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Abstract. In this paper, we prove an analogue of the result known as Mazur’s Principle concerning
optimal levels of mod Galois representations. The paper is divided into two parts. We begin with
the study (following Katz—Mazur) of the integral model for certain Shimura curves and the structure
of the special fibre. It is this study which allows us to generalise, in the second part of this paper,
Mazur's result to totally real fields of odd degree.
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1. Introduction

In [24], Serre makes a series of conjectures concerning frBdlois represen-
tations, that is, representatiopsGal(Q/Q) — GLy(F,). In particular, Serre
defines a notion of ‘modularity is modularif it is the reduction of a representa-
tion associated to a modular form (see [8]), and he predicts a criterion to determine
whether a givef is modular. In general, a modular representation will be modular
in many ways, so that there will be many modular forms such that the reduction
of the associated Galois representation is isomorphjt #esmongst these, Serre
predicts an ‘optimal’ weight and level for such a form. That these are correct is
now known, at least if is odd (see [10]). Serre also speculates on the possibility
of a ‘mod/ version of the Langlands philosophy’.

Carayol [4] and Taylor [25] prove that to any Hilbert cusp form over a totally
real field F, which is an eigenform for all of the Hecke operators in a certain Hecke
algebra, one may attach representations off/&/&) in a similar way to the classical
case. We may thus begin to think about mokpresentationg: Gal(F/F) —
GL,(F,) and begin the study of modularity in this new context.

In this paper, we prove the following result on lowering the level of a mod
representatiop. This result is analogous to Mazur’'s Principle (see [23]), one of the
main ingredients in Ribet's work (when+ Q) leading to the proof that Serre’s
optimal level is the correct one.

INTERPRINT: J.N.B. PIPS Nr.: 152827 MATHKAP
comp4086.tex; 7/08/1995; 8:16; v.7; p.1

https://doi.org/10.1023/A:1000600311268 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000600311268

40 FRAZER JARVIS

Throughout, our notation for Hilbert modular forms will follow that of Hida
[15].

THEOREM (Mazur’s Principle)Assume: Gal(F/F) — GL(F,), a continuous
irreducible semisimple representation, is attached to a Hilbert cuspidal eigenform
[ € Skw(Uo(p)NU1(n)), wherep { nl, andk > 2t. Supposé-(u,): F| > 4.1f F/Q

has even degree, suppose also that there exists some finitggtageof Fatwhich

the automorphic representation correspondingftds special or supercuspidal.
Then if p is irreducible, and unramified at, and Ng/q(p) #Z 1 (modY), there
exists a Hilbert cuspidal eigenforifi € Sy, ,,(U1(n)) to whichp is attached.

As F is totally real, the degree of the extensiquf/F is always even (F is
contained in the maximal totally real subfiel¢i&)™ of F(u,) and the degree of
F(ue)/F(pe) ™ is 2). Thus the condition on F arfcholds unles$F(u,): F] = 2; in
this case, one can use the enhancement of Diamond and Taylor (see for instance
[7], Lemma 4.11).

In another paper, we derive analogues of results of Carayol on modulaé mod
representations, and we intend to investigate analogues of Ribet’s theorem in the
future.

The proof of Mazur’s Principle is geometric in nature, and involves a deep study
of certain modular curves (see [9] and [17]). In the first half of this paper, we make
an analogous study of the corresponding Shimura curves (made slightly harder as
these Shimura curves have no natural interpretation as the moduli space of abelian
varieties), and prove our main result in the second half of the paper. Whilst the
results in the first half of the paper are valid for any totally real field, the results
concerning Hilbert modular forms in the second half of the paper are only valid
when the hypotheses of the above theorem hold (but certainly include all totally
real fields of odd degree). We hope that the study carried out in the first half of this
paper will be more generally useful in the study of mib@alois representations
over totally real fields.

2. Notation

Our notation will follow that of [3].

Let F be atotally real field of degrekoverQ. Denote byry, . . . , 74 the infinite
places of F, and leB be a quaternion algebra over F split at exactly one infinite
place,m, say. Letp be a finite place of F at whicB splits; letx denote the residue
field, with cardinalityg and characteristig. Write O, for the ring of integers of
and we denote also hya uniformiser. As usual, we writ®,,) for FN O, and@;"
for the completion of the ring of integers of'FWe fix an isomorphism between
(B ®r F,)* and Gly(F,) at places at whichB is split.

Define G = Reg/q(B*). Then, if K denotes a compact open subgroup of
G(A*), where A>® denotes thdinite adeles (0fQ), we define the associated
Shimura curvey M (C) = G(Q) \(G(A*)/K x (C — R)). Then, by work of
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Shimura,Mx (C) has a canonical model, denotéfi;, over F (see [3]). Our aim
in the first half of this paper will be to demonstrate the existence of a scNege
defined ove,), such that there is an isomorphism of F-scheMes®o,,, F =

M, whenevelKX = K, K* with K* sufficiently small, andg, is one of the groups

i) = { (&) e6La(0))

a—lEp,cEp},

Uo(p) = { (‘c” Z) € GLy(0,) cEp}.

We will also be able to study the special fibres of these models. Write also

Up = {a € GL2(O,)|a = I, (modp™)}.

Following Carayol, we writéd for K*, and writeMy i (resp.M,, ) to abbre-
viate Mg, 0,)xu (resp-My, xu). In the same way, we will write

My, 5 = Mugyxm, — Muy),im = Muyp)xa-

3. The Results of Carayol

For proofs or more details for all of the facts in this section, we refer the reader to

3].

In [3], Carayol gives a proof of the following result, first proven by Morita.

THEOREM 3.1.SupposéH is sufficiently small. There exists an integral model
Mo,n, defined ovelD(,,), for Mo . This model has good reduction, in that it is
proper and smooth.

However, in order to study the bad reduction of Shimura curves v)eis more
complicated, Carayol introduces some more machinery.

If the modelMq i were to be the solution to a moduli problem of Abelian
varieties, then we would have a universal Abelian variety on which we could
impose some extra conditions, in order to study moduli problems with nontrivial
level structures ai. HoweverMg g is not the solution to any such moduli problem.
But Carayol is able to define some substitute objects — for éhcthere exists
an integem, such that one can define finite flat group schekeg, . .., E, z on
Moz, such tha€; i has rankg?, and has an action @P,. These group schemes
play the part of the™-torsion points on a universal abelian variety, and we can use
these to give the definitions of level structures.at

For each subgroufl, one can only define finitely many of these finite group
schemes. However, d& gets smaller and smaller, increasingly many of them are
defined, so that, on the projective linto of the system{Mg 5 }, we recover a
full divisible O,-moduleE, (that is, a one-dimensiongidivisible group with an
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action of0,). For a summary of Drinfeld’s theory of divisibl@,-modules, see
the appendix to [3].

Furthermore, at every geometric pointof the special fibreMg g ® x, one
can define docal divisible O,-module, although these do not glue together in a
compatible manner. One considers #tale coverindo — Mg 7, and chooses
a lift y of 2. The map then gives an isomorphism between the local ringaaid
the local ring atz. One then considers the pull-back of the divisilg-module
E. overMgy via the morphismy: specc — M. Any two choices ofy give rise
to isomorphic divisible ‘height 20,-modules ovek, and we writeE |, for the
result.

Drinfeld [13] has given a classification of divisible height-modules over
%, and has shown that there exists, up to isomorphism, a unique féyaalodule
of each height., ¥, say. It follows that there are, up to isomorphism, just two
possibilities forE|:

(1) Exolz = X1 x (F,/O,),
(2) Ecolz = 2.

We callz ordinaryif the first case occurs, arsipersingulaif the second case
occurs. Carayol [3] proves that the set

{z a geometric point oMo 7 ® k| E |, IS supersingulgr

is a finite nonempty set.

Carayol constructs a scherivg, i as ‘the moduli space of full level struc-
tures’ (adapting a definition of Drinfeld [13] of such structures)Mg ;, and
proves that it is an integral model for the Shimura cukg ;. He is then able to
analyse this integral model, and it is this study which plays the key role in his proof
[4] that one may attach Galois representations to Hilbert modular forms of weight
k > 2t whenever F is an extension Qfof odd degree.

For the applications we have in mind to the theory of modiu®alois repre-
sentations attached to Hilbert modular forms, it will only be necessary for us to
extend these ideas to give integral models whkgnis eitherUp(p) or Ui(p), but
it is likely that the methods of [17] would prove the existence of integral models
whenkK, is any subgroup of G¥{O,).

4. Deformation Theory |

We begin the study of certain deformation problems in this section; this study will
be important later to analyse the local rings of the integral models that we shall
construct.

DEFINITION 4.1. LetC denote the category of complete noetherian Ic@f‘;ﬂ-
algebras with residue fielel
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Throughout this sectiory will denote a divisibleO,-module of height 2 over a
ring R € C whose maximal ideal we denote lay;. Its connected part?, is
thus equipped with a ‘formal multiplication lawf,: O, — EndE°. Identifying
E° with spfR[[X]], formal multiplication bya € O, is given by a power series
fa(X) € RI[X].

DEFINITION 4.2. LetE be supersingular (i.eE = E°). A (p~1/0,)-mapon E
is a homomorphism aP,-modules

¢: (p~1/0,) — Hom(spfR, E) = mpg,

(wheremp, inherits the structure of a®,-module fromE) such thatf,(X) is
divisible by [T,e(p-1/0,)(X — ¢(a)) in R[[X]].

DEFINITION 4.3. LetE be supersingular. f~1/0,)-structureon F is an equiv-
alence class ofp~1/0,)-maps, where

p~¢ = I E-d@)= ]I &-¢).

a€(p=1/0;) a€(p~1/Oy)

When R = &, there is a uniquép~1/0,)-map (and consequently a unique
(p~1/0,)-structure) agi, (%) = {0}.

DEFINITION 4.4. Let(E, f) be a divisibleO,-module of height 2 over. Let
R € C. Then adeformationof (E, f) to R is a divisible ©,-module (E, f)
over R whose reduction modula is (E, f). If also E is supersingular, we say
that adeformation with(p=1/0,)-mapis a deformation(E, f), together with a
(p~1/O,)-maps on E.

