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Abstract

Colmez has given a recipe to associate a smooth modular representation Ω(W ) of
the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using
Fontaine’s theory of (ϕ, Γ)-modules. We compute Ω(W ) explicitly and we prove
that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel
subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s
correspondence.

Contents

Introduction 58
1 Smooth modular representations of B 2(Q p) 61
2 Galois representations and (ϕ, Γ)-modules 69
3 Breuil’s correspondence for mod p representations 76
Acknowledgements 79
References 80

Introduction

This article is a contribution to the p-adic Langlands correspondence, and more specifically the
‘mod p’ correspondence first introduced by Breuil in [Bre03a] which is a bijection
between the supersingular representations of GL2(Qp) and the irreducible two-dimensional
Fp-linear representations of GQp = Gal(Qp/Qp). In [Col07, Col08], Colmez has given a
construction of representations of GL2(Qp) associated to certain p-adic Galois representations
and by specializing and extending his functor to the case of Fp-representations, we obtain a
recipe for constructing a smooth representation Ω(W ) of the Borel subgroup B = B2(Qp) of
GL2(Qp) starting from the data of an Fp-representation W of GQp . In [Ber05], the present
author proved that Colmez’ construction was compatible with Breuil’s mod p correspondence
and as a consequence that Colmez’ lim←−ψ D](·) functor in characteristic p does give Breuil’s
correspondence (up to semisimplification if W is reducible). The proof of [Ber05] is direct when W
is reducible (in which case Ω(W ) is a parabolic induction) but quite indirect when W is absolutely
irreducible (in which case Ω(W ) is supersingular) and one aim of this article is to give a direct

Received 21 November 2008, accepted in final form 16 May 2009, published online 11 December 2009.
2000 Mathematics Subject Classification 11F80 (primary), 05C05, 11F33, 11F70, 11F85, 20C20, 20G25, 22E35,
22E50 (secondary).
Keywords: p-adic Langlands correspondence, supersingular representations, (ϕ, Γ)-modules, Galois represent-
ations.
This journal is c© Foundation Compositio Mathematica 2009.

https://doi.org/10.1112/S0010437X09004345 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X09004345


On some modular representations of the Borel subgroup of GL2(Qp)

proof in the latter case. A byproduct of the computations of [Ber05] is the fact that the restriction
to the Borel subgroup of a supersingular representation is still irreducible. This intriguing fact
has since been reproved and generalized by Paškūnas in [Pas07] (see also [Eme08]; another
generalization has been worked out by Vignéras in [Vig08]).

In this article, we start by defining some smooth representations of B and we prove that
they are irreducible. After that, we define the representations Ω(W ) using Colmez’ functor
applied to W and finally, we prove that if dim(W ) > 2 and W is irreducible, then the Ω(W ) thus
constructed coincide with the representations studied in the first section and that if dim(W ) = 2,
then they are the restriction to B of the supersingular representations studied by Barthel and
Livné in [BL94, BL95] as well as Breuil in [Bre03a].

Let us now give a more precise description of our results. Let E be a finite extension of Fp

which is the field of coefficients of all our representations, and let

K =
(

Z×p Zp
0 Z×p

)
= B ∩GL2(Zp)

and let Z'Q×p be the center of B. If σ1 and σ2 are two smooth characters of Q×p then
σ = σ1 ⊗ σ2 :

(
a b
0 d

)
→ σ1(a)σ2(d) is a smooth character of KZ and we consider the compactly

induced representation indB
KZ σ. Note that the Iwasawa decomposition implies that B/KZ =

GL2(Qp)/GL2(Zp)Z so that indB
KZ σ can be seen as a space of ‘twisted functions’ on the tree

of GL2(Qp).

Theorem A. If Π is a smooth irreducible representation of B admitting a central character,
then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB

KZ σ.

