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SOLVING LINEAR OPERATOR EQUATIONS 

CHANDLER DAVIS AND P E T E R ROSENTHAL 

1. Introduction. Let ££ be a complex Banach space and ^(9^) the algebra 
of bounded operators on ST. M. Rosenblum's theorem [13; 12] (also discovered 
by M. G. Kreïn, cf. [9]) states that (if A, B are fixed bounded operators) the 
spectrum of the operator 3T on if7 ( i f ) defined by J~(&) = AX — XB is 
contained in a (A) — <r(B) = {a — fi : a Ç a(A)yfi £ (r(B)}. In particular, 
the condition a(A) C\ a(B) = 0 implies that for each Y £ i f (3£) there is 
a unique X £ i f ( ^ ) such that AX — XB = Y. This does not completely 
settle the question of solvability of the equation AX — XB — Y: for example, 
if A is the backward unilateral shift and B = 0, then the equation has a 
solution (for any Y) even though <r(B) C a (A). 

In this note we seek a sharper version. When the underlying space 3£ is a 
Hilbert space, we may claim to have succeeded, for we give a simple necessary 
and sufficient condition (Theorem 5 below) for existence of a solution. We 
say something about uniqueness (Theorem 4) in any Banach space. 

One proof of Rosenblum's theorem [12] goes as follows: defining commuting 
operators srf and 3S by the equations s/X = AX and SëX = XB (so that 
the operator equation to be solved is 3?~X = F with £T = se — Se) one uses 
the general fact that the spectrum of the sum of two commuting operators is 
contained in the sum of their spectra. Our procedure here is to use the corres­
ponding general fact about approximate point spectrum (Theorem 2(i) 
below), which we prove by use of something like the well-known Berberian 
extension (see Section 2). 

In the following, <rp{A) denotes the point spectrum of any operator A, and 
(TT(A) its approximate point spectrum. Also a8(A) denotes its approximate 
defect spectrum, defined by a0(A) = {X G C : A — X is not onto}. If A* 
denotes the Banach-space adjoint of A, then [14, § 4.7] 

<rM) = <T5(A*),a8(A) = ar(A*); 

this duality plays an essential role in our application of our spectral inclusion 
theorem. 

Acknowledgments. After our theorems had been obtained and communicated 
informally, several colleagues made valuable comments which significantly 
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A. S. Markus, and P. Wojtaszczyk. 

There has been an independent and earlier treatment of analogues of 
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Rosenblum's theorem in terms of one-sided spectra by Robin Harte [6; 7], in 
the course of his very extensive study of left and right spectrum. To our 
Theorem 5, on conditions for the existence of a certain X £ ££ (<3T), corres­
ponds his result [7, Theorem 3.4] on conditions for the existence of an element 
of «if («if («ST)) which may or may not arise from one of our X. We do not see 
how to deduce our result from his. We suppose that, even were such a deduc­
tion to be found, our treatment here would retain interest. 

Added in proof. We have recently seen the University of Virginia Master's 
Thesis of B. B. Borrel, 1966, in which the question of sharpening Rosenblum's 
theorem is treated, and some results obtained in special cases. 

2. The Berberian-Quigley extension. In the case where 2F is a Hilbert 
space, S. Berberian [2] showed (cf. Calkin [3]) that there exists a Hilbert 
space <5T° containing f" as a subspace, and there exists a homomorphism 
from operators A £ i f \ 9 f ) to operators A0 <E i f ( ^ ° ) , such that A0 is an 
extension of A and <rp(A°) = aT(A°) = <rT(A). The analogous construction 
for Banach spaces (based on an idea introduced by F. D. Quigley) is a little 
simpler because in a Banach space there is less to prove, though the statement 
looks the same: 

THEOREM 1. Given any Banach space «3T, there is an imbedding of 2fc into a 
larger Banach space <5T0, and a mapping A—> A0 of «if\S£) into ££ (3T°) 
which is an isometric isomorphism such that every A0 is an extension of A and 

ap(A°) = *r(A°) = *MY 
Rather than give details here, we refer to R. A. Hirschfeld [8] or to a recent 

discussion suitable to our purposes [4]. 

3. Approximate point spectrum of a sum of commuting operators. 

THEOREM 2.IfA,B£ <£\3£) and AB = BA, then 
(i) *r(A +B)Q *r(A) + *AB) = H f : ^ *M), P £ **&)); 

(ii) av(AB) Q aT(A)aT(B) = {afi : a G <rr(A), 0 G <rr(B)}. 

Proof. Let \ € <rr(A + B). Then, by Theorem 1, \ Ç. ap((A + B)°) = 
ap(A° + B°). Let 

Again by Theorem 1, A0 and B° commute; therefore*^ is invariant under 
each of A0 and B°. Note that B*\Jt = (X - A*)\Jt. Choosing, then, 
a £ aT(A°\^), we will have X — a £ air(B°\^)f therefore 

X = a + (X - a) 6 av(A°\^) + <rr(B°\Jlf) 

Ç ar(A°) + a„(B°) = ar(A) + av(B). 