The following result is implicit in the proof of the lemma after Proposition 4.3 of
[13].

THEOREM 4.5 (Drinfeld) Let (E, f) be a divisible height 2,-module over.

(1) The functor which to eaclkR € C associates the set of isomorphism classes
of deformations of E, f) to R is represented by a rind{’, isomorphic to
ON[ta]).

(2) If also E is supersingular, then the functor which B € C associates the
set of deformations ofE, f) with (p=1/O,)-map toR is represented by a
ring LY, isomorphic toD{ [[y1]]/(f, (1) /y1)- Further, the ringL¥ is regular
(where{y1,t1} form a regular sequence of parameters), and the morphism
DF —s L¥ is finite and flat.
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We are also interested in the deformation problem(for* /O, )-structures. Note
that the deformation ring can almost certainly be directly computed using Cartier-
Dieudonre theory, as in [21], ch. 2, but we will instead adapt the method of [17].

5. Deformation Theory I

In this section, we gather together the results that we will later use to demonstrate
the existence of integral models of Shimura curves Witp)-structure.

Throughout this section, Iéf be a supersingular (height 2) divisililg -module
overR € C.

DEFINITION 5.1. AA(p)-structureon E is a pair of(p =1/ 0, )-maps(¢, ¢') such
that

I[I X-d)= I &-¢(a).

a€(p=1/0;) a€(p1/0y)

Thus such a structure consists of a pair giving rise to the $amg 0, )-structure.
Define the notion of a deformation with(p)-structure in the analogous way to
Definition 4.4.

THEOREM 5.2.Let E be a supersingula®,-module over. The functor which
to eachD{’-algebraR € C associates the set of deformationsfwvith A(p)-
structure toR is represented by a ring/¥ .

Proof. We imitate [17], (6.3.2). LeRY = Lf@DgLf = L¥[yall/ (fo(y2)/y2)

be the ring representing pairs @f 1/0,)-maps.
Let Zg-‘” denote theith symmetric polynomial o variables. Then to say that
(¢, ¢') form aA(p)-structure on¥ is equivalent to saying that

S ({8(0)aer-1/0,) = 25 (' (@} acp-1/0,))
forallj =1,2,...,q9 = Ngq(p). (This equality expresses the condition that the

coefficients ofX9~/ of the relationship defining\(p)-structures are equal.) Then
define

I = ({25 {fa)ac©um) = 5 UfaDYaco,m)} _,)-

an ideal ofRY.
Let MF = RE/I) . It is easy to see that this ring represents the functor of
A(p)-structures.

We now concentrate on constructing integral models for Shimura curves.
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6. Preliminaries

Let H be sufficiently small theE, f is defined oM ;. We will usually just write

E, for the group schemg, 5. If S is a scheme ove¥l 57, then we can consider
the pull-backEs|s to S. It is a finite locally free (and hence flat) group scheme
overS of rankg? and has an action @, .

DEFINITION 6.1. If a finite locally free scheme has an actior@gf we will refer
to it as anO,-schemeaA finite locally free group scheme with afi,-action will
be called arQ,-group scheme

DEFINITION 6.2. By aset of sectionsf some finite locally free schen#/ S, we
will mean an unordered séf, . .., P.} (for somer) consisting of not necessarily
distinct sections of overS.

Notation6.3. ForP a section o1 overS, we denote byP] the subscheme of
E1|s which it defines (its image), arif> the ideal sheaf defining this subscheme.
If K is a set of sections @i, overS, write

I’C = H IP7
PeK

and)" px[P] for the subscheme d; | defined by the ideal shedj.

LEMMA6.4. Let € = {P,..., P} be a set of sections fdE; over S. Then
¥ ,[P;] is a finite subscheme of finite presentatiofEgffs.

Proof. Write Z for Y% _,[P;]. The question as to wheth&iis a finite subscheme
of finite presentation is a local one.

ButE;|s is locally free, sa5 can be covered with open affines over whiths

is free. Thus we may assume tifat= speci?, andOg, |, = R?.
Let Ix be the ideal defining insideE;|z. Then

0—>I,C—>R‘12—>OZ|R—>O

so thatO |y is clearly finite.
Further, the ideal p, defining the subschemé;] is clearly finitely generated,
as we have an exact sequence

0— Ipi —)qu — O[PZ]|R — 0,

andOp,|r = R (see [19], 2.6). Thug is finitely generated, so that, in the first
sequence abové),|r is of finite presentation ([19], p. 14).

DEFINITION 6.5. We say that a set of sectiolis= {Pi,..., P} is asubset
(resp.subgroup of section®f E1|g if 3" pcic[P] is a subscheme (resp. subgroup
scheme) ok |s which is locally free of rank.
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Remark Presumably a subset (in the usual sense) of a subset (in this sense) is
again a subset (in this sense). We do not know a proof, but we do not need it in this

paper.

Note that if P is a section oE; over S, then the se{ P} is a subset oE;|g
becaus®p|s = Os.
If Pis asection oE4|g, write (P) for the set of sectionSAP|A € (O, /p)}.

We now prove some representability results which we shall use later.

LEMMA 6.6. Let S be anMq r-scheme, and leC be a set of sections & over
S. Then there exists a closed subschéfmef S such that for every morphism
S" — S, the restrictionK’ of K to S’ is a subset oE;|¢ if and only if S’ — S
factors throught".

Proof. The problemin the question is Zariski local, so we may asstiaféne,

S = specR. Write Z for the subscheme @&;|s defined by the ideal shedf.. As
Z is of finite presentation, it suffices to consideémoetherian (this is a standard
reduction, as in [EGA IV], 8.9.1and 11.2.6.1).

We may think ofZ as spedr, whereF is a coherent sheaf of algebras &n
Write N = |K|. Then the condition on afi-schemes’ thatX' be a subset dt1| s/
isthatZs = Z xg S’ be afinite locally free5’-scheme of rankyv.

For any field valued point spéc— S of S, the fibreF ® k is ak-vector space
such that dip(F ® k) = rank of Zy, asF ® k is the affine ring ofZ;.

For all such points, this dimension is at m@&tThis is clear ifp is invertible in
k, as thenz,, is étale; ifk has characteristig, it suffices to verify the condition at
closed points, and one easily verifies the claim at both ordinary and supersingular
points.

We now apply Mumford’s flattening stratification ([17], 6.4.3) which states:

Given a noetherian schen$g a coherent shedf on S and an integeV such
that for all pointss € S, dimy ) (F ® k(s)) < N, the condition onS-schemes
S’ — S that Fs be locally free of rankV on S’ is represented by a closed
subschem@® of S.

The lemma is now merely a special case of this result.

DEFINITION 6.7. LetKC and £ be two subsets d&;|s. Write I C L to indicate
thatZ, C Zx.

LEMMA 6.8. Let S be anMg z-scheme, and lekl and £ be two subsets of
E1|s. Then there exists a closed subsch&mef S such that for every morphism
S" — S, the restrictions’ and £ of £ and £ to S’ satisfyK’ ¢ £’ if and only
if the morphisms’ — S factors throughr'.

Proof. (cf. [17], 6.7.3) For the same reasons as above, one may reduce to the
case where5' is affine and noetherian. Then denotes the coherent sheaf of
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algebras defining:,|s, the condition thatZ,» C Zx is satisfied on the closed
subscheme af over which the composite morphisbh — F—F /Zy. between
locally free sheaves vanishes.

We note that it then follows that the locus whéte= L' is also closed.

LEMMA 6.9. Let a set of sectionk be a subset OE;|s. There exists a closed
subschem#@y,, of S such that ifS” — S, we have(’ is a subgroup of sections of
Ei|s if and only if S — S factors throughSsup

Proof. This is identical to [17], 1.3.7. Let

e: S — Ej|ls denote the identity section,
i: E1|s — E1|s denote inversion,

m. E1|5 Xs E1|S — E1|5 denote multiplication.

The closed subschensg , of S is the locus over which

1) {e} cK

(2) K is closed under inversion, i.e., thafC) = .

(3) K is closed under multiplication. Lelt be the subscheme d&;|s which
represents the condition theP} C K. LetW =V xg V, which represents
the functor ‘ordered pairs of sectionsiii. If (P, Q) is the universal pair of
sections ofC, we require thafm(P, @)} C Kw.

(1) and (2) are closed conditions by the previous lemma, and are succesively defined
locally on S by finitely many equations. (3) is a closed conditiondh defined
locally onW by finitely many equations. B# is locally free ovelS, so that (3) is

also defined locally 0§ by a finite number of equations (the co-ordinate functions

of the equations ovéW).

LEMMA 6.10. Let a set of section& be a subset oE;|s. Then there exists a
closed subschent of S such that ifS’ — S, we have an action ap, on K’
if and only if S’ — S factors throughSyct.

Proof. We require thaf AP’} C K’ for all P € K and allx € (O, /p). This
involves finitely many conditions, each closed.

7. TheU;(p)-Problem

We now construct an integral model fof;, () 7

DEFINITION 7.1. A Uj(p)-structure on S, an Mg g-scheme, is a morphism

¢:(p~t/0,) — Hom(S,E1) such thaty,c,-1/0,)l¢()] is a finite locally

free O,-subgroup scheme of ramkof E1|g.
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In the language of Section 6, this condition is equivalent to the followirig;:(g)-
structure is a sectio® of E; over S such that the set of sectio®) forms an
O,-subgroup of sections d|g.

DEFINITION 7.2. We define the functaMy, () z on the category oMg -
schemes by definingA, ),z (S) to be the set of/ (p)-structures ors.

Define a functotM, () i 0N Mo g-schemes by settingt;;, ). #(S) to be the
set of section$” of E1|s which is nowhere the zero section.

LEMMA 7.3. The two functorsMy;, ) g and My, ,,), i defined above coincide
on My, -schemes.

Proof. To give anMy, (), r-structure on ailp, z-schemes'is to give a section
P suchthal ¢ o, /»)[AP] is afinite flat subgroup scheme Bf|s of rankyg.

But if S is a scheme oveMy i, E1|s = F1|s which is étale overS. Thus
Ei|s is, locally in theétale topology, non-canonically isomorphic (6, /p)?,
and so the finite flat),-subgroup schemes of rankare (locally in theétale
topology) isomorphic t¢O, /p), so thatP must be a nowhere zero section killed
by multiplication byp.

