SEMIGROUPS SATISFYING MINIMAL CONDITIONS II

by T. E. HALL and W. D. MUNN

(Received 2 December, 1977)

In this paper we continue the investigation of minimal conditions on semigroups begun by J. A. Green [3] and taken up by Munn [5]. A unified account of the results in [3] and [5], together with some additional material, is presented in the text-book by Clifford and Preston [1, §6.6]. All terminology and notation not introduced explicitly will be as in [1].

Let S be a semigroup. The relation \leq defined on the set S/\mathcal{L} of all \mathcal{L} -classes of S by the rule that

$$L_a \leq L_b \Leftrightarrow S^1 a \subseteq S^1 b$$
 $(a, b \in S)$

is a partial ordering. Similar partial orderings are defined on the sets S/\Re and S/\mathcal{J} . (No ambiguity will result from the use of the same symbol \leq for all three partial orderings and for others introduced below.) Following Green [3], we say that S satisfies the condition $M_L[M_R, M_J]$ if and only if every nonempty collection of \mathcal{L} -classes [\Re -classes, \mathcal{L} -classes] contains a minimal member. It is easy to verify that $M_L[M_R, M_J]$ is equivalent to the condition that every strictly descending chain of \mathcal{L} -classes [\Re -classes, \mathcal{L} -classes] must be finite.

Now consider the relation \leq defined on the set S/\mathcal{H} of all \mathcal{H} -classes of S as follows:

$$H_a \leq H_b \Leftrightarrow L_a \leq L_b \text{ and } R_a \leq R_b \qquad (a, b \in S).$$

Evidently this is again a partial ordering. At the centre of our discussion is the corresponding minimal condition $M_{\rm H}$: every nonempty set of \mathcal{H} -classes contains a minimal member (equivalently, every strictly descending chain of \mathcal{H} -classes must be finite).

It is convenient for our purpose to consider three further conditions on S, namely M_L^* , M_R^* and GB. As in [5; 1, §6.6], we say that S satisfies $M_L^*[M_R^*]$ if and only if, for all $J \in S/\mathcal{J}$, the set of all \mathcal{L} -classes [\mathcal{R} -classes] of S contained in J contains a minimal member. An element $a \in S$ is said to be group-bound if and only if a^n lies in a subgroup of S for some positive integer n. Clearly, every periodic element is group-bound. We say that S itself is group-bound, or that S satisfies the condition GB, if and only if each of its elements is group-bound. It should be noted that in an earlier paper [6] (based, in turn, on [2]) group-bound elements of a semigroup were termed "pseudo-invertible".

The paper is in two sections. In the first of these we examine the interdependence of the seven conditions M_L , M_R , M_J , M_H , M_L^* , M_R^* , GB. Green [3, Theorem 4; 1, Theorem 6.49] has shown that M_L and M_R together imply M_J : we extend this result by proving that the conjunction of M_L and M_R is logically equivalent to the conjunction of M_J and M_H , to the conjunction of M_J and GB, and to the conjunction of M_J , M_L^* and M_R^* (Corollary 1.3). Exactly thirteen pairwise inequivalent conditions can be formed from the given seven by taking conjunctions. A complete picture of their interrelationship is provided by a Hasse diagram (1.5).

Glasgow Math. J. 20 (1979) 133-140.

The second section concerns Schützenberger groups [1, §2.4]. We show that in a semigroup S satisfying M_H the Schützenberger group of an arbitrary \mathcal{H} -class must be a homomorphic image of a subgroup of S (Theorem 2.1): thus each \mathcal{H} -class of S has cardinal not exceeding that of some subgroup of S. We also prove that in a group-bound semigroup whose subgroups are all trivial the relation \mathcal{H} must itself be trivial (Theorem 2.3). These theorems extend a result of Rhodes [7] for finite semigroups and examples show that they cannot be improved within the context of the conditions studied here.