This result (Theorem 1.2.3) is a direct consequence of the fact that a pro-p-group acting on
a smooth E-representation necessarily admits some nontrivial fixed points. Assume now that
σ1(p) = σ2(p) and let λ= σ1(p) = σ2(p) and let 1σ be the element of indB

KZ σ supported on KZ
and given there by 1σ(kz) = σ(kz). If n > 2 and if 1 6 h 6 pn−1 − 1, let Sn(h, σ) be the subspace
of indB

KZ σ generated by the B-translates of

(−λ−1)n
(

1 0
0 pn

)
1σ +

pn−1∑
j=0

(
j

h(p− 1)

) (
1 −jp−n
0 1

)
1σ

and let Πn(h, σ) = indB
KZ σ/Sn(h, σ). We say that h is primitive if there is no d < n dividing n

such that h is a multiple of (pn − 1)/(pd − 1) (this condition is equivalent to requiring that if
we write h= en−1 · · · e1e0 in base p, then the map i 7→ ei from Z/nZ to {0, . . . , p− 1} has no
period strictly smaller than n). The main result of § 1.3 is that the Πn(h, σ) are irreducible if h
is primitive. In § 2, we turn to Galois representations, Fontaine’s (ϕ, Γ)-modules and Colmez’
Ω(·) functor. In particular, we give a careful construction of Ω(W ) and in Theorem 2.2.4, we
prove that there exists a character σ such that Ω(W ) is a smooth irreducible quotient of indB

KZ σ
by a subspace which contains Sn(h, σ) where n= dim(W ) and h depends on W . Let ωn be
Serre’s fundamental character of level n. For a primitive 1 6 h 6 pn − 2, let ind(ωhn) be the unique
representation of GQp whose determinant is ωh (where ω = ω1 is the mod p cyclotomic character)

and whose restriction to the inertia subgroup IQp of GQp is given by ωhn ⊕ ω
ph
n ⊕ · · · ⊕ ωp

n−1h
n .

Every n-dimensional absolutely irreducible E-linear representation W of GQp is isomorphic to
ind(ωhn)⊗ χ for some primitive 1 6 h 6 pn−1 − 1 and some character χ and our main result is
then the following (Theorem 3.1.1).
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Theorem B. If n > 2 and if 1 6 h 6 pn−1 − 1 is primitive, then

Ω(ind(ωhn)⊗ χ)'Πn(h, χωh−1 ⊗ χ).

After that, we give the connection with Breuil’s correspondence. Our main result connecting
Colmez’ functor with Breuil’s correspondence is the following (it is a combination of
Theorem 3.1.1 for n= 2 and Theorem 3.2.6).

Theorem C. If 1 6 h 6 p− 1, then we have

Ω(ind(ωh2 )⊗ χ)'Π2(h, ωh−1χ⊗ χ)'
indGL2(Qp)

GL2(Zp)Z Symh−1 E2

T
⊗ (χ ◦ det),

where the last representation is viewed as a representation of B.

It would have been possible to treat the Galois representations of dimension one in the same
way, and therefore to obtain a proof that Colmez’ functor gives Breuil’s correspondence for
reducible representations of dimension two using the methods of this article so that one recovers
the corresponding result of [Ber05] without using the stereographic projection of [BL94, BL95].
We have chosen not to include this as it does not add anything conceptually, but it is an
instructive exercise for the reader.

Finally, if h= 1 and n > 2, we can give a more explicit version of Theorem B. We define two
B-equivariant operators T+ and T− on indB

KZ σ by

T+(1σ) =
p−1∑
j=0

(
p j
0 1

)
1σ and T−(1σ) =

(
1 0
0 p

)
1σ

so that the Hecke operator is T = T+ + T− and Theorem B can be restated as follows.

Theorem D. We have

Ω(ind(ωn)⊗ χ)' indB
KZ(1⊗ 1)

T− + (−1)nTn−1
+

⊗ (χ ◦ det).

There may be a correspondence between irreducible E-linear representations of dimension n
of GQp and certain objects coming from GLn(Qp). We hope that Theorem C gives a good place
to start looking for this correspondence, along with the ideas of [SV08].

List of notation
Here we give a list of the main notation of the article, in the order in which they appear.

Introduction: GQp ; B; E; K; Z; primitive h; IQp ; T±; T ;

§ 1.1: Vn; vk,n; Vk,n; ∆; µa;

§ 1.2: gβ,δ; σ; indB
KZ σ; [g]; α(β, δ); support; level; n-block; initial n-block; I1; τk;

§ 1.3: w`,n; λ; Sn(h, σ); Πn(h, σ); ik; hk; B+;

§ 2.1: Ẽ+; Ẽ; ε; X; HQp ; Γ; D(W ); ωn; ω; µλ; ind(ωhn);

§ 2.2: ψ; Ω(W ); θ;

§ 3.1: T±; T ;

§ 3.2: Symr(E2).
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On some modular representations of the Borel subgroup of GL2(Qp)

1. Smooth modular representations of B2(Qp)

In this section, we construct a number of representations of B and show that they are irreducible
by reasoning directly on the tree of PGL2(Qp).