LEMMA 7.4. The functorMy;, ., i is representable by the F-sched®;, . -
Proof. Define the moduli problenM 1 i on Mo r-schemes as in [3], 7.1, so
that M1 7 (.S) consists of pairg$P, Q) of sections ofE|s overS which trivialise
Eq|s. It is represented by, . That is, there exist a universal pair of sections
(Py,Qu) of sections ofE1|y;, ,, over My g such that if (P,Q) € Myg(S),
there exists a unique morphism bfy ;-schemess—= M g such that P, Q) is
the image of(P,, Q,) under the induced map*: My (M1 5r) — My g(S).
In particular, to give an element o¥11 x(S) uniquely specifies an element of
HOM s /0o 1) (S5 M, ).
If S'is an object of(Sch/Mo rr), thenMy g (S) has an action of GIO, /p)
which is given by

a b

(P.Q) = (P.Q) (4 ) = @P+cQ.bP+dQ)
Further, if S — S’ is a morphism in(Sch/My ), then the induced map
My (S") — My (S) is equivariant for this action.

The equivalence classes under the action of the subgroup

G = { (¢ 1)) €OLaO/p|a—Lep.cep]

are clearly non-zero section® which are killed by multiplication by. Thus
we get a map of moduli problem&t; y — My, () - Locally for theétale
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topology, anyU(p)-structureP may be completed to a paiP, Q) € M1 i (S).
To give a trivialisation P, () of E1|g for anMo ;-schemeS'is to give a morphism
S — My g of My r-schemes. It follows that to give &;(p)-structure onS
is to give a sectior§ — My, 7 /Us(p). But My 7 /Us(p) = My,y),i- Thus, it
suffices to give a morphistfi — My, ), Of Mo m-schemes and so it follows
that My, (), i represents théAy, (), r-moduli problem.

Thus in showing thaiM (), i IS representable, we are constructing(p, -
schemeMy, (), 7 Which is an integral model fob/y, () i in thatMy, () 7 ®0,,

F = MUl(p),H‘

LEMMA 7.5. My, ), i IS representable.

Proof. For anMg z-schemesS, let Hom(S) be defined as the set of -
homomorphismg: (p~1/0,) — Hom(S, E;). This is clearly represented I&.
¢ € Hom(S) is ali(p)-structure if the subschen}e,,c(,-1/0,)[#(a)] of E1|s is a
finite subscheme of finite presentation which is a locally free tagtoup scheme
with an action of0,. My, () i is a closed subfunctor dfomby Lemmas 6.6,
6.9 and 6.10, and is thus representable by a closed subsché&me of

LetMy,(p), 1 represeniMys, o) -

THEOREM 7.6.The schem;, .,y is a regular scheme of dimensi@ The
projection morphisnMy, ) 7 — Mo g is finite and flat.

Proof (cf. [17], 5.1). We prove this result using the homogeneity principle, as
in [17]. For this, we consider the sétin Mo g consisting of those points for
which, at every lift to pointg; € My, ,,) #, the local ring aty is regular, and flat
over the local ring at. We prove that has the following properties

(H1) U is open.

(H2) U contains all ofMp f.

(H3) If U contains any ordinary point & o 7 ® , then it contains all such points.

(H4) If U contains any supersingular pointMf, 7 ® «, then it contains all such
points.

(H5) U contains a supersingular pointMdfy 7 @ x.

We will then conclude thal/ = Mg z.

(H1) is standard (see [17]) and (H2) follows from [3].

To prove (H3) and (H4), let be a closed point oo i ® . If y is a closed
point of My, (), abovez, the mapOw, ;. — Omy,,, u.y IS flatif and only if

i Hsh Ash i
the induced ma@yy . . — Of iy 1S flat.
. . . Ash .
Further,Owm,, ,, »y is regular if and only IfOMUl(p),Hay is regular. It thus

suffices to consider the case wheris a geometric point of the special fibre.

Thus Iet(K/I\O,H)(m) denote the completion of the (strict) henselisatiolVief

at z. Carayol ([3], 6.6) proves thd,, pulls back to this completion, and that
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Eol (Vo ) is the universal deformation & |,. Thus the isomorphism class of

the mapOMOH . — O (o Y depends only on the universal deformation of

E|z,» and thus only on whethe:rls an ordinary or supersingular point.
Finally we prove (H5).
Let z be a supersingular point of the special fibrévbf 77, and lety be a point
of My, (), r ®  abovez.

We conclude from the discussion above (see also [3], 7.4)@@;;1)@%

speoéDg“"’”). To give amorphism: (p~1/0,) — HorrMO,H,sch((/I\ﬁQH)(x), E1)
is the same as giving a map

(=1
¢: (p /Op) — HOI’T](M0 7 )—sch((MOH) E1| (Mo.m) e )).
But this is equivalent to giving a map

- M
¢: (p /Op) — Hom(ﬁo H) ()~ sch((Mc”H)(x)’ E°o|('\A/'o,H)(z))

as the image of such a map must be killegbBut this is exactly &p=1/0,)-map
on the universal deformation. Thus to give such a morphism is to give a point of
EOO x
spe¢L; ).
But alU;(p)-structure on the universal deformation is exactly such a morphism
with an extra condition which, by the results of Section 6, is closed. Thus there exists

an ideall of LE"‘"” which expresses the condition that the image of the universal
(p~1/0,)-map defines ar®,-subgroup of sections of the correct rank. Write

EE‘”“ = Lf“'“”/[. Then to give &/1(p)-structure on the universal deformation is
to give a point ofif‘x"w. In particular,(ﬂ/l\Ul(p)ﬂ)(y) may be identified with the
closed subscheme smif‘)"'“” of spe(ﬁLE‘”‘m)

There is an obvious finite maDE‘”‘m — LE‘X"”

The induced map
spech |73) — spechE‘”'”)

is finite, so has closed image. But the map is a surjection wheimvertible, and

so the image contains the (dense) set (sDéEf"m ®Z[1/p]). Thus the induced map
is surjective.
But we saw earlier that for any supersinguiy-module E, the ring D}’ is a

regular ring of dimension 2. It follows that the (Krull) dimensioan“"’” is at
least 2. But it is a quotient of the ringf‘”'“”, also regular of dimension 2, so that
its maximal ideal is generated by 2 elements, and ﬁ:ﬁ%‘w is equal toLf""‘”.

But the morphisrri)('f""‘m — Lf‘x"‘” is flat, from Theorem 4.5.
This concludes the proof of (H5).
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Finally, we observe that no = Mo . The set of supersingular points is
finite and non-emptylJ contains all supersingular points, and thenl/ais open,
it also contains some, and hence all, ordinary points. Thus it contains b af
and all closed points in characteristicThenU = Mg g, if not, its complement
would contain closed points not {i.

8. TheUg(p)-Problem
We adopt an analogue of the definition of [17], 1.4 and 3.4.1.

DEFINITION 8.1. A p-cyclic subgroup schemé& of E; | is one which, locally
frpf on S (i.e., after taking some faithfully flat, locally of finite presentation,
morphismT" — S), satisfiesG = Y p.[P] for some set of sections of the
form (P), whereP is aUj(p)-structure. We may say thét is p-cyclic when this
occurs, and thaP is ageneratorfor G.

DEFINITION 8.2. A Up(p)-structureon S is ap-cyclic subgroup schemé&' of
E1|5.

One defines a functoM () x in the analogous way to that in which we defined
the functorMy;, (), z, and once again we try to show that it is representable by
exhibiting it as the closed subfunctor of a representable functor.

First, we confirm that if it is representable, it is indeed an integral model for
MUO(P)ZH' .

Define the functotM (). on Mo, r-schemes by settingt;7, () (S) to be
the set of all subgroup schemeskif| s (étale) locally isomorphic t¢O,, /p)s.

LEMMA 8.3. The two functors defined above coincideMp -schemes.

Proof. To give anMy,,,) x-structure on anVlp z-schemes is to give ap-
cyclic subgroup scheme @& |s. ButE;|s = E1|s, which isétale overS, so that
p-cyclic subgroup schemes Bfi | s must be locally isomorphic t60, /p)s.

LEMMA 8.4. The functotMy;,(,y i is representable by the F-sched®;,, -
Proof. In the same way as for thé; (p)-problem (Lemma 7.4), one observes
that the equivalence classes of Drinfeld bages?) under the action of

cep}

are clearly represented by the subgroup of sectfét)sand thus by the subgroup
schemesisomorphic{@®, /p)s. Thenthe quotient moduli problem (now identified
with M), ) Will be represented by i /Uo(p) = My, 1

o) = { (¢ 1) € BLa(O /)

Define the functoM,, _su,0NMg z-schemes byM,, _sui(.S) is the set of finite
flat O,-subgroup schemes of raglof E4|s.
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PROPOSITION 8.5The functorM,,_g, is representable by aMo g-scheme
M, _sub finite overMq z.

Proof. As in [17], 6.5.1, we regar@;|s as specr, whereF is a coherent
sheaf ofO|,,)-algebras ort’ which is locally free of rank;?. A finite flat rankq
subscheme d&; | s will correspond to a locally free rankquotient ofF; the set of
such quotients is represented by a Grassmannian. AMeng, is represented by
the closed subschen, _sy, of the Grassmannian over which the universal rank
¢ quotient gives rise to a@),-subgroup scheme of the correct rank.

One proves thatl,_s,p is finite overMg 5 in the same way as [17]. We omit
the details.

We would now like to observe that evey,-subgroup scheme d;|s which
is finite and locally free of rank is ap-cyclic group, which is certainly true # is
invertible onS. For more genera¥, this seems difficult; in [17] it is derived as a
corollary from the analogue of the main theorem below (whose proof is essentially
identical to that of [17], 6.1.1).

If G is ap-cyclic group, then the functor afi-schemes

T — generators ofi7 = G X5 Ty

is representable (as in [17], 1.10.13(1)) by a closed subschbensd G.