1. Interdependence of the seven conditions. Let X and Y be semigroup conditions. We write $X \le Y$ ("X implies Y") if and only if every semigroup satisfying X also satisfies Y: furthermore, we write X = Y ("X is equivalent to Y") if and only if $X \le Y$ and $Y \le X$. With equality of conditions thus defined as logical equivalence, the relation \le is readily seen to be a partial ordering of any set of semigroup conditions. The conjunction of a finite family (A_1, A_2, \ldots, A_n) of semigroup conditions will be denoted by $A_1 \land A_2 \land \ldots \land A_n$ and is defined as follows: a semigroup satisfies $A_1 \land A_2 \land \ldots \land A_n$ if and only if it satisfies each of the conditions A_i ($i = 1, 2, \ldots, n$). Evidently if A, B, C are semigroup conditions such that $A \le B$ then $A \land C \le B \land C$.

Throughout the remainder of the paper we shall denote the family

$$(M_L, M_R, M_J, M_H, M_L^*, M_R^*, GB)$$

by Ω and the set of all conjunctions of nonempty subfamilies of Ω by $\Lambda(\Omega)$. Clearly $\Lambda(\Omega)$ is a finite lower semilattice with respect to \leq , the greatest lower bound of the pair (A, B) being the conjunction $A \wedge B$. This section is concerned with the structure of $\Lambda(\Omega)$.

We begin with a restatement of an elementary property of the conditions M_L^* and M_R^* [5, Lemma 2.2; 1, Lemma 6.41].

LEMMA 1.1. Let S be a semigroup satisfying $M_L^*[M_R^*]$. Then, for all $a \in S$, $L_a[R_a]$ is minimal in the set of all \mathcal{L} -classes $[\mathcal{R}$ -classes] of S contained in J_a .

The following theorem establishes various basic relationships between the members of $\Lambda(\Omega)$.

THEOREM 1.2.

- (i) $M_L \leq M_L^*$; $M_R \leq M_R^*$;
- (ii) $M_L \wedge M_R \leq M_J$;
- (iii) $M_J \wedge M_L^* \leq M_L$; $M_J \wedge M_R^* \leq M_R$;
- (iv) $M_L \wedge M_R^* \leq M_H$; $M_R \wedge M_L^* \leq M_H$;
- (v) $M_H \leq GB$;
- (vi) $GB \leq M_L^* \wedge M_R^*$.

Proof. We note first that the assertions in (i) are immediate consequences of the definitions and that the result in (ii) is due to Green [3, Theorem 4; 1, Theorem 6.49].

(iii) Let S be a semigroup satisfying M_J and M_L^* . Consider a nonempty set $\mathscr C$ of $\mathscr L$ -classes of S. Since S satisfies M_J there exists $a \in S$ such that $L_a \in \mathscr C$ and, for all $x \in S$, if $L_x \in \mathscr C$ and $J_x \leq J_a$ then $J_x = J_a$. Suppose that $b \in S$ is such that $L_b \in \mathscr C$ and $L_b \leq L_a$. Then

 $J_b \leq J_a$ and so $J_a = J_b$. But since S satisfies M_L^* it follows from Lemma 1.1 that L_a is minimal in the set of all \mathcal{L} -classes contained in J_a . Hence $L_b = L_a$. Consequently L_a is minimal in \mathscr{C} . This shows that S satisfies M_L : thus $M_J \wedge M_L^* \leq M_L$. A similar argument shows that $M_J \wedge M_R^* \leq M_R$.

(iv) Let S be a semigroup satisfying M_L and M_R^* . Consider a sequence a_1, a_2, a_3, \ldots of elements of S such that

$$H_{a_1} \geqslant H_{a_2} \geqslant H_{a_3} \geqslant \dots$$

We have that $L_{a_1} \ge L_{a_2} \ge L_{a_3} \ge \ldots$ and so, since S satisfies M_L , there exists a positive integer k such that the elements $a_k, a_{k+1}, a_{k+2}, \ldots$ are \mathcal{L} -equivalent. Thus $a_k, a_{k+1}, a_{k+2}, \ldots$ are \mathcal{L} -equivalent. But $R_{a_k} \ge R_{a_{k+1}} \ge R_{a_{k+2}} \ge \ldots$ and so, by Lemma 1.1, the elements $a_k, a_{k+1}, a_{k+2}, \ldots$ are \mathcal{R} -equivalent. It follows that $H_{a_k} = H_{a_{k+1}} = H_{a_{k+2}} = \ldots$. This shows that S satisfies M_H . Hence $M_L \wedge M_R^* \le M_H$. By duality, $M_R \wedge M_L^* \le M_H$.

