FINITE SYMMETRIC GRAPHS WITH 2-ARC-TRANSITIVE QUOTIENTS: AFFINE CASE

M. REZA SALARIAN

(Received 29 April 2015; accepted 2 May 2015; first published online 17 September 2015)

Dedicated to Professor Praeger

Abstract

Let G be a finite group and Γ a G-symmetric graph. Suppose that G is imprimitive on $V(\Gamma)$ with B a block of imprimitivity and $\mathcal{B} := \{B^g; g \in G\}$ a system of imprimitivity of G on $V(\Gamma)$. Define $\Gamma_{\mathcal{B}}$ to be the graph with vertex set \mathcal{B} such that two blocks $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ joining a vertex in B and a vertex in C. Xu and Zhou ['Symmetric graphs with 2-arc-transitive quotients', J. Aust. Math. Soc. 96 (2014), 275–288] obtained necessary conditions under which the graph $\Gamma_{\mathcal{B}}$ is 2-arc-transitive. In this paper, we completely settle one of the cases defined by certain parameters connected to Γ and \mathcal{B} and show that there is a unique graph corresponding to this case.

2010 Mathematics subject classification: primary 05C25; secondary 05E18.

Keywords and phrases: symmetric graphs, transitive groups, arc-transitive graphs.

1. Introduction

Let G be a finite group. A graph Γ is called G-symmetric if Γ admits G as a group of automorphisms acting transitively on the set of vertices and the set of arcs of Γ , where an arc is an ordered pair of adjacent vertices. Suppose that G is imprimitive on $V(\Gamma)$ with B a block of imprimitivity. Then

$$\mathcal{B} := \{B^g; g \in G\}$$

is a system of imprimitivity of G on $V(\Gamma)$. Define $\Gamma_{\mathcal{B}}$ to be the graph with vertex set \mathcal{B} such that two blocks $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ joining a vertex in B and a vertex in C. We call $\Gamma_{\mathcal{B}}$ the *quotient graph* of Γ with respect to \mathcal{B} . A graph Γ is called (G, 2)-arc-transitive if it admits G as a group of automorphisms acting transitively on the set of vertices and the set of 2-arcs of Γ , where a 2-arc is an oriented path of length two. In [1] the following question was asked:

This project is supported by INSF (No. 92002927).

^{© 2015} Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

14 M. Reza Salarian [2]

QUESTION 1.1. Under the assumptions above, when is the quotient $\Gamma_{\mathcal{B}}$ a (G,2)-arctransitive graph?

Notation. Fix $B \in \mathcal{B}$. Let $\mathcal{U} := \Gamma_{\mathcal{B}}(B)$ be the set of blocks of \mathcal{B} adjacent to B in $\Gamma_{\mathcal{B}}$. For $\alpha \in B$, let $\Gamma_{\mathcal{B}}(\alpha)$ be the set of blocks in \mathcal{U} containing at least one neighbour of α in Γ and let $r := |\Gamma_{\mathcal{B}}(\alpha)|$. For $C \in \mathcal{U}$, let $\Gamma(C)$ denote the set of vertices of Γ adjacent to at least one vertex in C. Define v := |B| and $k := |\Gamma(C) \cap B|$ for $C \in \mathcal{U}$. Since Γ is G-symmetric and \mathcal{B} is G-invariant, r, v and k are independent of the choice of α , B and C, respectively. Denote by G_B the setwise stabiliser of B in G, and define $H := G_B^{\Gamma_{\mathcal{B}}(B)}$ to be the quotient group of G_B relative to the kernel of the induced action of G_B on \mathcal{U} .

In [2], necessary conditions for $\Gamma_{\mathcal{B}}$ to be (G, 2)-arc-transitive were obtained in the case when $k = v - p \ge 1$, where p is an odd prime. The following result is extracted from [2, Theorem 1.1]. (It corresponds to the third case in the theorem.)