Let G C E1|s be ap-cyclic subgroup. We work locally in théppf topology
throughout, so thal = 3¢ o, /) [@P’] for some sectiod” of E; overS. We fix
such a generatap.

THEOREM 8.6.In this situation,G* = 3¢ (0, /)< [@P]-

Proof. Write D = 2 ae(0, /p) [@P]. ThenD C G. The argument of [17], 6.1,
continues to hold, so that we may deduce that there exists a closed immersion
D — G*.

To prove the equality of these schemes, we again follow [17].

Let P be the universal; (p)-structure, and form

G= > [aP] and D= > [P

a€g(0, /p) a€(0y /p)*
Then define
MleUl(p),H X Mo, i GX, and MZZMUl(p),H XMo, i D.

The morphisnD — G* induces a morphisivl, — M.

We prove that this morphism is an isomorphism using a variant of the homo-
geneity principle above.

Let U be the set of points of Mg i above which the mapl, — M is an
isomorphism. To see that this is a sensible notion, andfhiatopen, we refer the
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reader to the proof of [17], 6.2] contains all ofM f7, as the resultis clear jf is
invertible.

For the analogues of (H3) and (H4) above, we observe@at,,—Owm, 4,
if and only if (’)M w =08 ., 1S @n isomorphism. As before, this is a condition
only on the unlversal deformatlon and thus depends only on whetkerdinary

or supersingular.
Finally, we must prove thal/ contains the supersingular points. Thus,det
be such a point. To give a pair &f;(p)-structures on the universal deformation

of E|: iS equivalent to giving a point OREOO‘E = LE°°‘9” ® pEels LE°°|’” Form

the ringME°°‘9” = E"""”/IM where we defined the ideél, durlng the proof of

Theorem 5.2. The localisation bf; abover is given by the scheme SF(GME“'”)

The localisation ofM; is given by the scheme sr{é\z‘,l |73) whereNE‘X"m =
f“"w/IN, andIy is the ideal

Iy = ( II (yZ—fa(yl))) :
ag(

€(0y /p)*

We claim thatfy C I,,. It suffices to show that the generatorfaf vanishes in
ME=l, But, in this ring:

I (w2 falv) j{:yz 59D ({ Fo(1) Yac o, /m))

a€(O, /p)*
"Z%qu{h@ﬂ%mm)
(asf,(y1) = 0in M=)

—Zyz > q ({fa(¥2) }ac(0, /p))

(by definition of I;)
= I (2 faly2))

a€(0p /p)*

(as above)

=0  (asfi(y2) = y2)-
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But the closed immersiob — G*, gives rise to an inclusio,; C Iy. Thus
I,y = Iy, and the rings coincide, so that the analogue of (H5) follows.

ThusD = G* as required.

We may now deduce an analogue of the ‘Main Theorem on Cyclic Groups’
([17],6.1.1). Indeed, Theorem 8.6 is exactly the analogue of the second half of this
theorem. For the first half, we want to show thaé&ifis anO,-subgroup scheme
of E1|g, which is finite and locally free of rank, thenG is p-cyclic if and only
if G* is finite and locally free of rank — 1. Certainly, ifG is p-cyclic, G* is a
finite group scheme; it is also clearly flat, as Theorem 8.6 exhibits it as a closed
subscheme of7, which is flat. Its rank may be computed after invertgpgvhen
the result is clear. Conversely,df is notp-cyclic, its scheme of generators has no
field-valued points.

PROPOSITION 8.7LetG C E;4|s be afinite flatO,-subgroup scheme of ramk
There exists a closed subsche$fiecyciic 0f S such that, ifS” is anS-scheme, then
G xg S isp-cyclic if and only ifS” — S factors throughS, _cyciic-

Proof. This is a trivial variant of [17], Section 6.4, given Theorem 8.6.

LEMMA 8.8. MUO(M,H is representable by a o ;-schemév Uo(p),H' finite over
MO,H-

Proof. Simply because nowM ) r is a closed subfunctor of the functor
M, _sun Which we proved was representable by a filitg z-schemeM , _syp
The result follows.

THEOREM 8.9.The schem#;(,,) 5 is a regular scheme (of dimensi@h The
projection morphisnM ;). 7 — Mo,x is finite and flat.
Proof. This follows in the same way as [17], 6.6.1.

Remark In the sequel, we only consider the scherivg,, . The same
methods as those above suffice also to prove the existence of integral models
M, (pm),r @AM y,n), - The proofs are the essentially identical to those above.

The ring L’ of Theorem 4.5 should be replaced by

LE = D(])E[[yl]]/(fn” (yl)/fp”—l(yl))a
which again hasyi, t1} as a regular sequence of parameters. The only substantial
change required in any of the proofs occurs at the end of the proof of Theorem 8.6;

the calculation to show thdty C I, seems rather harder far> 1, but one can
adapt the methods of [17], Section 6.3, to this situation.

9. p-Cyclic Isogenies

This section closely follows parts of [17], Ch.13.
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DEFINITION 9.1. If Z is a scheme ove$ = specs, andr € Gal(x/x), we can
form Z(" = Z @z »_ F.

Let o denote the arithmetic Frobenius element, th&fA) is the image of the
relative Frobenius map’,z on Z. In this case, and more generally wheims the

spectrum of any perfeet-algebra, we can fornZ(®~"). We will write F for the
relative Frobenius morphism, and will denote the absolute Frobenius morphism by
Faps S — S, defined, forS ak-scheme, by the map— s? on the affine rings.

If  is a geometric point oM,y 7, we say that d/p(p)-structure atr is a
p-cyclic subgroup schem@ C E;|, C Exls-

DEFINITION 9.2. By ap-cyclic isogeny we will mean anQ,-linear isogeny
between divisible&),-modules whose kernel ispacyclic subgroup scheme.

If G is aUy(p)-structure at:, we may associate to it tecyclic isogenyE |, —
E|z/G. We will study possible isogenies of this type, and use this to deduce that
there is a very similar description &7, 7 ® x as that which exists for the
corresponding modular curves.

Recall that ifz is a closed point oM ;) 7 ® « then it is either ordinary
or supersingular. We shall show thatsifis supersingular, then there is exactly
one Up(p)-structure onE. |, and if z is ordinary, then there are exactly two,
corresponding to the kernel of the Frobenius morphigrand to the kernel of the
Verschiebung, which we denote by

As is well known, the kernel of the action of Frobenius on the divisije
modules is concentrated in the connected part.

If z is supersingular, the&.,|, is connected, so thd&.|,(x) = {0}, and
thus the only possibl&y(p)-structure at: is that defined by the ideal sheaf which
is the product ofy copies of the ideal sheaf defining the zero section. This is an
O,-subgroup scheme, as it coincides with the kernel of the Frobenius morphism.
(Note that we are using here the fact that|, is ap-divisible group of dimension
1; the analogous result would be false fedivisible groups of higher dimension.)

We concentrate for the remainder of this section on the case whgozdinary.

In this case, one has a connectgdle decomposition & |, as follows:

0 — Lol|s — Ex|ls — F,/O, — Q.
Write L, |, (resp.E,|;) for thep”-torsion points oL |, (resp.Exo|z)-
PROPOSITION 9.3In the diagram

0 — Lil. — Eif — ptO0, — 0

[ e
G
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whereG C Ei|, is aUp(p)-structure atz, we have either

(1) im¢ =p~1/0,, andG NL4|, = {0}, or
(2) im¢ = {0} andG = L1|,.

Proof. p=1/0, is étale, so thap(Q) is a finiteétaleO,-subgroup op~1/0,.
Thus¢(G) = {0} orisp~t/0O, (if one has a nontrivial section, its translates
underO, give all ofp~1/0,). In the first case, one seesimmediately that L1|.;
by comparing ranks, one deduces an equality. In the second case, we sesthat
an isomorphism, and thus th@tn L 1|, = ker¢ = {0}.

DEFINITION 9.4. Recall that we have a m#b E |, — Exo|\”. We define the
Verschiebun@” to be the Cartier dual of the map

F: (E00|m)D — (E00|9lc))(0) = (E00|:(na))Da

where(—)? denotes Cartier duality. One knows that Keis connected. By com-
paring ranks, it is clear that két = L4,.

Also, kerV is Cartier dual to the kernel df (applied toE |2), so that kel
is etale and contained in thetorsion of F,/O,, so that (comparing ranks again)
kerV is (a possibly twisted form oﬁ—l/(?p.

LEMMA 9.5. Letz be a geometric point d¥lg ® . Then(Ex|2)(®) = Ex|mpe-
Proof. Forz:speck — Mg ® &, one has the following Cartesian diagrams:

EY), — EY — E.

! ! !

spe® -5 Mo®k 1% Me® s,

whereEg%) is the pull-back in the right-hand square, and

Euol™ — Esls —  Ee

! ! !

spe® 2% spe % Mo® k.
But one knows that there is a commutative diagram

F,
spe % spe®

L L

Mo ® Kk &? Mo ® Kk
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sothat one deduces a natural isomorpl‘n‘é,%)ﬂxlfOO |;(B”), both being pull-backs
in the same Cartesian square. Thus the first diagram may be rewritten

(Esolz)? — Eo

! !

F:
spe 2% Mo® =k,

and so(E.|,)(@ is identified WithE, |, defined as the pull-back in the last
diagram above.

COROLLARY 9.6.Letz:speck — Mo g ® x be a geometric point o i ® k.
Then(EOO|x)(g) = E00|Fabsf6'

Proof. If y is a geometric point oMo ® x abovez, thenE |, = Ex|,. The
result now follows from the previous lemma.

PROPOSITION 9.7A p-cyclic isogenyr fromE |, is, up to isomorphism, either
F v
T Exle——Eoclrpe OF 7 Ex|s—Exly,

whereFahsy = .

Proof. If G = kerm, then, by the previous results, eith@r= kerF', which
clearly gives the first possibility; otherwis@;” = kerF, and on dualising again,
we recover the second possibility.

10. The Structure of the Special Fibre of My(,),H

To describe the special fibre M 7, we make use of the crossings theorem of
Katz—Mazur [17], 13.1.3.
We first check that the hypotheses hold.

