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Abstract

Let G be a finite group and Γ a G-symmetric graph. Suppose that G is imprimitive on V(Γ) with B a
block of imprimitivity and B := {Bg; g ∈ G} a system of imprimitivity of G on V(Γ). Define ΓB to be the
graph with vertex set B such that two blocks B,C ∈ B are adjacent if and only if there exists at least one
edge of Γ joining a vertex in B and a vertex in C. Xu and Zhou [‘Symmetric graphs with 2-arc-transitive
quotients’, J. Aust. Math. Soc. 96 (2014), 275–288] obtained necessary conditions under which the graph
ΓB is 2-arc-transitive. In this paper, we completely settle one of the cases defined by certain parameters
connected to Γ and B and show that there is a unique graph corresponding to this case.
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1. Introduction

Let G be a finite group. A graph Γ is called G-symmetric if Γ admits G as a group of
automorphisms acting transitively on the set of vertices and the set of arcs of Γ, where
an arc is an ordered pair of adjacent vertices. Suppose that G is imprimitive on V(Γ)
with B a block of imprimitivity. Then

B := {Bg; g ∈ G}

is a system of imprimitivity of G on V(Γ). Define ΓB to be the graph with vertex set
B such that two blocks B,C ∈ B are adjacent if and only if there exists at least one
edge of Γ joining a vertex in B and a vertex in C. We call ΓB the quotient graph of
Γ with respect to B. A graph Γ is called (G, 2)-arc-transitive if it admits G as a group
of automorphisms acting transitively on the set of vertices and the set of 2-arcs of Γ,
where a 2-arc is an oriented path of length two. In [1] the following question was
asked:
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Question 1.1. Under the assumptions above, when is the quotient ΓB a (G, 2)-arc-
transitive graph?

Notation. Fix B ∈ B. Let U := ΓB(B) be the set of blocks of B adjacent to B in ΓB.
For α ∈ B, let ΓB(α) be the set of blocks in U containing at least one neighbour of α
in Γ and let r := |ΓB(α)|. For C ∈ U, let Γ(C) denote the set of vertices of Γ adjacent
to at least one vertex in C. Define v := |B| and k := |Γ(C) ∩ B| for C ∈ U. Since Γ is
G-symmetric and B is G-invariant, r, v and k are independent of the choice of α, B and
C, respectively. Denote by GB the setwise stabiliser of B in G, and define H := GΓB(B)

B
to be the quotient group of GB relative to the kernel of the induced action of GB onU.

In [2], necessary conditions for ΓB to be (G, 2)-arc-transitive were obtained in the
case when k = v − p ≥ 1, where p is an odd prime. The following result is extracted
from [2, Theorem 1.1]. (It corresponds to the third case in the theorem.)

Theorem 1.2. Assume, in the context of the notation above, that G ≤ Aut(Γ), ΓB is
(G, 2)-arc-transitive and ΓB is connected with valency b ≥ 2. Assume further that
k = v − p ≥ 1, p = 2n − 1 is a Mersenne prime, v = 2m p is a multiple of p and
r = (2m − 1)t, where n − 1 ≥ m ≥ 1 and t ≥ 2 are integers. Then H is isomorphic to
a 2-transitive subgroup of AGL(n, 2).

We show that p = 3 in this situation and that there is a unique graph satisfying the
conditions of Theorem 1.2. More explicitly, we prove the following theorem.

Theorem 1.3. With the assumptions of Theorem 1.2, we have p = k = 3 and v = 6.

Theorem 1.3 shows that the graph which appears in [2, Theorem 3] is the only graph
satisfying the conditions of Theorem 1.2.

2. Proof of the main theorem

In what follows we use the notation and assumptions in Theorem 1.2. By [2],
|U| = p + 1 and so we may set

U := {C,C1, . . . ,Cp}, W := Γ(C) ∩ B.

