b), (c) below).

(a) Let K be a nontrivial finite group and let 1 denote its identity. For all positive
integers n let KM denote the direct product of n copies of K and for all positive integers
m, n with m^n define a homomorphism <(>™:Kim)-» KM by the rule that

for all k1,...,kme K. Take T= UT=i KM and define a multiplication on T by setting

where s e l£(m), t e JFC(FI) and p = max{m, n}, the product on the right-hand side being
computed in X(p). By [1, Theorem 4.11], T is a semilattice of groups. Its ^-classes are just
the groups K(tt), each of which is finite.

Next, take H to be the group consisting of all infinite sequences (ku k2, k3,.. .) of
elements of K with at most finitely many entries different from 1, under componentwise
multiplication. Finally, define <f>: T -*• H by the rule that

for all positive integers n and all ku ..., k^ e K. Then 4> is a surjective homomorphism
(and 4>°4>~l is the least group congruence on T).

In this case the semigroup S has only finite subgroups, but possesses an infinite
9£-class, namely H. Clearly S is periodic and so satisfies the condition GB.

(b) Take H to be a nontrivial group, take T to be the free semigroup %FH on H and
take <p : T —* H to be any surjective homomorphism. Then S has exactly one subgroup,
namely {0}. Thus every subgroup of S is trivial but S has a nontrivial 3^-class, namely H.
In this case S satisfies Nf£ and Mj£.

(c) Let H be a nontrivial group, let U be a Baer-Levi semigroup [1, §8.1] and let T
denote the direct product UxH [ l / o p pxH]. Define </> to be the projection of T onto
H: (u, h) •-» h for all (u, H) e T. It is readily seen that T has no subgroups. Hence, as in (b),
the only subgroup of S is the trivial subgroup {0}, while S has a nontrivial "K-class, namely
H. It is also easy to verify that since U [[/opp] satisfies MR and M} [ML and M,] the same
is true for T and so also for S.

REMARK 2.5. By Theorem 2.1, the condition MH on a semigroup S implies that the
Schiitzenberger group of each 3f-class of S is a homomorphic image of a subgroup of S.
Examples 2.4(a) and (c) show that MH is the weakest member of A(O) to imply this
condition on the Schiitzenberger groups of 3f-classes.

https://doi.org/10.1017/S0017089500003840 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003840


140 T. E. HALL AND W. D. MUNN

By Theorem 2.3, the condition GB on a semigroup S with no nontrivial subgroups
implies that 9€ is trivial on S. Examples 2.4(b) and (c) show that GB is the weakest
member of A(fl) to imply that "3t is trivial on semigroups with no nontrivial subgroups.
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