Theorem 1.2. Assume, in the context of the notation above, that $G \leq \operatorname{Aut}(\Gamma)$, $\Gamma_{\mathcal{B}}$ is (G,2)-arc-transitive and $\Gamma_{\mathcal{B}}$ is connected with valency $b \geq 2$. Assume further that $k = v - p \geq 1$, $p = 2^n - 1$ is a Mersenne prime, $v = 2^m p$ is a multiple of p and $r = (2^m - 1)t$, where $n - 1 \geq m \geq 1$ and $t \geq 2$ are integers. Then H is isomorphic to a 2-transitive subgroup of $\operatorname{AGL}(n,2)$.

We show that p = 3 in this situation and that there is a unique graph satisfying the conditions of Theorem 1.2. More explicitly, we prove the following theorem.

THEOREM 1.3. With the assumptions of Theorem 1.2, we have p = k = 3 and v = 6.

Theorem 1.3 shows that the graph which appears in [2, Theorem 3] is the only graph satisfying the conditions of Theorem 1.2.

2. Proof of the main theorem

In what follows we use the notation and assumptions in Theorem 1.2. By [2], $|\mathcal{U}| = p + 1$ and so we may set

$$\mathcal{U} := \{C, C_1, \dots, C_p\}, \quad W := \Gamma(C) \cap B.$$

Then $|B\backslash W|=p$ by our assumption and $r=2^n-2^{n-m}$ by [2]. Let H_C be the stabiliser of C in H. Then H_C leaves W and $B\backslash W$ invariant. Since $\Gamma_{\mathcal{B}}$ is assumed to be (G,2)-arc-transitive, H is 2-transitive on \mathcal{U} and so H_C is transitive on $\mathcal{U}\backslash\{C\}$. In fact, Γ , $\Gamma_{\mathcal{B}}$ and H satisfy the conditions in the third row of [2, Table 2]. So we assume that $H=N\rtimes H_C$ is an affine group (isomorphic to a subgroup of AGL(n,2)). Here $N\cong \mathbb{Z}_2^n$ is an elementary abelian group of order $p+1=2^n$ and is the minimal normal subgroup of H acting regularly on \mathcal{U} with centraliser $C_H(N)=N$. Further, H_C is isomorphic to a subgroup of $GL_n(2)$ and acts transitively on the set of involutions of N.

Since N has exactly p involutions and H_C is transitive on the set of them, p divides the order of H_C . Since p is a prime, H_C contains an element of order p, say, x. Define

$$X := \langle x \rangle \le H_C$$
, $P := \langle N, x \rangle = N \rtimes X \le H$.

Lemma 2.1. The following hold:

- (i) X is of order p and is regular on $\mathcal{U}\setminus\{C\}$;
- (ii) X fixes W and $B \setminus W$ setwise and is fixed-point-free on each of them;
- (iii) X is regular on $B \setminus W$.

PROOF. (i) Obviously, X has order p. Since $|X| = |\mathcal{U} \setminus \{C\}| = p$ is a prime, by the orbit-stabiliser lemma X must be regular on $\mathcal{U} \setminus \{C\}$.

- (ii) Since $X \le H_C$, it fixes W and $B \setminus W$ setwise. If a vertex $\alpha \in B \setminus W$ is fixed by a nonidentity element of X, then it is fixed by every nonidentity element of X. Since by (i), X is transitive on $\mathcal{U} \setminus \{C\}$, we then have $\alpha \in \Gamma(C_i) \cap B$ for i = 1, 2, ..., p, which yields r = p and so m = 0, a contradiction. Therefore, X is fixed-point-free on $B \setminus W$. A similar argument shows that X is fixed-point-free on W.
- (iii) Since $|X| = |B \setminus W| = p$ is a prime and X acts fixed-point-freely on $B \setminus W$, X must be regular on $B \setminus W$.

Lemma 2.2. No nonempty subset of W is N-invariant.

PROOF. Suppose to the contrary that $\emptyset \neq Y \subseteq W$ is N-invariant. Since N is regular on \mathcal{U} , for each i there exists a unique element $g_i \in N$ such that $C^{g_i} = C_i$. Hence $W^{g_i} = \Gamma(C_i) \cap B$. Since Y is N-invariant, we have $Y = Y^{g_i} \subseteq W^{g_i}$ for i = 1, 2, ..., p, which implies $r = p + 1 = 2^n$, a contradiction.

LEMMA 2.3. The subgroup P is transitive on B.