- (v) Let S be a semigroup satisfying M_H . Consider any element $a \in S$. Since $H_a \ge H_{a^2} \ge H_{a^3} \ge \ldots$ there exists a positive integer n such that $H_{a^n} = H_{a^{n+1}} = H_{a^{n+2}} = \ldots$. But this means that $(a^n, a^{2n}) \in \mathcal{H}$ and so, by [1, Theorem 2.16], H_{a^n} is a group. Thus S is group-bound. Hence $M_H \le GB$.
- (vi) Let S be a group-bound semigroup. We shall show that S satisfies M_L^* . Let $a, b \in S$ be such that $(a, b) \in \mathcal{F}$ and $L_b \leq L_a$. Then there exist elements $u, v, c \in S^1$ such that a = ubv and b = ca. Thus a = (uc)av and so $a = (uc)^nav^n$ for all positive integers n. Now S^1 is group-bound and so we can choose n such that n > 1 and $(uc)^n$ lies in a subgroup of S^1 , with identity element e, say. Write $g = (uc)^n$ and let g^{-1} denote the inverse of g in the subgroup H_c of S^1 . Then

$$ea = e(gav^n) = (eg)av^n = gav^n = a$$

and so

$$g^{-1}(uc)^{n-1}ub = g^{-1}(uc)^{n-1}uca = g^{-1}ga = ea = a.$$

Hence $L_a \le L_b$, from which it follows that $L_a = L_b$. Consequently, S satisfies M_L^* . By duality, S also satisfies M_R^* . Thus $GB \le M_L^* \land M_R^*$.

COROLLARY 1.3.

$$M_L \wedge M_R = M_J \wedge M_H = M_J \wedge GB = M_J \wedge M_L^* \wedge M_R^*$$

Proof. By (ii), $M_L \wedge M_R \leq M_J$ and, by (i) and (iv), $M_L \wedge M_R \leq M_L^* \wedge M_R \leq M_H$. Thus $M_L \wedge M_R \leq M_J \wedge M_H$. On the other hand, by (v), (vi) and (iii),

$$M_I \wedge M_H \leq M_I \wedge GB \leq M_J \wedge (M_L^* \wedge M_R^*) = (M_J \wedge M_L^*) \wedge (M_J \wedge M_R^*) \leq M_L \wedge M_R.$$

This gives the result.

It is straightforward to check that, in view of Theorem 1.2, $\Lambda(\Omega)$ has at most thirteen elements. We proceed to show by means of examples that it has exactly thirteen.

First, we require some further notation. For an arbitrary semigroup S let S^{opp} denote the semigroup with the same set of elements as S but with the multiplication reversed. Also, for any two semigroups S and T let S+T denote the 0-direct union of S^0 and T^0 [1, §6.3].

The next lemma is almost immediate.

LEMMA 1.4. Let S and T be semigroups and let X be a member of Ω . Then S+T satisfies X if and only if both S and T satisfy X.

We now consider four semigroups S_i (i = 1, 2, 3, 4) defined as follows: S_1 , S_2 and S_3 are, respectively, an infinite cyclic semigroup, an infinitely descending semilattice and a Croisot-Teissier semigroup of the form $CT(A, \mathcal{E}, p, p)$ [1, §8.2], while S_4 is the semigroup with zero 0, nonzero elements the ordered pairs (i, j) of positive integers i, j such that i < j, and multiplication of nonzero elements according to the rule that

$$(i, j)(r, s) = \begin{cases} (i, s) & \text{if} \quad j = r, \\ 0 & \text{if} \quad j \neq r \end{cases}$$

[5; 1, §6.6, Example 1].

These semigroups, and four others derived from them, label the rows of the following table, the columns of which are labelled by the members of Ω . The entry in the table corresponding to a semigroup S and a condition X is 1 or 0 according as S satisfies or fails to satisfy X. It is a routine matter to check the entries in the first four rows (see [1, Theorem 8.11] for S_3): the remaining entries are then easily obtained with the aid of Lemma 1.4 and duality.