PROPOSITION 10.1The complete local ring oMy, 7 ® « at points lying
above supersingular points Mo ; ®« is isomorphic to:[[ X, Y]]/ (one equatioh

Proof. This follows from a characterisation of complete local rings (see, for
instance, [19]), and follows exactly as in [17], 13.2.

We can use the crossings theorem [17] to concludeNhat, i ® x consists
of two copies oMo 7 ® s which intersect transversally above each supersingular
point of Mo 7 ® & (a set which is explicitly described in [3]). In order to use the
crossings theorem, we prove the following result:
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THEOREM 10.2.There exist twa:-schemesZp 7 and Z1 g7, with

MUo(p),H DK — ZO,H L Zl,H
| N
MO,H XK

such that

(1) There is a unique closed point of eaghy above each supersingular point of
Mo,i ® K.

(2) EachZ; g is finite and flat oveM o g ® &.

(3) Each(Z; i)™ is a smooth curve over.

(4) Zi.g — Myyp),u ® £ is a closed immersion,

and the union
Z(),H L Zl,H — MUo(p),H R K
is an isomorphism away from supersingular pointd/ef g ® «.

Proof. The proof of this result is exactly analogous to the proof of [17], 13.4.4.
To give ap-cyclic isogeny at an ordinary pointis to give one of the following
morphisms (Propositon 9.7):

F: Exls — Exlzoe OF Vi Exols — Ecolgos—1-

Define bothZy iy and Z1 i to be copies oMy i ® . A geometric point: of
Zo,ir Will correspond to thd/p(p)-structure ke#” atz, and the geometric point
of Z1,z will correspond to thé/p(p)-structure ke¥” atz. These coincide precisely
above the supersingular points My 7 ® x. The mapsZ; y — Moy @  are
finite and flat, as they are surjective morphisms between smooth curves.

In order to see that there is a maflg n — My ) 1 ® K, it is necessary

to verify that the kernel of the relative Frobenibs|m, ;o — E1|§\22)H®H is

p-cyclic. But this kernel is a closed subgroup Bf|m, ;;ox, Which is flat over
Mo,r ® k, and so it is flat. Finiteness is trivial. Its rank may be computed locally,
at ordinary points say, as in Section 9. Finally, as the kernel is connected, O is a
generator. To geta magy, n — My, ,),n ® , it is necessary to verify that the
kernel of the Verschiebung gscyclic. But it is Cartier dual to Frobenius, and so it
suffices to check that the Cartier dual gf-ayclic group scheme is agagncyclic.
For this, one imitates [17], Section 5.5.

The remainder of the proof is exactly the same as [17], 13.4.4.

It follows thatMy,,,), # ® « consists of two copies d¥lo,# ® &, intersecting
transversally above the finite set of supersingular points.
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Note 10.3We have been particularly concerned with thgp)-problem in this
section, as it is this analysis which is used in the work of Ribet and others on levels
for modular mod representations, but it is now also very easy to give the structure
of My, (), ® k. The reader will have no problems with extending the analysis of
[17], Section 13.5 to this case. In particular, the special fibre will consist of two
parts; the first is essentially a copy Mo 7 ®  (suitably thickened, which will
represent the generators for €y, and the second is an Igusa curve, the scheme
of generators for kélr.

11. Galois Representations

In this section, we begin the study of Galois representations.

DEFINITION 11.1. Letp: GallF/F) — GLy(F;) be a continuous irreducible
semisimple representation. We saijs modularif there exists a Hilbert cuspidal
eigenformf, and a prime\ above/ of the number field generated by the Hecke
eigenvalues of , such thap is the semisimplification of the reduction of theadic
representation associatedftoWe may also say thatis attachedto f when this
occurs.

CONJECTURE 11.2. Lep: Gal(F/F) — GLy(F,) be a continuous irreducible
semisimple representation. Thengfis modular, it is attached to some Hilbert
cuspidal eigenfornfy whose level is equal to the Artin conductor in characteristic
¢ of p (see [24], 1.2).

This conjecture is a generalisation of part of the strong Serre conjectures to
totally real fields. This part of the Serre conjectures was proven by Ribet [22] and
Diamond [10] in the case whereF Q (at least wher is odd); the earliest part
of the proof is due to Mazur, and is known as Mazur’s Principle. In this section,
we exploit the structure of the Shimura curves that we have studied to prove an
analogue of Mazur’s Principle when F is a totally real field of odd degree@ver
The proof nearly works for extensions of even degree also, but there is a case which
this method does not address.

We will prove the following theorem in Sections 13—-18, and will explain in the
next section how to deduce our version of Mazur’s Principle.

THEOREM 11.3.Assumep: Gal(F/F) — GL,(F;), a continuous irreducible
semisimple representation, is attached to a Hilbert cuspidal eigenfprra
Skw(Uo(p) NU), wherep £, k > 2t, and U is sufficiently small. Suppogé
decomposes df, U,, with U, = GL(O,). If [F : Q] is even, suppose also that
there exists some finite plagg # p of F at which the automorphic represen-
tation corresponding tqgf is special or supercuspidal. Thengfis irreducible,
and unramified ap, and Ng/q(p) #Z 1 (mod?), there exists a Hilbert cuspidal
eigenformf’ € Sy, ,,(U) to whichp is attached.
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We fix once and for all somg : GallF/F) — GL,(F;) which satisfies the
conditions of the theorem.

We now make a choice of a quaternion algeBrdor the rest of the paper.
If [F : Q] is odd, we choos&3 to be the quaternion algebra ramified exactly
atm,...,74, and at no other places. [F : Q] is even, we choos® to be the
guaternion algebra ramified at the infinite plaegs .., 7, and at the finite place
qo- Then, in both of these cases, the Jacquet—Langlands correspondence provides
an automorphic representatieron B corresponding tg.

Fix, for every place» at which B is split, an isomorphism

(OB ®0o¢ OF) x L)GLZ(OF,W).

We write G for the Q-algebraic group Resgq (5™ ), and denote its centre b¥.

Then(7>)H-Uo(r) will be non-trivial for some open compact subgralip(cor-
responding td/) of the restricted product, taken over all finite places p of F, of
the groupg B ® F,)*. WhenU is sufficiently small,H will be sufficiently small
so thatE; exists onMg . In this case, we have demonstrated the existence of an
integral model for the curvé/y; () r, and thus we can consider the reduction of
this model in characteristje (as above).

In the next section, under an additional hypothesig,ome will explain how
to adapt a trick of Diamond and Taylor (see [11], Lemma 11, [12], Lemma 3 and
[7], Lemma 4.11) to replace the hypothesis thabe sufficiently small with a
hypothesis orf. In particular, we will be able to reformulate our main result in
terms of the more familiar groufd$; (n).

We write (following Carayol [4])C for the set of cuspidal automorphic rep-
resentations o of weight (k, w). Write S ,,(H N Ug(p))” for the direct sum
Brec(m) T 000), andSy, ., (H) P for @ e q (w0)HC(Os),

We compute cohomology groups of some of the Shimura curves that we stud-
ied in the previous sections. It is in (analogues of) these cohomology groups that
Carayol originally found representations associated to Hilbert modular forms, and
by using the tools of cohomology theory, we will be able to analyse the represen-
tations that Carayol constructs in some detail, in a similar way to [4].

Most of this study will mimic that of Carayol [4], although with a different
Shimura curve, and a different sheaf.

12. Mazur’s Principle

In this section, we will remove the hypothesis tliatbe sufficiently small, and
show how Theorem 11.3 implies the following theorem:

THEOREM (Mazur’s Principle)Assume : Gal(F/F) — GLy(F,), a continuous

irreducible semisimple representation, is attached to a Hilbert cuspidal eigenform

[ € Skw(Uo(p) N Us(n)), wherep t nf, andk > 2t. SupposéF(u.) : F] > 4.

comp4086.tex; 7/08/1995; 8:16; v.7; p.22

https://doi.org/10.1023/A:1000600311268 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000600311268

MAZUR'’S PRINCIPLE 61

If F/Q has even degree, suppose also that there exists some finitegplece
of F at which the automorphic representation corresponding tis special or
supercuspidal. Then ifp is irreducible, and unramified ag, and Ng/q(p) #
1 (mod¢), there exists a Hilbert cuspidal eigenforfhe Sy ,,(U1(n)) to whichp
is attached.

Recall that we have proven the existence of integral models for the Shimura
curves in which we are interested under the assumptiorfthasufficiently small
thatE, exists orMg 7, an apparently stronger condition ([3], 1.4.1.2) than firae
sufficiently small thaM x exists. The existence Mg g follows from combining
the conditions [3] 1.4.1.1, 4.5.2 and 5.3. We begin by finding an effective criterion
for the existence of the integral models.

LEMMA 12.1. Mo x exists ifH is contained in a subgroup of the form

Ul(n) = {a € G(A™) ‘a = (é *i) (modn)}

if n is an ideal ofOr satisfyingp { n and Ng/g(n) > 44,

Proof. We first show that, under the hypothesisinthe condition [3], 1.4.1.1
is satisfied.

But with the notation of the proof of [3] 1.4.1.1, one finds, for each embedding
mmF—=R,-4<7(p) <0.

On the other handy € n. Under the hypothesis a) one concludes that = 0,
as required.

Let H' be a normal subgroup df of finite index, sufficiently small that [3]
4.5.2 and 5.3 hold (in fact, 5.3 is implied by the second assumptioH ¢h6]
and 4.5.2 is satisfied by some normal subgroup of finite index, using a result of
Chevalley [6]). The Galois group of the covering, ;7 — Mo f7 iS

Hyp = H/H'(Z(Q) N H.GLy(0,)).

Hyp acts onMg g7 by [3], 6.2. DefineMo gz = Mo i /Hp, which exists as a
quasiprojective scheme over sfigg) by [14].