PROOF. Let α^N be an N-orbit on B, where $\alpha \in B$, and set $A = \bigcup_{g \in P} (\alpha^N)^g$. Since $N \leq P \leq H$, $A \subseteq B$ and P is transitive on A, both A and $B \setminus A$ are P-invariant. In particular, both A and $B \setminus A$ are N-invariant and X-invariant. Since $A \neq \emptyset$, by Lemma 2.2 we have $A \cap (B \setminus W) \neq \emptyset$. On the other hand, by Lemma 2.1, X is transitive on $B \setminus W$. Since A is X-invariant and $A \cap (B \setminus W) \neq \emptyset$, it follows that $B \setminus W \subseteq A$. Now $B \setminus A \subseteq W$ and $B \setminus A$ is N-invariant, by Lemma 2.2, so $B \setminus A = \emptyset$ and hence P is transitive on B = A.

Since N is regular on \mathcal{U} , it contains a unique involution z which interchanges C and C_1 . Write

$$W_1 := \Gamma(C_1) \cap B$$
, $B_2 := \{\alpha \in B : \alpha^z = \alpha\}$.

Then z interchanges W and W_1 and both $W \cap W_1$ and $W \cup W_1$ are z-invariant. Note that $|W \cap W_1| = \lambda = (a-1)(p-2^{n-m}) \neq 0$ by [2] with $a=2^m$. Therefore $B_z \cap (W \cap W_1) \neq \emptyset$. Since N is abelian, B_z is N-invariant. Fix an N-orbit α^N contained in B_z , where $\alpha \in B_z$, and set

$$\mathcal{F}:=\{(\alpha^N)^g:g\in X\}.$$

Since N is normal in P, \mathcal{F} is a system of imprimitivity for P. Then $|\alpha^N| = 2^m = a$, $|\mathcal{F}| = p$ and \mathcal{F} is the set of all N-orbits on B. We note that if $(\alpha^N)^{g_1} = (\alpha^N)^{g_2}$ for distinct $g_1, g_2 \in X$, then since $X = \langle g_1 g_2^{-1} \rangle$, we see that α^N is P-invariant. By Lemma 2.3, N is regular on B which implies that $v = |N| = p + 1 = 2^n$, a contradiction.

Lemma 2.4. We have $|\alpha^N \cap (B \setminus W)| = 1$. In fact, each element of $B \setminus W$ is in a unique element of \mathcal{F} and each element of \mathcal{F} contains a unique element of $B \setminus W$.

PROOF. Let $x \in B \setminus W$. Since \mathcal{F} is a system of imprimitivity for P, there is $(\alpha^N)^g \in \mathcal{F}$, $g \in X$, such that $(\alpha^N)^g \cap (B \setminus W) \neq \emptyset$ and we may asssume that $x \in \alpha^N$. Since X fixes $B \setminus W$ setwise and is transitive on $B \setminus W$, we have $x^X = B \setminus W$. Using the fact $|\mathcal{F}| = p = |B \setminus W|$, we have $\alpha^N \cap (B \setminus W) = \{x\}$. This shows that each element of $B \setminus W$ is in a unique element of \mathcal{F} and each element of \mathcal{F} contains a unique element of $B \setminus W$. \square

Since z is fixed-point-free on \mathcal{U} , z has $(p+1)/2=2^{n-1}=q$ orbits on \mathcal{U} each of length 2. Let R_i , $i=1,2,\ldots,q$, be the orbits of z on \mathcal{U} , $R_1=\{C=C_0,C_1\}$ and $R_i=\{C_{2i-2},C_{2i-1}\}$, $i=2,\ldots,q$. For $i=1,\ldots,p$, set $W_i=\Gamma(C_i)\cap B$ and $W=W_0$. Then for $i\neq j$, we have $|W_i\cap W_j|=\lambda=(a-1)(p-2^{n-m})$. We note that since $\langle z\rangle$ is normal in N, $\{R_i,\ i=1,2,\ldots,q\}$ is a system of imprimitivity for N. We recall that $r=2^n-2^{n-m}$ and $a=2^m$.