	M _L	M_{R}	M _J	M _H	M _L *	M_R^*	GB
S ₁	0	0	0	0	1	1	0
S ₂ S ₃ S ₄	0	1	1	0	0	1	0
S ₄	1		0	1	1	1	1
$S_1 + S_3$	0	0	0	0	0	1	0
$S_3 + S_3^{\text{opp}}$	0	0	1	0	0	0	0
$S_3 + S_4^{\text{opp}}$	0	1	0	0	0	1	0
$S_4 + S_4^{\text{opp}}$	0	0	0	1	1	1	1

From Theorem 1.2 and Corollary 1.3, together with the above table, duality and the observation that the trivial semigroup satisfies all the members of Ω , we see that $\Lambda(\Omega)$ has the Hasse diagram shown below.

Note that the seven members of Ω are distinct and that $\Lambda(\Omega)$ can be obtained from the free semilattice on Ω by imposing precisely the relationships listed in Theorem 1.2.

REMARK 1.6. There exist semigroups satisfying none of the conditions in Ω : for example, $S_1 + (S_3 + S_3^{\text{opp}})$.

REMARK 1.7. By [1, Theorem 6.45] the condition $M_L^* \wedge M_R^*$ on a semigroup S implies that $\mathfrak{D} = \mathcal{J}$ on S. Now take the Croisot-Teissier semigroup S_3 to be such that $\mathfrak{D} \neq \mathcal{J}$. Then the examples S_3 and S_3^{opp} show that $M_L^* \wedge M_R^*$ is the weakest conjunction of members of Ω to imply that $\mathfrak{D} = \mathcal{J}$, in the sense that any other conjunction implying the condition $\mathfrak{D} = \mathcal{J}$ also implies $M_L^* \wedge M_R^*$.

Furthermore, the proof of [5, Theorem 2.3] (see [1, Theorem 6.45]) shows that the condition $M_L^* \wedge M_R^*$ on a semigroup implies that each [0-] simple principal factor of the semigroup is completely [0-] simple. Again the examples S_3 and S_3^{opp} demonstrate that $M_L^* \wedge M_R^*$ is the weakest conjunction of members of Ω to imply this condition on principal factors.

REMARK 1.8. Let S be a regular semigroup. Then, for all a and b in S, $L_a \ge L_b$ if and only if to each idempotent $e \in L_a$ there corresponds an idempotent $f \in L_b$ such that $e \ge f$ [4, Remark 2]. Thus, on S, the conditions M_L , M_R and M_H are each equivalent to the condition that every nonempty set of idempotents of S contains a minimal member with respect to the usual partial ordering.

2. The Schützenberger group of an \mathcal{H} -class. Let S be a semigroup and H an \mathcal{H} -class of S. Write $T = \{x \in S^1 : Hx \subseteq H\}$. Then T is a subsemigroup of S^1 containing the identity 1. Corresponding to each $t \in T$ we define an element γ_t of \mathcal{T}_H (the full transformation semigroup on H) by the rule that $h\gamma_t = ht$ for all $h \in H$. Next, we define $\gamma: T \to \mathcal{T}_H$ by setting $t\gamma = \gamma_t$ for all $t \in T$. Then γ is a homomorphism and the image $T\gamma$ is a group of permutations of H; moreover, $|T\gamma| = |H|$ and if H is a subgroup of S then $T\gamma \cong H$ [1, §2.4]. We call $T\gamma$ the Schützenberger group of H.

The following theorem generalises a result on finite semigroups due to Rhodes (see [7, Proposition 1.1, equivalence of (a) and (c)]).

THEOREM 2.1. Let S be a semigroup satisfying M_H and let H be an \mathcal{H} -class of S. Then the Schützenberger group of H is a homomorphic image of a subgroup of S.