Next consider aT(AB). As above, take X £ <rT(AB), and let 

Jl = {x £ < r ° :A°B°x = Xx}. 
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Then jd\§ invariant under A0 and 5° . If X = 0 then <rr(A°) or aT(B°) contains 
0, so 0 G a7r(A)air(B). If X ̂  0, then A°\<Jf has the two-sided inverse \~lBQ\<Jt. 
Choose a in the boundary of a (A °| <J{) ; then \/a is in the boundary of a (B°\^). 
But this implies [14, 5.1-D] that a G <rv(A*\*J(), \/a G <j*{B*\Jt), giving in 
turnX G ^ ( ^ ° ) ^ ( ^ ° ) = ^ ( 4 ) ^ ( 3 ) . 

The duality between approximate point spectrum and approximate defect 
spectrum, mentioned in the Introduction, gives this immediate consequence. 

COROLLARY 1. IfA,B£ i f (#") a«d 4J3 = BA, then 
(i) er,(i4 + 5 ) Qa8(A) + a8(B); 

(ii) <r«(i43) Ç a8(A)a8(B). 

4. Application to operator equations. Now to return to the problem 
from which we departed, we want to relate the spectra of operators to the 
spectra of their left regular and right regular representations. 

LEMMA. Let A,B ^ ( « f ) , and define operators stf,3l on ££{3£) by 
s/X = AX, SëX = XB. Then <r9(ç/) = <rr(A) and <rT(&) = a8(B). Moreover 
&&(&/) 3 a8{A) and <r8(3§) 2 *T(B), with equality in case 3C is a Hilbert 
space. 

There are eight assertions in the Lemma; all are known, but we illustrate 
by proving two of them. 

To prove that X G <r*(A) implies X G o-T(o/), we take X = 0 without loss 
of generality. Suppose then that A is not boundedly invertible on &(A), 
but that s/ is boundedly invertible on ^ ( $ / ) . The latter supposition means 
that there exists m > 0 such that \\AX\\ ^ m\\X\\ for all X G J?(&~). By 
the first supposition, we can choose a unit vector x Ç f such that \\Ax\\ < m. 
Now we set X = xx*, where x* is a unit vector in<âT* such that x*x = 1. Then 
||-4X|| = ||-4x|| < m = m\\X\\, a contradiction. 

To prove that 0 G <r$(&) implies 0 G <T*(B) in case 2£ is a Hilbert space, 
we again reason indirectly. If 0 G <rT(B), then B maps «ST 1 — 1 and invertibly 
onto 0t{B). Let B+ be the operator whose restriction to @t{fi) is the inverse 
to B and whose restriction to 3%{B)L is 0. Then the equation XB = C has a 
solution in i f (3T) for any C G i f («ST), to wit, X = CB+. In other words, 
âi(âg) is all of i f (#" ) , that is, 0 G cr«(^), as desired. 

THEOREM 3. Let {̂4 ̂ }̂ =i and {B^^i each be a commuting family of operators 
on 9C, and define the operator <T on i f \ 3 £ ) by $~X = J^t-i AiXBt. Then 

^ ( j T ) ^ { i j «<0<:«< € cr,(i4<),0, G cra(B,)j . 

If SC is a Hilbert space, then 

For the proof, apply Theorem 2(i) (or in the case of the second conclusion, 
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Corollary l ( i ) ) , not to the operators Aiy Bt themselves, but to the left- or 
right-multiplication operators obtained from them, whose sum is ^~; and 
then invoke the Lemma. 

In the particular case of the equation AX — XB = F, we can show that 
the conclusions drawn from Theorem 3 are sharp; this is the content of the 
following two theorems. 

THEOREM 4. In order that there exist a constant m > 0 such that AX — XB = Y 
implies \\Y\\ ^ mj|X||, it is necessary and sufficient that <rv{A) C\ vz(B) = 0. 

Proof. For the particular $~ which is now in question, given by 3TX — 
AX — XB, the first assertion of Theorem 3 tells us that <rT(^~) C aT(A) — 
<rs(B); therefore the assumption a*(A) P\ aô(B) = 0 entails 0 $ ovC^"). 
This proves sufficiency. 

The converse (here and in Theorem 5 below) cannot rely at all on the 
results of § 3, whose inclusions can not be reversed, but must rely on the 
special nature of the commuting operators under consideration. Assume, then, 
m > 0 such that \\AX — XB\\ ^ w||X| | for all X. Suppose if possible that 
aT(A) C\ <rs(B) 9e 0, or, without loss of generality, that 0 £ a^ÇA) C\ <r&(B). 
That means that we can choose a unit vector x G ^ and a unit vector 3/* G 3£* 
so as to get \\Ax\\ and ||-B*y*|| as small as desired, so let us make them each 
<m/2. Set X = xy*. Then \\X\\ = 1 but \\AX - XB\\ ^ \\Ax\\ \\y*\\ + 
\\x\\ \\B*y*\\ < m, a contradiction. 