Lemma 2.5. *For* i = 1, 2, ..., q, *we have:*

- (i) N has $|B\setminus (W_{2i-2}\cup W_{2i-1})|=2p-v+\lambda=2^{n-m}-1$ orbits on B_z and $|B_z|=2^n-2^m$:
- (ii) $B_z = (B_z \cap W_{2i-2} \cap W_{2i-1}) \cup (B \setminus (W_{2i-2} \cup W_{2i-1}));$
- (iii) $|B_z \cap W_{2i-2} \cap W_{2i-1}| = |B \setminus (W_{2i-2} \cup W_{2i-1})|(a-1).$

PROOF. Without loss of generality, we can take i=1. Since both $W \cap W_1$ and $W \cup W_1$ are z-invariant, $B \setminus (W \cup W_1) \subseteq B \setminus W$ is also z-invariant. This and Lemma 2.4 together imply that $B \setminus (W \cup W_1) \subseteq B_z$ and N has $|B \setminus (W \cup W_1)| = 2p - v + \lambda = 2^{n-m} - 1$ orbits on B_z . Therefore $|B_z| = 2^m (2^{n-m} - 1) = 2^n - 2^m$ and the lemma holds.

We know that N has p orbits on B each of length a and we denote these orbits by B_i , $i = 1, \ldots, p$. By Lemma 2.4, we can write $B \setminus W = \{\alpha_1, \ldots, \alpha_p\}$ where $\alpha_i \in B_i$, $i = 1, 2, \ldots, p$.

Lemma 2.6. For i = 1, ..., p and j = 1, 2, ..., p + 1:

- (i) $B_i \cap (B \setminus W_i) = 2$ and $B_i \cap (B \setminus (W_{2i-2} \cup W_{2i-1})) = 1$;
- (ii) *either* $B_i \subset B_z$ *or* $B_i \cap B_z = \emptyset$;
- (iii) if $B_i \subset B_z$, then $|B_i \cap W_{2s-2} \cap W_{2s-1}| = a 1$ for each s = 1, ..., q;
- (iv) if $B_i \cap B_7 = \emptyset$, then $|B_i \cap W_{2s-2} \cap W_{2s-1}| = a 2$.

PROOF. Since B_z is N-invariant, (ii) holds. Note that $|B_i| = a$, $i = 1, \ldots, p$. Let $B_1 \subseteq B_z$ and $B_2 \subseteq (W \cup W_1) \setminus B_z$. By Lemmas 2.4 and 2.5(i), we see that $B_1 \setminus \{\alpha_1\} \subseteq (W \cap W_1)$, z acts fixed-point-freely on B_2 and $B_2 \setminus \{\alpha_2, \alpha_2^z\} \subseteq (W \cap W_1)$. Observe that for each orbit $R_i = \{C_{2i-2}, C_{2i-1}\}, i = 1, \ldots, q$, and each orbit B_j , $j = 1, \ldots, p$, either $B_j \subseteq B_z$ and there is an element $x_i \in B_j$ such that $x_i \notin W_{2i-1} \cup W_{2i-2}$ and $B \setminus \{x_i\} \subseteq (W_{2i-1} \cap W_{2i-2})$, or z is fixed-point-free on B_j and $(B_j \setminus \{\alpha_j, \alpha_j^z\}) \subseteq (W_{2i-1} \cap W_{2i-2})$. This proves the lemma. \square

Set
$$O = W \setminus W_1$$
.

Lemma 2.7. For each R_i , i = 2, ..., q, we have:

- (i) $O = (O \cap W_{2i-2} \cap W_{2i-1}) \cup ((O \cap W_{2i-1}) \setminus W_{2i-2}) \cup ((O \cap W_{2i-2}) \setminus W_{2i-2});$
- (ii) $|((O \cap W_{2i-1}) \setminus W_{2i-2})| = |((O \cap W_{2i-2}) \setminus W_{2i-2})|.$