Then |B\W | = p by our assumption and r = 2n − 2n−m by [2]. Let HC be the stabiliser
of C in H. Then HC leaves W and B\W invariant. Since ΓB is assumed to be (G, 2)-
arc-transitive, H is 2-transitive on U and so HC is transitive on U\{C}. In fact, Γ,
ΓB and H satisfy the conditions in the third row of [2, Table 2]. So we assume that
H = N o HC is an affine group (isomorphic to a subgroup of AGL(n, 2)). Here N � Zn

2
is an elementary abelian group of order p + 1 = 2n and is the minimal normal subgroup
of H acting regularly onU with centraliser CH(N) = N. Further, HC is isomorphic to
a subgroup of GLn(2) and acts transitively on the set of involutions of N.

Since N has exactly p involutions and HC is transitive on the set of them, p divides
the order of HC . Since p is a prime, HC contains an element of order p, say, x. Define

X := 〈x〉 ≤ HC , P := 〈N, x〉 = N o X ≤ H.
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Lemma 2.1. The following hold:

(i) X is of order p and is regular onU\{C};
(ii) X fixes W and B\W setwise and is fixed-point-free on each of them;
(iii) X is regular on B\W.

Proof. (i) Obviously, X has order p. Since |X| = |U\{C}| = p is a prime, by the orbit-
stabiliser lemma X must be regular onU\{C}.

(ii) Since X ≤ HC , it fixes W and B\W setwise. If a vertex α ∈ B\W is fixed by a
nonidentity element of X, then it is fixed by every nonidentity element of X. Since
by (i), X is transitive onU\{C}, we then have α ∈ Γ(Ci) ∩ B for i = 1, 2, . . . , p, which
yields r = p and so m = 0, a contradiction. Therefore, X is fixed-point-free on B\W. A
similar argument shows that X is fixed-point-free on W.

(iii) Since |X| = |B\W | = p is a prime and X acts fixed-point-freely on B\W, X must
be regular on B\W. �

Lemma 2.2. No nonempty subset of W is N-invariant.

Proof. Suppose to the contrary that ∅ , Y ⊆ W is N-invariant. Since N is regular
on U, for each i there exists a unique element gi ∈ N such that Cgi = Ci. Hence
Wgi = Γ(Ci) ∩ B. Since Y is N-invariant, we have Y = Ygi ⊆ Wgi for i = 1, 2, . . . , p,
which implies r = p + 1 = 2n, a contradiction. �

Lemma 2.3. The subgroup P is transitive on B.

Proof. Let αN be an N-orbit on B, where α ∈ B, and set A =
⋃

g∈P(αN)g. Since
N E P ≤ H, A ⊆ B and P is transitive on A, both A and B\A are P-invariant. In
particular, both A and B\A are N-invariant and X-invariant. Since A , ∅, by Lemma 2.2
we have A ∩ (B\W) , ∅. On the other hand, by Lemma 2.1, X is transitive on B\W.
Since A is X-invariant and A ∩ (B\W) , ∅, it follows that B\W ⊆ A. Now B\A ⊆ W
and B\A is N-invariant, by Lemma 2.2, so B\A = ∅ and hence P is transitive on
B = A. �

Since N is regular onU, it contains a unique involution z which interchanges C and
C1. Write

W1 := Γ(C1) ∩ B, Bz := {α ∈ B : αz = α}.

Then z interchanges W and W1 and both W ∩W1 and W ∪W1 are z-invariant. Note that
|W ∩W1| = λ = (a − 1)(p − 2n−m) , 0 by [2] with a = 2m. Therefore Bz ∩ (W ∩W1) ,
∅. Since N is abelian, Bz is N-invariant. Fix an N-orbit αN contained in Bz, where
α ∈ Bz, and set

F := {(αN)g : g ∈ X}.