Proof. Let T, $\gamma_t(t \in T)$ and γ be defined as above. Evidently the \mathcal{H} -classes of S^1 are just those of S, together with $\{1\}$ in the case where $S \neq S^1$. Thus S^1 satisfies M_H and hence the set $\{H_t \in S^1/\mathcal{H}: t \in T\}$ contains a minimal member H', say. Consider an arbitrary element a in $H' \cap T$. Since $H' = H_a \ge H_{a^2}$ in S^1 and $a^2 \in T$, it follows from the minimality of H' that a and a^2 are \mathcal{H} -equivalent in S^1 . Therefore H' is a subgroup of S^1 , by [1], Theorem 2.16], and so $H' \cap T$ is a subsemigroup of S^1 . Now let a^{-1} denote the inverse of a in A'. Then, since A' for all A' is a subgroup of A'. Thus A' is a subgroup of A'.

Denote the identity of H' by e. Then $e \in H' \cap T$. Now consider an arbitrary element t of T. Clearly $ete \in T$ and $H_{ete} \leq H_e = H'$ in S^1 . Hence $ete \in H'$, by the minimality of H'. Thus $ete \in H' \cap T$. But since γ is a homomorphism and $e^2 = e$, γ_e must be the identity element of the group $T\gamma$. Hence $\gamma_t = \gamma_e \gamma_t \gamma_e = \gamma_{ete} \in (H' \cap T)\gamma$. Consequently $T\gamma \subseteq (H' \cap T)\gamma$ and so $T\gamma = (H' \cap T)\gamma$. The Schützenberger group $T\gamma$ of H is thus the image under γ of a subgroup of S^1 , namely $H' \cap T$.

The stated result now clearly holds if $S^1 = S$. It also holds if $|T\gamma| = 1$: for S must contain at least one idempotent, by Theorem 1.2(v). We therefore assume that $S^1 \neq S$ and that $|T\gamma| > 1$. To complete the proof it is enough to show that, with these hypotheses, $H' \cap T \subseteq S$. Now $|H' \cap T| > 1$, since $T\gamma = (H' \cap T)\gamma$. Hence $H' \neq H_1 = \{1\}$ in S^1 and so $H' \subseteq S$. Thus $H' \cap T \subseteq S$, as required.

COROLLARY 2.2. Let S be a semigroup satisfying M_H and let H be an \mathcal{H} -class of S. Then S has a maximal subgroup G such that $|G| \ge |H|$.

It follows from Corollary 2.2 that if S is a semigroup satisfying M_H and if every subgroup of S is trivial then \mathcal{H} is trivial on S. A better result can, however, be obtained directly:

Theorem 2.3. Let S be a group-bound semigroup in which every subgroup is trivial. Then \mathcal{H} is trivial on S.

Proof. Let H be an \mathcal{H} -class of S and let T, $\gamma_t(t \in T)$ and γ be defined as before. Let $t \in T$. Since S^1 is also a group-bound semigroup in which every subgroup is trivial there exists a positive integer n such that t^n is an idempotent of S^1 . Hence $t^n \cdot t^{n+1} = t^{n+1}$ and $t^{n+1} \cdot t^{2n-1} = t^n$, from which it follows that $t^{n+1} \in H_{t^n}$. But H_{t^n} is a group and so $t^{n+1} = t^n$. Thus $\gamma_{t^n} = \gamma_{t^n} \gamma_t$ and so, since $T\gamma$ is a group, γ_t is the identity of $T\gamma$. Consequently $|T\gamma| = 1$. But $|T\gamma| = |H|$ and therefore |H| = 1.

We conclude by showing that, in a certain sense, the results of Theorems 2.1 and 2.3 are best possible.

EXAMPLES 2.4. Let (T, \cdot) be a semigroup, let (H, *) be a group and let $\phi: T \to H$ be a surjective homomorphism. We assume that the sets T, H and $\{0\}$ are pairwise disjoint and we write $S = T \cup H \cup \{0\}$. By means of the following rules we extend the binary operation

on T to an operation on S:

$$s0 = 0s = 0$$
, $gh = 0$, $gt = g * t\phi$, $tg = (t\phi) * g$

for all $s \in S$, all $g, h \in H$ and all $t \in T$. It is straightforward to verify that S is a semigroup with H and $\{0\}$ as two of its \mathcal{H} -classes, the remaining \mathcal{H} -classes being precisely those of T. Clearly H is also a \mathcal{F} -class of S.

By making particular choices for T, H and ϕ in this construction we obtain three examples ((a), (b), (c) below).