PROOF. Without loss of generality, we can take i = 2. To prove (i), we show that $O = (O \cap W_2 \cap W_3) \cup ((O \cap W_2) \setminus W_3) \cup ((O \cap W_3) \setminus W_2)$. For this it is enough to show that $O \subseteq W_3 \cup W_2$. Assume not and let $x \in O \setminus (W_2 \cup W_3)$. Then there is $j \in \{1, \ldots, p\}$ such that $x \in B_j$. Since $O \cap B_z = \emptyset$, we conclude that z acts fixed-point-freely on B_j and then $\{x, x^z\} \subseteq (B_j \setminus (W_2 \cup W_3))$. But by Lemma 2.6(i), N has no such orbit, a contradiction. Hence (i) holds. Since $|W \cap W_2| = |W \cap W_3| = \lambda$, $|W_2 \cap W \cap W_1| = |W_3 \cap W \cap W_1|$ and, by (i), $|(O \cap W_2) \setminus W_3| = |(O \cap W_3) \setminus W_2|$, the lemma is proved. \square

LEMMA 2.8. We have:

- (i) $W_{2i-2} \cap W_{2i-1} \cap B_z = B \setminus (W_{2j-2} \cup W_{2j-1}) \text{ for } i, j = 1, \dots, q, i \neq j;$
- (ii) m = 1;
- (iii) n = 2, v = 6 and k = 3 = p;
- (iv) $P \cong A_4$.

PROOF. To prove (i), we may assume that i = 1 and j = 2. By Lemma 2.7(i) we have $O = (O \cap W_2 \cap W_3) \cup ((O \cap W_2) \setminus W_3) \cup ((O \cap W_3) \setminus W_2)$. Let $O_1 = O^z = W_1 \setminus W$ and $|O \cap W_2 \cap W_3| = a_1 = |O_1 \cap W_2 \cap W_3|$. By Lemma 2.7(ii), $|(O \cap W_2) \setminus W_3| = a_2 = |(O \cap W_3) \setminus W_2|$. Next, set $|(W_1 \cap W \cap W_2) \setminus W_3| = b_2 = |(W_1 \cap W \cap W_3) \setminus W_2|$, $|(W_1 \cap W) \setminus (W_2 \cup W_3)| = c = |(W_2 \cap W_3) \setminus (W \cup W_1)|$ and $b_1 = |W_2 \cap W_3 \cap W_1 \cap W|$. We note that $B \setminus (W \cup W_1) \subseteq B_z$, so $W_2 \cap (B \setminus (W \cup W_1)) = W_3 \cap (B \setminus (W \cup W_1)) = c$. Now,

$$2a_1 + b_1 + c = |W_2 \cap W_3| = \lambda, \tag{2.1}$$

$$2b_2 + b_1 + c = |W \cap W_1| = \lambda, \tag{2.2}$$

$$a_1 + a_2 + b_2 + b_1 = |W \cap W_3| = \lambda,$$
 (2.3)

$$a_1 + 2a_2 = |O| = k - \lambda, (2.4)$$

$$\lambda + a_2 + a_1 + c = |W_3| = k. \tag{2.5}$$

From (2.1) and (2.2), $a_1 = b_2$, and from (2.4) and (2.5), $c = a_2$. From this and (2.3) and (2.4), $2(k - \lambda - 2c) + c + b_1 = \lambda$. This implies that $b_1 = 3\lambda + 3c - 2k$. Again, from (2.3) and (2.4), $(a_1 + 2c) - (2a_1 + c + b_1) = k - 2\lambda$. Hence $c - a_1 - b_1 = k - 2\lambda$. By this and (2.4), we conclude that $a_1 + 2c - 2(c - a_1 - b_1) = k - \lambda - 2(k - 2\lambda)$. Therefore $3a_1 + 2b_1 = 3\lambda - k$. Thus,

$$b_1 = 3\lambda + 3c - 2k \tag{2.6}$$

$$3a_1 + 2b_1 = 3\lambda - k. (2.7)$$

Set $d = |W \cap W_1 \cap W_2 \cap W_3 \cap B_z|$ and $t_1 = |B \setminus (W \cup W_1)| = 2p - v + \lambda = 2^{n-m} - 1$. We need the following claim.

Claim.
$$b_1 - d = 2a_2(a-2) + a_1(a-4)$$
 and $d = (t_1 - c)(a-1) + c(a-2)$.