1.1 Linear algebra over Fp
The binomial coefficients are defined by the formula (1 +X)n =

∑
i∈Z

(
n
i

)
Xi and we think of

them as living in Fp. The following result is due to Lucas.

Lemma 1.1.1. If a and b are integers and a= as · · · a0 and b= bs · · · b0 are their expansions in
base p, then (

a

b

)
=
(
as
bs

)
· · ·
(
a0

b0

)
.

Proof. If we write (1 +X)a = (1 +X)a0(1 +Xp)a1 · · · (1 +Xps
)as , then the coefficient of Xb on

the left is the coefficient of Xb0Xpb1 · · ·Xpsbs on the right. 2

Lemma 1.1.2. If k, ` > 0 and if

ak,` =
pn−1∑
j=0

(
j

k

)(
j

`

)
,

then ak,` = 0 if k + ` 6 pn − 2 and ak,` = (−1)k if k + `= pn − 1.

Proof. The number ak,` is the coefficient of XkY ` in the expansion of

pn−1∑
j=0

(1 +X)j(1 + Y )j =
(1 +X + Y +XY )p

n − 1
(1 +X + Y +XY )− 1

= (X + Y +XY )p
n−1.

Each term of this polynomial is of the form XaY b(XY )c with a+ b+ c= pn − 1 so that there is
no term of total degree 6 pn − 2 and the terms of total degree pn − 1 are those for which c= 0
and therefore they are the (−1)kXkY pn−1−k. 2

Let Vn be the vector space of sequences (x0, . . . , xpn−1) with xi ∈ E. The bilinear map
〈·, ·〉 : Vn × Vn→ E given by 〈x, y〉=

∑pn−1
j=0 xjyj is a perfect pairing on Vn.

Let vk,n ∈ Vn be defined by

vk,n =
((

0
k

)
,

(
1
k

)
, . . . ,

(
pn − 1
k

))
,

and let Vk,n be the subspace of Vn generated by v0,n, . . . , vk−1,n.

Lemma 1.1.3. For 0 6 k 6 pn, the space Vk,n is of dimension k and V ⊥k,n = Vpn−k,n.

Proof. Since the first j components of vj,n are zero and the (j + 1)th is one, the vectors vj,n
are linearly independent and Vk,n is of dimension k. Lemma 1.1.2 says that 〈vj,n, v`,n〉= 0 if
j + ` 6 pn − 2 and this gives us V ⊥k,n = Vpn−k,n by a dimension count. 2

In particular, V1,n is the space of constant sequences and Vpn−1,n is the space of zero sum
sequences. Note that by Lemma 1.1.1, we have

(
j+pn

k

)
=
(
j
k

)
if 0 6 k 6 pn − 1 so that we can

safely think of the indices of the x ∈ Vn as belonging to Z/pnZ. Let ∆ : Vn→ Vn be the map
defined by (∆x)j = xj−1 − xj .
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Lemma 1.1.4. If 0 6 k + ` 6 pn, then ∆k gives rise to an exact sequence

0→ Vk,n→ V`+k,n
∆k

−−→ V`,n→ 0,

and ∆k(x) ∈ V`,n if and only if x ∈ V`+k,n.

Proof. There is nothing to prove if k = 0 and we now assume that k = 1. It is clear that
ker(∆) = V1,n the space of constant sequences, and the formula(

j

m

)
−
(
j − 1
m

)
=
(
j − 1
m− 1

)
implies that ∆(V`+1,n)⊂ V`,n so that by counting dimensions we see that there is indeed an

exact sequence 0→ V1,n→ V`+1,n
∆−→ V`,n→ 0. If ∆(x) ∈ V`,n, then this implies that there exists

y ∈ V`+1,n such that ∆(x) = ∆(y) so that x ∈ V`+1,n + ker(∆) = V`+1,n. This proves the lemma
for k = 1, and for k > 2 it follows from a straightforward induction. 2

Note that ∆ is nilpotent of rank pn and therefore the only subspaces of Vn stable under ∆
are the ker(∆k) = Vk,n. Since the cyclic shift (xj) 7→ (xj−1) is equal to Id +∆, this also implies
that the only subspaces of Vn stable under the cyclic shift are the Vk,n.