Since N is normal in P, F is a system of imprimitivity for P. Then |αN | = 2m = a,
|F | = p and F is the set of all N-orbits on B. We note that if (αN)g1 = (αN)g2 for distinct
g1, g2 ∈ X, then since X = 〈g1g−1

2 〉, we see that αN is P-invariant. By Lemma 2.3, N is
regular on B which implies that v = |N| = p + 1 = 2n, a contradiction.
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Lemma 2.4. We have |αN ∩ (B\W)| = 1. In fact, each element of B\W is in a unique
element of F and each element of F contains a unique element of B\W.

Proof. Let x ∈ B\W. Since F is a system of imprimitivity for P, there is (αN)g ∈ F ,
g ∈ X, such that (αN)g ∩ (B\W) , ∅ and we may asssume that x ∈ αN . Since X
fixes B\W setwise and is transitive on B\W, we have xX = B\W. Using the fact
|F | = p = |B\W |, we have αN ∩ (B\W) = {x}. This shows that each element of B\W is
in a unique element of F and each element of F contains a unique element of B\W. �

Since z is fixed-point-free on U, z has (p + 1)/2 = 2n−1 = q orbits on U each of
length 2. Let Ri, i = 1, 2, . . . , q, be the orbits of z on U, R1 = {C = C0,C1} and
Ri = {C2i−2,C2i−1}, i = 2, . . . , q. For i = 1, . . . , p, set Wi = Γ(Ci) ∩ B and W = W0. Then
for i , j, we have |Wi ∩W j| = λ = (a − 1)(p − 2n−m). We note that since 〈z〉 is normal in
N, {Ri, i = 1, 2, . . . , q} is a system of imprimitivity for N. We recall that r = 2n − 2n−m

and a = 2m.

Lemma 2.5. For i = 1, 2, . . . , q, we have:

(i) N has |B\(W2i−2 ∪ W2i−1)| = 2p − v + λ = 2n−m − 1 orbits on Bz and |Bz| =

2n − 2m;
(ii) Bz = (Bz ∩W2i−2 ∩W2i−1) ∪ (B\(W2i−2 ∪W2i−1));
(iii) |Bz ∩W2i−2 ∩W2i−1| = |B\(W2i−2 ∪W2i−1)|(a − 1).

Proof. Without loss of generality, we can take i = 1. Since both W ∩W1 and W ∪W1

are z-invariant, B\(W ∪W1) ⊆ B\W is also z-invariant. This and Lemma 2.4 together
imply that B\(W ∪W1) ⊆ Bz and N has |B\(W ∪W1)| = 2p − v + λ = 2n−m − 1 orbits
on Bz. Therefore |Bz| = 2m(2n−m − 1) = 2n − 2m and the lemma holds. �

We know that N has p orbits on B each of length a and we denote these orbits
by Bi, i = 1, . . . , p. By Lemma 2.4, we can write B\W = {α1, . . . , αp} where αi ∈ Bi,
i = 1, 2, . . . , p.

Lemma 2.6. For i = 1, . . . , p and j = 1, 2, . . . , p + 1:

(i) Bi ∩ (B\W j)| = 2 and Bi ∩ (B\(W2 j−2 ∪W2 j−1)| = 1;
(ii) either Bi ⊂ Bz or Bi ∩ Bz = ∅;
(iii) if Bi ⊂ Bz, then |Bi ∩W2s−2 ∩W2s−1| = a − 1 for each s = 1, . . . , q;
(iv) if Bi ∩ Bz = ∅, then |Bi ∩W2s−2 ∩W2s−1| = a − 2.