Because the action @f ;» on Mg g is free (this follows from [3], 1.4.1.1 and
6.2), the quotient mag@ Mo ;7 — Mo g is étale, so thatl g z is also smooth over
speady,. FurtherMq - is proper over spe@,. We verify the valuative criterion
for properness for the scherivl, . If R is a discrete valuatio®,,)-algebra, with
field of fractionsK, then given aK-valued pointz of Mg, we may lift it to a
point y: specK — Mg g, and by properness, there is a unique extension of
to a mapy: speck — Mg g, which induces (after composing wit}) a point
z:speck — Mo . Any two lifts of z differ by an element of the Galois group of
the covering, and one immediately verifies that the induced pamindependent
of the choice of lift. Thus: is unique, and properness follows.
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Remark The same conclusion holdsif is contained in
U(n) = {oz € G(A™) ‘a = <é 2) (modn)}

if pt nandNgjg(n) > 2¢. The same proof works as in Lemma 12.1, except that
one knows now that € n®.

LEMMA 12.2. Supposéd satisfies the hypothesis of Lemi#al. Thenthereis an
integral model foM ., » Whose special fibre consists of two copiebefy @ r
intersecting transversally above supersingular points.

Proof. Choose a normal subgroudff of H of finite index which is sufficiently
small thatE; exists onMg . The Galois group of the coverintry,,) i —

Moy, 1 1S
Hyr = H/H'(Z(Q) N H.Uo(p))-

But Z(Q) N H.Us(p) = Z(Q) N H.GL2(0O,), so that
Hp = H/H'(Z(Q) N H.GL(0,)).

Hpyr actsfreely oMo 7 (Lemma 12.1and [3], 1.4.1.1), and therefore it acts freely

oN Myyy(p),m7- Then we defind ) 7 = My, i/ Hur, the quotient scheme.

This exists as the action diy: is free, and the quotient map is finite aathle

([SGA 1], V2.3). It follows that formation of the quotient scheme commutes with
base change, so that one deduces the same description of the special fibre, consisting
of two copies oM g 7 ® x intersecting transversally above the supersingular points,

as in Section 10, even under this weaker assumptial on

Remark In both Lemmas 12.1 and 12.2, we defined the integral models with
reference to a suitably chosen smaller subgrouff ol fact, the resulting model
is, up to unigue isomorphism, independent of the choice made. FHY iis
a second subgroup, we may assume without loss of generalityfthat H'
(otherwise consideH’ N H"), and note that one has canonically an isomorphism
Mo 7 = Mo g/ Hyy . A similar line of reasoning holds for Lemma 12.2. Exactly
as in [3], 6.2, we may conclude that the collectigio i } and{M ), } form
projective systems, with finitetale transition maps, d# varies.

Under a supplementary condition on F ahdve now show that we may also
remove the hypothesis that (equivalently,H) is sufficiently small in Theorem
11.3. To do this, we introduce some auxiliary level structure to ensurefhat
sufficiently small, and then remove this extra structure at the end of the proof.

Suppose now that the given médepresentatiop has levelU;(n) N Up(p). In
other words, there exists a cuspidal eigenform of |&ué¢h) N Up(p) giving rise to

p.
We now copy [11] to find an auxiliary primg such that
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— Nejqlan) > 4%,

— q1 1 nép,

— there are no congruences between forms of 1&4éh) andqi-new forms of
level dividing Uy (n) N UL(q1).

Then, throughout the proof of the main theorem above, we work with an auxiliary
Ut (q1)-level structure to removEy(p) from the level, and finally we may remove

the auxiliary level structure, as we have chosen it in such a way that there are no
congruences.

One can classify the cases in which congruences occur, by means of a gener-
alisation of a result of Carayol ([5]). One knows that if two cuspidal automorphic
representations andr’ of levelm andn are congruent moé thenv, (m) = vy(n)

(for q 1 £) unless

— Ngjo(q) = —1 (mod¥), and one ofr, and7r{1 is a supercuspidal Weil repre-
sentation, or

— Ngjo(q) = 1 (mod?), or

— one ofr, and7r{1 is special unramified, so that,gfdenotes the corresponding
mod/ Galois representation,

tr 5(Frob,)?/ det p(Frob,) = (14 Ng/q(a))?/Neso(a)-

We first note that if a representatiany of GL(F,) has a fixed vector under
Ui(q), then it cannot be supercuspidal. For this, one considers the action of the
abelian groud/;(q) /U (q) on theU3(q)-fixed vectors ofr,. This action decom-
poses into characters; twisting by one such gives a representation with a vector
fixed under/1(q), which cannot be supercuspidal. Thus a twisk pfs not super-
cuspidal, which implies the same result fay. We thank Fred Diamond for the
above observation.

Thus congruences between forms of IéVgh) and forms of level/; (n) U (q)
can only occur in the latter two of the above classification. To eliminate these
possibilities, we now follow [11].

To construct the primgs, we consider the following situation. Suppose that
p: Gal(F/F) — GL(F,) is our given representation, and that

x : Gal(F/F) — F/
Frob, — Ng/q(q) (Mmod¥) (forq 1)

is the reduction of the cyclotomic character. Supp@se a finite group through
which bothp and factor. Sayg € G is specialif one has tf(g)?/ detp(g) =

(1+x(9))?/x(g), then

LEMMA 12.3. SupposéF(u,) : F] > 4. If all g € G — kery are special, thep is
reducible.

Proof. Asin[11], Lemma 11, lef = p(G), and letZ be the scalar matrices
in H. One easily sees that if(g) € Z, thenx(g) = 1. Sox factors through
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G/p~Y(Z) = H/Z. The kemel ofy is GalF/F(u)); an elemenfrob, is in
the kernel if and only ifNg/q(q) = 1 (modY), i.e., if {, is an/th root of unity,

then CéVF/Q(q) = (s, which is equivalent to insisting th&rob, fixes not only F,

but also/th roots of unity. Under the given hypothesis fnone sees therefore
that|imx| > 3. However,H/Z is also a finite subgroup of PG[F,), and one

has a complete classification of these subgroups. The result now follows exactly
as in [11]; subgroups either have a maximal cyclic quotient of size 3 or less (a
contradiction tdim x| > 3) or give rise to reducible representations.

We note also that ifF(u¢): F] = 2 (this degree must be even, so this is the only
other possibility), the refinement of Diamond and Taylor [12], Lemma 3, continues
to hold; that is, the conclusion of the Lemma 12.3 is satisfigdigf not induced
from a character of key.

To conclude, given thatis irreducible, one choosgse G which is not special
and for whichy(g) # 1. ByCebotarev’'s theorem, there exist infinitely many primes
q such thatFrob, maps tog. Pick such a prima; satisfyingNg/q(q1) > 44, and
q1 1 nlp.

It follows that Theorem 11.3 implies Mazur’s Principle.

13. Sheaves

Before embarking upon the proof of Theorem 11.3, we introduce some notation
following [4], Sections 2,4, in defining certain sheaves on our Shimura curves. We
will always assuméd sufficiently small thaM o 7 exists.

Fix integersk,1 = - - - = kg (mod 2), where we now insist that &} > 2. Define
w; andv; as in [15].

Let E C Cbe a Galois number field of finite degree containing F and spliffing

For eachi = 1,...,d, B ®r,, E = M>(E), and this defines an equivalence
class, writtert;, of representations d8* = G(Q) on W; = E2. Consider

d
¢ = @(ri ov)"isynt2(&)]

=1

of G(Q) acting on the spacld’ = ®;f:1 W;. This action naturally extends to a
unique action of the algebraic grodh

Write W), for W ®g E,.

We first define a sheaf o/ (C), assumingK sufficiently small so that this
definition makes sense, by

Fu(Qoe = GQ)\ (GA)/K x X x W))

with G(Q) acting onW), via G(Q,).
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On M (C), this sheaf is constant, with fibi&). Thus we see that

FEu(Qoe = (M(C) x Wy) /(K/(KNZ(Q))) ,

—

asK/(K N Z(Q)) is the Galois group of the covering (C) — Mg (C). Here
Z(Q) is the closure oZ(Q) in Z(A>).

Choose a latticé ,, insideW,. If K is sufficiently small, it stabilises, where
k € K acts on the right ofi’, by ¢ (k,) %, and we pick a normal subgrodfy ¢ K
such thatK’ acts trivially onL) /¢" L.

Then we may define a shedj, ,,(Z,)c by

FuZoc = (M(C) x Ly) /(K/(K n2(Q))),
and
FEZ/02)c = (Mo (C) x (Lr /0" L)) /(K[ K).

Carayol then defines &tale sheaf o(Z/E"Z)-moduIesF,fw(Z/E"Z) onMg
by
FEL(2/0°2) = (Mo x (L /0" Ly) ) [ (K/K).

Write ]—",fw(Zg) for the inverse limit of these sheaves (asgaries).
For K = GL,(O,)H, Carayol defines, in the same way, a sheafyf("Z)-
modules orMg i by

Fym(z/0°2) = (Mo x (Ly/¢"Ly)) /(H/H').

These sheave‘Eg’,g (Z/£"Z) are lissectale sheaves.

Henceforth, writeA for Z/¢Z. Write F for the sheafF " (A) onMg 4. For X
a scheme ovevlg p (for instanceM (., ), we denote the pull-back oF to X
also byF (as for constant sheaves).

14. Exact Sequences

We follow Carayol [4] in defining certain exact sequences.
The exact sequence of vanishing cycles for the (proper) morphism

M UO(F‘)’H ® Op

l

spea),,
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and the sheaf is then (notation as in [SGAT], XIII):
0 — H' My, ®F, F) — H My, ®F;, F)

— P (R'®7F)y — H*Myy(p),n @ F, F)
Z'EEH

S H My i ® Fp, F) — -+,

where¥ g denotes the set of singular points for tirachemeM ) i ® K; ¥
consists of a finite number of non-degenerate quadratic points.
Write

L(H) = ker(sp: H*(Myq(p),n @ F, F) — HA (M), n ® Fy, F)).
Make the following abbreviations:
Z(H) = H(Myy().0 @F, F)

M(H) = H'My,),n ®Fy, F)

X(H) = @ (R45F), = @ (R'Oy0), © F,).

TEXH TEXH
The equality here holds by [SGA 7], XIIl, 2.1.13. Write
X (H) =ker(X(H) — L(H)).
Thus we have an exact sequence
0— Z(H) — M(H) — X(H) — 0,

which we will refer to aexact sequence (A)
We will write L, M, X, X, andZ for the inductive limits (ovetd) of L(H),

M(H), X(H), X(H) andZ(H).
Next, we construct a second exact sequence, based on the comparison between
the cohomology of the special fibre, and the cohomology of its normalisation.