PROOF. By Lemmas 2.4 and 2.5(i), N has $p - t_1 = k - \lambda = |O| = 2a_2 + a_1$ orbits on $B \setminus B_z$ and t_1 orbits on B_z . So assume that $B \setminus B_z = \bigcup_{i=1}^{2a_2+a_1} B_i$. By Lemma 2.6(i), $|B_i \cap O| = |B_i \cap O_1| = |B_i \cap (W_2 \setminus W_3)| = |B_i \cap (W_3 \setminus W_2)| = 1$, $i = 1, \ldots, 2a_2 + a_1$. So by Lemma 2.7(i), we may assume that $|B_i \cap (O \setminus (W_2 \cap W_3))| = 1$ for $i = 1, 2, \ldots, 2a_2$, and $|B_i \cap O \cap W_2 \cap W_3| = 1$ for $i = 2a_2 + 1, \ldots, 2a_2 + a_1$. Assume that $B_i \cap O = \{x_i\}$, $i = 1, \ldots, 2a_2 + a_1$. Since z is fixed-point-free on B_i , by Lemma 2.6(iv), for $i = 1, \ldots, 2a_2$, we have $B_i \setminus \{x_i, x_i^z\} \subseteq W \cap W_1 \cap W_2 \cap W_3$, and for $i = 2a_2 + 1, \ldots, 2a_2 + a_1$, we have $|(B_i \setminus \{x_i, x_i^z\}) \cap W \cap W_1 \cap W_2 \cap W_3| = a - 4$. Thus $b_1 - d = 2a_2(a - 2) + a_1(a - 4)$. Since $B_z = \bigcup_{i=|O|+1}^p B_i$ by Lemma 2.6(iii), for $i = |O|+1, \ldots, p$, we have

$$|B_i \cap (B \setminus (W_2 \cup W_3))| = 1 = |B_i \cap (B \setminus (W \cup W_1))|.$$

Hence $d = (t_1 - c)(a - 1) + c(a - 2)$ and the claim holds.

Recall that $a_2 = c$, k = (a - 1)p and $\lambda = (a - 1)(p - 2^{n-m})$. By (2.6) and our claim above, we conclude that

$$3\lambda + 3c - 2k = 2c(a-2) + a_1(a-4) + (t_1 - c)(a-1) + c(a-2).$$

From this, since $t_1 = 2^{n-m} - 1$,

$$c(8-2a) = (a-1)(-2^n + 2^{n-m+2}) + a_1(a-4).$$

Therefore,

$$c = (2^{m} - 1)2^{n-m+2}(1 - 2^{m-2})/(8 - 2^{m+1}) - a_1/2$$

= $(2^{m} - 1)2^{n-m}(1 - 2^{m-2})/(2 - 2^{m-1}) - a_1/2 = (a - 1)2^{n-m-1} - a_1/2.$

From this and equation (2.1), $3a_1 + b_1 = 2\lambda - (a-1)2^{n-m}$. Now by equation (2.7), $b_1 = 3\lambda - k - (2\lambda - (a-1)2^{n-m}) = \lambda - k + (a-1)2^{n-m} = 0$. This and Lemma 2.5(ii) imply that $(W_2 \cap W_3 \cap B_z) \subseteq (B \setminus (W \cup W_1))$. Next, we note that by Lemma 2.5(iii), $|W_2 \cap W_3 \cap B_z| = |W \cap W_1 \cap B_z| = t_1(a-1)$. So $t_1 \ge t_1(a-1)$ and then a = 2. This gives m = 1, and (i) and (ii) hold. By (i) and Lemma 2.5(ii), we have q = 2. Thus, we see that $2^{n-1} = 2$ and n = 2. This gives (iii) and (iv) and the lemma is proved.

Finally, Theorem 1.3 follows from Lemma 2.8.

Acknowledgement

The author is grateful to Professor Sanming Zhou for his useful remarks.

References

- [1] M. A. Iranmanesh, C. E. Praeger and S. Zhou, 'Finite symmetric graphs with two-arc transitive quotients', *J. Combin. Theory Ser. B* **94** (2005), 79–99.
- [2] G. Xu and S. Zhou, 'Symmetric graphs with 2-arc-transitive quotients', J. Aust. Math. Soc. 96 (2014), 275–288.

M. REZA SALARIAN, Department of Mathematics,

Kharazmi University, Karaj/Tehran, Iran

e-mail: salarian@khu.ac.ir