Proof. Since Bz is N-invariant, (ii) holds. Note that |Bi| = a, i = 1, . . . , p. Let B1 ⊆ Bz

and B2 ⊆ (W ∪W1)\Bz. By Lemmas 2.4 and 2.5(i), we see that B1\{α1} ⊆ (W ∩W1), z
acts fixed-point-freely on B2 and B2\{α2, α

z
2} ⊆ (W ∩W1). Observe that for each orbit

Ri = {C2i−2,C2i−1}, i = 1, . . . , q, and each orbit B j, j = 1, . . . , p, either B j ⊆ Bz and there
is an element xi ∈ B j such that xi < W2i−1 ∪W2i−2 and B\{xi} ⊆ (W2i−1 ∩W2i−2), or z is
fixed-point-free on B j and (B j\{α j, α

z
j}) ⊆ (W2i−1 ∩W2i−2). This proves the lemma. �

Set O = W\W1.
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Lemma 2.7. For each Ri, i = 2, . . . , q, we have:

(i) O = (O ∩W2i−2 ∩W2i−1) ∪ ((O ∩W2i−1)\W2i−2) ∪ ((O ∩W2i−2)\W2i−2);
(ii) |((O ∩W2i−1)\W2i−2)| = |((O ∩W2i−2)\W2i−2)|.

Proof. Without loss of generality, we can take i = 2. To prove (i), we show that
O = (O ∩W2 ∩W3) ∪ ((O ∩W2)\W3) ∪ ((O ∩W3)\W2). For this it is enough to show
that O ⊆ W3 ∪W2. Assume not and let x ∈ O\(W2 ∪W3). Then there is j ∈ {1, . . . , p}
such that x ∈ B j. Since O ∩ Bz = ∅, we conclude that z acts fixed-point-freely on
B j and then {x, xz} ⊆ (B j\(W2 ∪W3)). But by Lemma 2.6(i), N has no such orbit,
a contradiction. Hence (i) holds. Since |W ∩W2| = |W ∩W3| = λ, |W2 ∩W ∩W1| =

|W3 ∩W ∩W1| and, by (i), |(O ∩W2)\W3| = |(O ∩W3)\W2|, the lemma is proved. �

Lemma 2.8. We have:

(i) W2i−2 ∩W2i−1 ∩ Bz = B\(W2 j−2 ∪W2 j−1) for i, j = 1, . . . , q, i , j;
(ii) m = 1;
(iii) n = 2, v = 6 and k = 3 = p;
(iv) P � A4.

Proof. To prove (i), we may assume that i = 1 and j = 2. By Lemma 2.7(i) we
have O = (O ∩W2 ∩W3) ∪ ((O ∩W2)\W3) ∪ ((O ∩W3)\W2). Let O1 = Oz = W1\W
and |O ∩ W2 ∩ W3| = a1 = |O1 ∩ W2 ∩ W3|. By Lemma 2.7(ii), |(O ∩ W2)\W3| =

a2 = |(O ∩ W3)\W2|. Next, set |(W1 ∩ W ∩ W2)\W3| = b2 = |(W1 ∩ W ∩ W3)\W2|,
|(W1 ∩ W)\(W2 ∪ W3)| = c = |(W2 ∩ W3)\(W ∪ W1)| and b1 = |W2 ∩ W3 ∩ W1 ∩ W |.
We note that B\(W ∪ W1) ⊆ Bz, so W2 ∩ (B\(W ∪ W1)) = W3 ∩ (B\(W ∪ W1)) = c.
Now,

2a1 + b1 + c = |W2 ∩W3| = λ, (2.1)
2b2 + b1 + c = |W ∩W1| = λ, (2.2)

a1 + a2 + b2 + b1 = |W ∩W3| = λ, (2.3)
a1 + 2a2 = |O| = k − λ, (2.4)

λ + a2 + a1 + c = |W3| = k. (2.5)

From (2.1) and (2.2), a1 = b2, and from (2.4) and (2.5), c = a2. From this and (2.3)
and (2.4), 2(k − λ − 2c) + c + b1 = λ. This implies that b1 = 3λ + 3c − 2k. Again,
from (2.3) and (2.4), (a1 + 2c) − (2a1 + c + b1) = k − 2λ. Hence c − a1 − b1 = k − 2λ.
By this and (2.4), we conclude that a1 + 2c − 2(c − a1 − b1) = k − λ − 2(k − 2λ).
Therefore 3a1 + 2b1 = 3λ − k. Thus,

b1 = 3λ + 3c − 2k (2.6)
3a1 + 2b1 = 3λ − k. (2.7)

Set d = |W ∩W1 ∩W2 ∩W3 ∩ Bz| and t1 = |B\(W ∪W1)| = 2p − v + λ = 2n−m − 1.
We need the following claim.