Recall from above that we have a map
MO,H R kU MO,H XK
lr
Muo(p).r @ F

andMy, ), ® & may be regarded as two copiesMp g ® % glued together
transversally above each supersingular poitMefy ® . Asr is an isomorphism
away from supersingular points, there is an exact sequence of sheaves

O—F —rao*F—G— 0,
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whereg is a skyscraper sheaf supportedXg.
Then one gets an exact sequence

0— H'(Myy), i ®F, F) — H'Myy(p),n @ R, 1™ F)
S HMyyp),0 ®F, G) — H (Myy(p),n ®F, F)
— H'(M Uo(p),H ® Fy 747" F) — 0.

Let
L'(H) =1Im(a: HHM )5 @ By F) — HA My ®F, G)).
Make the following abbreviations:
Y(H) = H'My,).z ®F G)
= P 6G..
zeSy
R(H) = H M) ir ® R, 1 F).

Write Y (H) for Y (H) /L' (H).
Then we have an exact sequence

0— Y(H) — Z(H) — R(H) — 0,

which we will refer to aexact sequence (B)

Again we will indicate the inductive limits of these terms by dropping reference
to H.

Exactsequences (A) and (B) combine to give the following fundamental diagram

0
!
Y (H)
!
(H) — M(H) — X(H) — 0
!

(H)

!
0

N

0 —

R
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This diagram is implicit in Langlands [18], and Ribet [23], and a version of it is in

[4].

15. Group Actions

Let " be the restricted direct product of the groygs® F,)*, the product being
taken over all finite places of F different fromand letl'; = {g € T'|g, = 1}.

There is a natural action af(A>) on the projective system (a& varies)
of the analytic curve§ M, (C)}, given by right multiplication. More precisely,
g € G(A*) induces a map,: M —M_-1j,. This action extends to an action
of " on the projective system of the integral models of the corresponding algebraic
curves ([3], 6.2)p,: Mo,y —M 0,g-1H¢- FOr similar reasons, namely the functorial
definitions of the integral models withip(p)-level structure, we also obtain an
action ofT" on the projective system (ovéf) of {M ) i }-

Forg € I'1, g, = 1, so that the action df; fixes Ly, and then it is clear that
the actions of"; above on the projective systerllo 7} and{M ) x } lift to
actions on the projective systert® " |w, , } and{F*"|w, . .}

We immediately obtain an action &% on all of the systems of cohomology
groups appearing in Section 14. In particular, the inductive limits of sequences (A)
and (B),

0—Z—M—X—0 and 0—>l~/—>Z—>R—>O,

are equivariant for th&;-action.

With the aid of this action, we can define Hecke operators on all the cohomology
groups, as in [11], Section 3, or [15], (7.2).

SupposeX andK' are sufficiently small open compact subgroup&:oA ),
andg € G(A*) with g, = 1. There is a natural identification of sheaves on
Mg ngrrg-1: ‘FgK,g_l|MKngK’g*1 = FRO9K'g™,

Then define

[KgK'] © H (Mg @ F, FX') S H (Mying 10, OF F, FX s

K’ﬁg_lKg)

N E rgK'g~!
—>H1(M9K/g—10K®FF,]:g g |Mg

wrg=ini)
; —= 7,—1

= H'(M,g1,-1n1c ®F F, FEN9K g

I Hi (M ® F, FX).

Let K' = K. If q is a prime ofOr which splits inB and does not dividé, let
wy € AF be such thab, is 1 at every place, except far where the component is
to be a uniformiser. Then write

re=lrefo )
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If also K, = GL2(0,), define

s (9 0)

In the same way, define actions of these Hecke operatofE (Mo y ® %, F) and
HZ(MUO('J)’H RF,F).

The equivariance of'; on the inductive limits of exact sequences (A) and
(B) implies the equivariance of the action of the Hecke operators above on the
fundamental diagram.

Of course, there is also a Galois action on the two exact sequences. By [SGA
7], XllI, 1.3.2.2, exact sequence (A) is GB}/F,)-equivariant, and the same is
also true of exact sequence (B), on which GafF,) acts through G&F)"/F,) =
Gal®/k).

Thus the fundamental diagram is equivariant for(GglF, ), and the inductive
limit is equivariant forT*;.

There is an isomorphism of G&/F)-modules ([4], Section 2.3):

Hl(MK ®FI_:7 flfw(zf)) ®OE)\ C= @(WOO)K ® pz\r,
el

wherep denotes a 2-dimensionatadic Galois representation associatedrto
Recall that we fixed in Section 11 a modulaepresentatiop. As there is an
embedding

HY My @ F, FiW(Ze) ® Z/0Z — HY (Mg @ F, F,(2/02)),
arising from the short exact sequence

0— FE, (205 FE(Z0) — FE(2/0z) — 0,

it follows thatp is a submodule off*(Mx ®¢ F, 7[5, (Z2/¢Z)) ® Fy, and then
plwe, will be a submodule off {(Mx ®F, F,, F,(2/¢Z)) ® Fy.

16. Analysis of the Fundamental Diagram
We now analyser(H ).
LEMMA 16.1. H*(M Uo(p),H @ R, 147" F) = Hi(Mopg ®F, F)2.
Proof. We note that:Mog ® K U Mog ® K — My, z ® K is a finite

morphism (from Theorem 10.2, each component is finite and flatMyegy ® ).

This isomorphism i§'1-equivariant.
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Remark 16.2. We also have an isomorphism
H' Moy ®F,F) = H Mon @F,, F).

This is a well-known result and follows from the fact tivdg 7 has good reduction.
Itmay also be seen as adegenerate case of the vanishing cycle sequiiagexas
has no singularities. It is thus equivariant for Ggl/F,) and forT';.

COROLLARY 16.3.R(H) = H(Moy ® F,, F)2.

17. Monodromy

The action of the inertia group = Ig, on M (H) = HY(M Uo(o),H ® Fp, F) is
computed by means of the following diagram [SGA 7], XIII, 2.4.6:

o—1

Hl(MUg(p),H ®|_:p,.7:) > Hl(MUo(pLH@l_:p,]:)

P Var. (o)

®x62H (Rl@ﬁ}—)m @mEEHH%m}(MUO(P),H ®K, R\Ijﬁ‘r)'

Recall that the terms at the top of this diagram &féH ), and that the bottom
left-hand corner of this diagram is none other ti&{¥ ). Further, the bottom map
is given by

Var; (0)®1 _
D (Rap0), 0 F, O N YL My ©F RIA) © F,.

TEXH TE€EXH

Var, (o) is described by [SGA 7], XV, 3.3.5 and 3.4(iii), the Picard—Lefschetz
formula.

Givenz € ¥y, we define acharactey as follows. By [SGA 7], XV, 1.3.1(i), the
complete local ring o ..y, F®O," atz is isomorphic tad)'[[X, Y]] /(Q(X,Y)—
b), whereQ(X,Y) = XY + higher order terms.

We define

€. 1 — A1)

o = ex(o) = a(bh) /b
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By ([SGA 7], XV, 3.3.3),H%x}(M Uo(p),H ® F, RU7A) has a natural generator
+4,, well-defined up to sign, and fer € I, anda € (R'®;A),, one has

Var, (o) (a) = —€z(0)(a, 03)dz,

where( , ) is a perfect pairing intd\(—1) ([SGA 7], XV, 2.2.5(C)). Write N,
for the morphismN,(a) = (a,d;)dz. As (, ) is a perfect pairing/N, gives an
isomorphism between the spadéd®7A (1)), andH}x}(M Uo(p),H @ Fy RUFA),
as( ,d,) is surjective ontd\ (—1).
Finally, asM 7, .y, 7 is regular, it follows that at eache X7, one haw, (b) = 1.
Then the character, (o) is independent of the particular singularity chosen.
Write N for the induced morphism:

N

H' Myy(p),m ® Fp, F)(1) HY My, n @ Fy, F)

Den, (R F(1)), — D

Theno € Ir, acts by 1- (o) N.

Next, we interpret the image of the variation map.

We consider exact sequences (A) and (B) in cohomology with supp&rtin
% is fixed by the action of G&F, /F,) ([3], 10.3),andy € 'y mapsig to X, -1y,
([4]), so that as the exact sequences of sheaves that give rise to these long exact
cohomology sequences are equivariant for the actions of these groups, it follows
that the sequences with supportin; are also equivariant for the Galois action,
and the inductive systems of these sequences are equivariant for the adtion of

®$€2HH%1’}(M UO(D),H X E, R\Ilﬁ]'-)

LEMMA 17.1. There is an isomorphism

H3, (M0 ®F, F)— P H}x}(M Uo(p). 1 ® Fy RUZF).
CEEEH

Proof. We consider exact sequence (A) with suppoXia.
0 — H%JH(M Uo(p),H ®R,.7'-)

— HY, (Myyp),n ©F, R\Ifﬁ]-')i> P (rR*ezF), — -
Z'EEH

However, the map is the zero map ([SGA 7], XV, (2.2.5.8) or 3.4). Thus there is
an isomorphism

H3, (Myyp).m ®F, F) = HE, (Myyp).0 ® R, RUGF),
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as required.

We now prove a lemma which is presumably well known, but for which we
could not find a reference.

LEMMA 17.2. Let X;— X, be a finite morphism of schemes. Consider the fol-
lowing Cartesian diagram:

7 = 7
s s
X1 = X

in whichi; andi; are closed immersions. L&k be anétale sheaf onX;. Then
lel(Xl,]-") = HZZZ(XZ,T*]-").

Proof. As r is finite, r, is exact ([20], 113.6). Further;, takes injectives to
injectives ([20], 1111.2). Thus it suffices to prove the result for 0. We have

HY (X1, F) = HY(X1,i1.i1.F)
(by [20], p.91)
= HO(X>,ri1,i1F)
(asr is finite)
= HO%(X>, 95,31 F)
> HO(Xo, ipyinr.F)

(by [SGA 4], XVIII, 3.1.12.3, as closed immersions are compactifiable [SGA 4],
XVII, 3.2.3(i))

= HY, (Xa,7.F),
as required.