(a) Let K be a nontrivial finite group and let 1 denote its identity. For all positive integers n let $K^{(n)}$ denote the direct product of n copies of K and for all positive integers m, n with $m \le n$ define a homomorphism $\phi_n^m : K^{(m)} \to K^{(n)}$ by the rule that

$$(k_1,\ldots,k_m)\phi_n^m = (k_1,\ldots,k_m,1,\ldots,1)$$

for all $k_1, \ldots, k_m \in K$. Take $T = \bigcup_{n=1}^{\infty} K^{(n)}$ and define a multiplication on T by setting $st = (s\phi_n^m)(t\phi_n^n)$,

where $s \in K^{(m)}$, $t \in K^{(n)}$ and $p = \max\{m, n\}$, the product on the right-hand side being computed in $K^{(p)}$. By [1, Theorem 4.11], T is a semilattice of groups. Its \mathcal{H} -classes are just the groups $K^{(n)}$, each of which is finite.

Next, take H to be the group consisting of all infinite sequences (k_1, k_2, k_3, \ldots) of elements of K with at most finitely many entries different from 1, under componentwise multiplication. Finally, define $\phi: T \to H$ by the rule that

$$(k_1, \ldots, k_n)\phi = (k_1, \ldots, k_n, 1, 1, \ldots)$$

for all positive integers n and all $k_1, \ldots, k_n \in K$. Then ϕ is a surjective homomorphism (and $\phi \circ \phi^{-1}$ is the least group congruence on T).

In this case the semigroup S has only finite subgroups, but possesses an infinite \mathcal{H} -class, namely H. Clearly S is periodic and so satisfies the condition GB.

- (b) Take H to be a nontrivial group, take T to be the free semigroup \mathcal{F}_H on H and take $\phi: T \to H$ to be any surjective homomorphism. Then S has exactly one subgroup, namely $\{0\}$. Thus every subgroup of S is trivial but S has a nontrivial \mathcal{H} -class, namely H. In this case S satisfies M_L^* and M_R^* .
- (c) Let H be a nontrivial group, let U be a Baer-Levi semigroup [1, §8.1] and let T denote the direct product $U \times H$ [$U^{\text{opp}} \times H$]. Define ϕ to be the projection of T onto $H:(u,h)\mapsto h$ for all $(u,h)\in T$. It is readily seen that T has no subgroups. Hence, as in (b), the only subgroup of S is the trivial subgroup $\{0\}$, while S has a nontrivial \mathcal{H} -class, namely H. It is also easy to verify that since $U[U^{\text{opp}}]$ satisfies M_R and $M_J[M_L]$ and $M_J]$ the same is true for T and so also for S.

REMARK 2.5. By Theorem 2.1, the condition M_H on a semigroup S implies that the Schützenberger group of each \mathcal{H} -class of S is a homomorphic image of a subgroup of S. Examples 2.4(a) and (c) show that M_H is the weakest member of $\Lambda(\Omega)$ to imply this condition on the Schützenberger groups of \mathcal{H} -classes.

By Theorem 2.3, the condition GB on a semigroup S with no nontrivial subgroups implies that \mathcal{H} is trivial on S. Examples 2.4(b) and (c) show that GB is the weakest member of $\Lambda(\Omega)$ to imply that \mathcal{H} is trivial on semigroups with no nontrivial subgroups.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Surveys of the Amer. Math. Soc. 7 (Providence, R.I., 1961 (vol. I) and 1967 (vol. II)).
- 2. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
 - 3. J. A. Green, On the structure of semigroups, Ann. of Math. (2) 54 (1951), 163-172.
- 4. T. E. Hall, On the natural ordering of *§*-classes and of idempotents in a regular semigroup, Glasgow Math. J. 11 (1970), 167-168.
- 5. W. D. Munn, Semigroups satisfying minimal conditions, Proc. Glasgow Math. Assoc. 3 (1957), 145-152.
- 6. W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247-250.
 - 7. J. Rhodes, Some results on finite semigroups, J. Algebra 4 (1966), 471-504.

MATHEMATICS DEPARTMENT MONASH UNIVERSITY CLAYTON AUSTRALIA 3168

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GLASGOW