THEOREM 5. If AX — XB = Y has a solution X for every F, then 
a s (A) C\ (TV{B) = 0. In case S£ is a Hilbert space, the converse holds: 
a s (A) P\ aT(B) = 0 implies that AX = XB — Y has a solution for every Y. 

Proof. If 3£ is a Hilbert space then the second conclusion of Theorem 3 
specializes to a s(^~) Q VÔ(A) — aT(B); therefore the assumption 

a8(A)n<rT(B) = 0 

entails 0 $ 0-5 ( ^ ) . This proves the second assertion in Theorem 5. 
The proof of the first assertion will use again the notion of lower bound of 

an operator. We are now assuming that the commutator map 3T is onto 
oêf («ST). Therefore its range is closed, so there is a constant m > 0 such that, 
for all X, \\^X\\ ^ mdist(X,JS(^-)); hence there is a constant m > 0 
such that, for every F G M {^) = ££(S£), there is at least one solution X 
of 3TX = Y which satisfies also m\\X|1 ^ | |F | | . 

Suppose if possible that 0 G <TÔ(A) P\ OV(JB) (as before, this is sufficiently 
general). Then there exist unit vectors x* G ^T* and y G ££ making ||^4*x*|| 
and \\By\\ as small as desired, so let us take them each <m/2. Then for any 
F G ££ ($T), choosing the corresponding X in the way explained in the 
preceding paragraph, 

\\x*Yy\\ = \\x*AXy - x*XBy\\ ^ \\A*x*\\ \\Xy\\ + \\X*x*\\ \\By\\ 

<bn(\\X\\ + \\X*\\) JS | |F | | . 
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But this is absurd, because there exists F with ||x*F;y|| = \\Y\\. This completes 
the proof. 

Here is an illustration of the way in which known applications of Rosen-
blum's theorem can be slightly strengthened using the theorems of this section. 

COROLLARY 2. If A,B, C are operators on a Hilbert space 3£, and if 

as(A) C\ aT(B) = 0, then the operator _ „ \ on S£ © 3£ is similar to the 

operator^ £ j . 

Proof. By Theorem 5, there is some operator X such that AX — XB = — C. 
Then 

Lo B\ |_O I J Lo i J Lo B\ ' 

ft f ] i £ and n is invertible. 

Remark. All the considerations of this section can be generalized to the case 
where A G i f (#") and B G i f ( $ 0 for different spaces #", ^ . Then ^ ~ is 
an operator on the space of bounded operators from <3/ to 2£. Only notational 
changes are required to make the above proofs cover this more general 
situation. 

5. Extension to other Banach spaces. The argument given in the Lemma 
of Section 4 to prove that <rt(âiï) Q ^(B) really used the hypothesis t h a t ^ 
is a Hilbert space. Indeed, from the knowledge that B is a Banach-space 
isomorphism of 9£ onto &{B), it does not follow that B has a left-inverse in 
J£(3F), except in the too-special case that 3%(B) possesses a topological 
complement. 

A similar obstacle is encountered in trying to establish equality of a8(s/) 
with a g (A): assuming 0 (? cr5(^4), or 3% (A) = «3T, we want to conclude that 
such an equation as AX = 1 has a solution; but 3%(X), for such X, would 
be a closed complement to jV(stf), so we can not expect such a conclusion 
in general. 

Is there then no hope for weakening the special hypothesis upon 3£ where 
it occurs in Section 4? 

A. S. Markus pointed out to us that even in Theorem 5 some hypothesis 
must be imposed upon <3T. Indeed, let B be any operator which would not 
work in the Lemma, that is, assume without loss of generality that B maps 
S£ \ — \ onto a non-complemented subspace [5, p. 191]. Then one need 
merely take A = 0 to produce an example with a8(A) C\ ov(i?) = 0 yet 
with AX — XB = 1 insoluble. 

This remark too has its analogue with the role of <TV(B) taken by a s (A). 
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Now since every Banach space not isomorphic to Hilbert space has some 
closed subspace without any topological complement [10], it might seem that 
only Hilbert space behaves in the way described in the Lemma. But P. Woj-
taszczyk observes that on the contrary, a Banach space with non-comple­
mented subspaces may still admit no B which would not work in the Lemma; 
that is, it may have non-complemented subspaces none of which is isomorphic 
to the whole space. Using [11] he can prove this for some of the most familiar 
non-Hilbert Banach spaces. 

Thus, the possibility remains open for further investigation that the impli­
cation in Theorem 5 may go both ways for a considerable class of Banach 
spaces. 
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