Claim. b1 − d = 2a2(a − 2) + a1(a − 4) and d = (t1 − c)(a − 1) + c(a − 2).

https://doi.org/10.1017/S0004972715000970 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000970


18 M. Reza Salarian [6]

Proof. By Lemmas 2.4 and 2.5(i), N has p − t1 = k − λ = |O| = 2a2 + a1 orbits on
B\Bz and t1 orbits on Bz. So assume that B\Bz =

⋃2a2+a1
i=1 Bi. By Lemma 2.6(i),

|Bi ∩ O| = |Bi ∩ O1| = |Bi ∩ (W2\W3)| = |Bi ∩ (W3\W2)| = 1, i = 1, . . . , 2a2 + a1. So by
Lemma 2.7(i), we may assume that |Bi ∩ (O\(W2 ∩W3))| = 1 for i = 1, 2, . . . , 2a2, and
|Bi ∩ O ∩W2 ∩W3| = 1 for i = 2a2 + 1, . . . , 2a2 + a1. Assume that Bi ∩ O = {xi}, i =

1, . . . , 2a2 + a1. Since z is fixed-point-free on Bi, by Lemma 2.6(iv), for i = 1, . . . , 2a2,
we have Bi\{xi, xz

i } ⊆ W ∩W1 ∩W2 ∩W3, and for i = 2a2 + 1, . . . , 2a2 + a1, we have
|(Bi\{xi, xz

i }) ∩ W ∩ W1 ∩ W2 ∩ W3| = a − 4. Thus b1 − d = 2a2(a − 2) + a1(a − 4).
Since Bz =

⋃p
i=|O|+1 Bi by Lemma 2.6(iii), for i = |O| + 1, . . . , p, we have

|Bi ∩ (B\(W2 ∪W3))| = 1 = |Bi ∩ (B\(W ∪W1))|.

Hence d = (t1 − c)(a − 1) + c(a − 2) and the claim holds. �

Recall that a2 = c, k = (a − 1)p and λ = (a − 1)(p − 2n−m). By (2.6) and our claim
above, we conclude that

3λ + 3c − 2k = 2c(a − 2) + a1(a − 4) + (t1 − c)(a − 1) + c(a − 2).

From this, since t1 = 2n−m − 1,

c(8 − 2a) = (a − 1)(−2n + 2n−m+2) + a1(a − 4).

Therefore,

c = (2m − 1)2n−m+2(1 − 2m−2)/(8 − 2m+1) − a1/2
= (2m − 1)2n−m(1 − 2m−2)/(2 − 2m−1) − a1/2 = (a − 1)2n−m−1 − a1/2.

From this and equation (2.1), 3a1 + b1 = 2λ − (a − 1)2n−m. Now by equation (2.7),
b1 = 3λ − k − (2λ − (a − 1)2n−m) = λ − k + (a − 1)2n−m = 0. This and Lemma 2.5(ii)
imply that (W2 ∩W3 ∩ Bz) ⊆ (B\(W ∪W1)). Next, we note that by Lemma 2.5(iii),
|W2 ∩W3 ∩ Bz| = |W ∩W1 ∩ Bz| = t1(a − 1). So t1 ≥ t1(a − 1) and then a = 2. This
gives m = 1, and (i) and (ii) hold. By (i) and Lemma 2.5(ii), we have q = 2. Thus, we
see that 2n−1 = 2 and n = 2. This gives (iii) and (iv) and the lemma is proved. �

Finally, Theorem 1.3 follows from Lemma 2.8.
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