Exact sequence (B), with conomologyiiy, becomes:
+— HY (Myg),ir ®F,rur™F) — HY My, ©F, G)
— Hy (Mo, ®F, F) — Hgy (Mpyp).5 @ Fyrir " F) — -
LEMMA 17.3. There is an isomorphism

HM ooy, ®F.G) = Hy, (Myg), i @ F, F).
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Proof. The mapr:Mog ® K UMo g ® E — My, m ® % is finite, so, by
Lemma 17.2, there is an isomorphism:

H%H(MUO(P):H ® K, T*T*‘F) = ZE% (MO,H ® K, ‘7:)27

wherex?, denotes the set of supersingular pointd/ofy ® .
Further,H’E% (Mo, ®%,F) = (0) fori = 0andi = 1,asMo i ® % is smooth,

andZ is locally constant ([20], VI 5.1).
We conclude that there is an isomorphism

HP (M Uo(p),H ®F,G) = H, (M Uo(p),H @ F> F),
and agj is supported oix i, we finally deduce the desired isomorphism.

For purely functorial reasons, we have commutative squares:

~

HY, (M), ®F, G) HE (Myyp).n ®F, F)

Y(H) = H'(Myyp),n ®F,G) — H My n @ F, F) = Z(H)
coming from exact sequence (B), and

~

H;,, Mgy, ir @ %, F) HL (Mg © F, RUGF)

Z(H) = H\ My @ F, F) — HX (M. ® F, RUZF) = M(H)
coming from exact sequence (A). It follows that the map

Y(H) — Z(H) — M(H)
coming from exact sequences (A) and (B) coincides with the map

Y(H)= P H:(L:p)(MUg(p),H ® R, R¥zF) — M(H)

TEX

coming from the monodromy theory.

Combining the isomorphisms (17.1) and (17.3), we deduce the main result of

the section:
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PROPOSITION 17.4We have the following diagrams:

M(H) 2 M(H)

Var(o)

X (H) Y (H)

foro € I, and

M(H)(1) —— M(H)

x() 1) % v ).

18. Proof of Theorem 11.3

We begin by recalling the statement of Theorem 11.3, whose proof is the object of
this section.

THEOREM 11.3.Assumep: Gal(F/F) — GLy(F;), a continuous irreducible
semisimple representation, is attached to a Hilbert cuspidal eigenfprma
Sk.w(Uo(p) NU), wherep { ¢, k > 2t, and U is sufficiently small. Suppodé
decomposes af , U,, with U, = GL(O,). If [F : Q] is even, suppose also that
there exists some finite plagg # p of F at which the automorphic represen-
tation corresponding tqgf is special or supercuspidal. Thengfis irreducible,
and unramified ap, and Ng/q(p) # 1 (mod/), there exists a Hilbert cuspidal
eigenformf’ € Sy, ,,(U) to whichp is attached.

In Section 11, we fixed somg Gal(F/F) — GL(F,), satisfying the condi-
tions of the theorem.

Let T denote the Hecke algebra generated by the Hecke opefgtansl S, for
all q t p¢ such that/; = GL»(0O,). From Section 157 acts on the fundamental
diagram. Letm denote the maximal ideal df corresponding tg. We will write
F for T/m, so thatp has a model valued in G(F).

We fixed in Section 11 a quaternion algel##asuch that, under the assump-
tions of the theorem, the Jacquet—Langlands correspondence provides an auto-
morphic representatiom on B associated to (the automorphic representation
corresponding to)f. We also fixed, for every place at which B is split, an
isomorphismB ®f F, = M>(F,).
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Under the assumption that is sufficiently small,m will have fixed vectors
underUp(p).H for some open compact subgrodép C T' corresponding td/,
sufficiently small in the sense that an integral modeltity; (and thusMy, () )
exists.

From Section 15|y, is a submodule of

M(H) ®, Fp = H (M, n ® Fy, F) ®F, Fy.

Recall that we have the fundamental diagram

0

!
Y (H)
!

(
(H) — M(H) — X(H) — 0
(

N

0 —

!
H)

!

0

together with anisomorphism (17 &) X (H)(1)—Y (H). Everything is equivari-
ant for the action of G&F, /F,), I'; andT.

We will consider this diagram as a diagramToimodules, and localise at the
maximal ideaim.

LEMMA 18.1. L'(H)y = 0.
Proof. One has anisomorphism

H M), m ®F,mur*F) = H' Mo ® F,, F)2.
One knows ([3], Section 2) that

mo(Mo,g ® Fy) = FX\(AR)*/(v(H) x O)).
Then

mo(Mo,r ® Fy) = (F')Y\(AFP) ™ /v(H),

where we write Ffor FN O,, andG (A***) c T acts on the set of components
through(A>7)* via v (this is [3], 1.3).

But then maximal ideals ifil lying in the support of.’( H) must correspond to
1-dimensional automorphic representations, as cuspidal representations on quater-
nionic groups admit infinite-dimensional components at almost every place, and
thus do not factor through the norm ([4], 4.4).

R
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LEMMA 18.2. L(H)y = 0.
Proof. There is an isomorphism

HZ(MUo(p),H ® K, '7:) = HZ(M Uo(p),H ® K, T*T*J:)a

asg is concentrated at points, so that its cohnomology groups vanish in dedree
By 16.2, we may regard this latter groupH$(Mo, ® F,, F)?. This is Poince
dual to the grougif®(Mo 7 ® F,, F(1))2. But the analysis of the previous lemma

ensures that the action 6fA>) factors througHA*?*) . The result follows
as before.

AssumptionWe assume for a contradiction that there is no automorphic rep-
resentationts’ of G with a fixed vector under GI(O,).H which gives rise to

.

LEMMA 18.3. Under this assumptio?(H)m = (0).

Proof. Recall thatR(H) = HY(Moy ®F,, F)?. But this implies that all cusp-
idal automorphic representationgontributing toR(H) satisfy(mo°)CLa(O)-# £
(0). Under the assumption, no such automorphic representation gives Fis# to
follows thatR(H)m = (0). For this, note that we have a short exact sequence of
sheaves

0— T*T*T(ZZ)LT*T*.T(ZZ) — ror* F — 0,
and part of the associated long exact sequence is:

Hl(M Uo(p),H XK, T*T*.r(zg))m — R(H)m
— H*(M Uo(o),H ® Fos 5T * F (Zg))m,

in which the first and last terms vanish. The first vanishes by the assumption and
the second by a similiar argument to that of Lemma 18.2.

ThenX (H)m = X (H)m, andY (H)m = Y (H)m.

It follows thatY (H)y, = Z(H)m, and we identify these spaces.

Then the fundamental diagram, after localising, becomes:
0—Y(H)ny— M(H)w— X(H)ym — 0O,

together with an isomorphisiV: (X (H)(1))m—Y (H)m.
LetF = T/m, and tensor the above exact sequence Wit obtain:

Y (H) @1 F-*M(H) @1 F25 X (H) @1 F — 0,

together with an isomorphisiV: X (H)(1) @1 F—Y (H) ®1 F.
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LEMMA 18.4. Under the assumptiod * (M Uo(v),HH OF F, F) @1 F = p for some
a € Z>1 _

Proof. Write V.= H (M), ®F F, F(Z))m-

By [4], Frobﬁ — T,Frob, + Ng/q(q)S, annihilatesV” ® Q,, at least for ally

outside some finite set of primes. It follows that the same holds for the group

V ® Q,. From the exact sequence
0—272,—Q,— Q,/Z; — 0,
we deduce that we have an exact sequence containing:

o — HOMyp)m @ F,F(Qp/Ze))m — V — V@ Qy — -+ -.

However, the first term vanishes by a similar argument to that of Lemma 18.1. Thus

V is also annihilated.

Finally, one uses the sequence-6» ZZLZZ — Z/¢Z — 0 to deduce
that V ®z, Z/¢Z differs from H1(M Uo(p),H ®F F, F)m only by the torsion in
H?(M Uo(p),H OF F, F(Z;))m, and this group vanishes as in Lemma 18.2.

Thus one has an Eichler—Shimura relationshigiditM Uo(p),H ©F F,F)®1F,
and the main theorem of [2] completes the proof.

COROLLARY 18.5.Under the assumptiorg is unramified atp if and only if
M (H) ®t F is unramified ap.

We are, however, assuming in the hypotheses of Theorem 11 @ighabram-
ified atp.

LEMMA 18.6. Under the assumption, there is an isomorphism
M(H) @t F — X(H) @1 F.
Proof. We can calculate the action of the inertia grdug Ir,; o € I acts by
MH)&rF 23 MH)®rF
g [
Var(o)
XH)®otF — Y(H)®TF.

By Corollary 18.5,M (H) @t F is unramified. Thusy Var(c)3 = 0 for all
o € 1. ButVano) = —e(o)N. It follows thataN 5 = 0.

But 3 is a surjection, and is an isomorphism. It follows that = 0. Thusg
is an isomorphism as required.

LEMMA 18.7. Under the assumptioGal(F, /F,) acts by scalars oM (H) @t F.

comp4086.tex; 7/08/1995; 8:16; v.7; p.39

https://doi.org/10.1023/A:1000600311268 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000600311268

78 FRAZER JARVIS

Proof. One now has an isomorphisid (H) ®t F— X (H) ®1 F, and so it
suffices to show that G@,/F,) acts by a scalar oX (H) ®t F. As one also
has the isomorphisnV: X (H)(1) 1 F——Y (H) ®t F, we need only show that
Gal(F,/F,) acts by a scalar ol (H) ®r F. But the action of G4F,/F,) on
Y (H)n may be computed in the same way as [4], Section 6, and one finds that
Frob, acts by a scalar. The result follows.

COROLLARY 18.8.Under the assumptioiGal(F, /F,) acts by scalars op.

However, asr is special unramified at we know by [4], Tieoeme (A), that

(o) ~ (CNF(/)Q(P) Z)

for some¢ and wherer € Gal(F, /F,) lies aboveFrob,. This cannot be a scalar
unless we have the conditiav /g (p) = 1 (mod?).

Thus we obtain a contradiction, and so the assumption is false. This concludes
the proof of Theorem 11.3, and thus of Mazur’s Principle.
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