If a ∈ Zp, then let µa : Vn→ Vn be the map defined by µa(x)j = xaj .

Lemma 1.1.5. We have µa(vk,n)− akvk,n ∈ Vk,n so that if x ∈ Vk+1,n, then µa(x) ∈ Vk+1,n.

Proof. We prove both claims by induction, assuming that it is true for ` 6 k − 1 (it is immediate
if `= 0 or even `= 1). Vandermonde’s identity gives us(

aj

k

)
=
(
aj − a
k

)(
a

0

)
+
(
aj − a
k − 1

)(
a

1

)
+ · · ·+

(
aj − a

0

)(
a

k

)
,

which shows that ∆ ◦ µa(vk,n)− akvk−1,n ∈ Vk−1,n by the induction hypothesis and therefore that
µa(vk,n)− akvk,n ∈ Vk,n by Lemma 1.1.4 which finishes the induction. 2

Lemma 1.1.6. If x ∈ Vk,n and if 0 6 i 6 p− 1, then the sequence y ∈ Vn−1 given by yj = xpj+i
belongs to Vb(k−1)/pc+1,n−1.

Proof. If ` 6 k − 1 and if we write `= pb`/pc+ `0 so that 0 6 `0 6 p− 1, then by Lemma 1.1.1,
we have (

pj + i

`

)
=
(

j

b`/pc

)(
i

`0

)
,

which implies the lemma. 2

1.2 The twisted tree
We now turn to B/KZ and the smooth representations of B. If β ∈Qp and δ ∈ Z, let

gβ,δ =
(

1 β
0 pδ

)
.

Let A= {αnp−n + · · ·+ α1p
−1 where 0 6 αj 6 p− 1} so that A is a system of representatives of

Qp/Zp.

Lemma 1.2.1. We have B =
∐
β∈A,δ∈Z gβ,δ ·KZ.
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Figure 1. Part of the tree.

Proof. If
(
a b
0 d

)
∈ B, then with obvious notation we have(
a b
0 d

)
=
(
a0p

α b
0 d0p

δ

)
=
(

1 bp−αd−1
0 − c

0 pδ−α

) (
a0 cd0

0 d0

) (
pα 0
0 pα

)
which tells us that B =

⋃
β∈A,δ∈Z gβ,δ ·KZ since we can always choose c ∈ Zp such that

bp−αd−1
0 − c ∈A. The fact that the union is disjoint is immediate. 2

The vertices of the tree of GL2(Qp) can then be labelled by the δ ∈ Z and the β ∈A (Figure 1).
If σ1 and σ2 are two smooth characters σi : Q×p → E×, then let σ = σ1 ⊗ σ2 : KZ→ E× be

the character σ :
(
a b
0 d

)
7→ σ1(a)σ2(d) and let indB

KZ σ be the set of functions f : B→ E satisfying
f(kg) = σ(k)f(g) if k ∈KZ and such that f has compact support modulo Z. If g ∈ B, denote
by [g] the function [g] : B→ E defined by [g](h) = σ(hg) if h ∈KZg−1 and [g](h) = 0 otherwise.
Every element of indB

KZ σ is a finite linear combination of some functions [g]. We make indB
KZ σ

into a representation of B in the usual way: if g ∈ B, then (gf)(h) = f(hg). In particular, we have
g[h] = [gh] in addition to the formula [gk] = σ(k)[g] for k ∈KZ.

Lemma 1.2.2. If χ is a smooth character of Q×p , then the map [g] 7→ (χ ◦ det)(g)−1[g] extends

to a B-equivariant isomorphism from (indB
KZ σ)⊗ (χ ◦ det) to indB

KZ(σ1χ⊗ σ2χ).

Proof. Let us write [·]σ and [·]σχ for the two functions [·] in the two induced representations. We
then have h[g]σ = (χ ◦ det)(h)[hg]σ and

(χ ◦ det)(g)−1h[g]σχ = (χ ◦ det)(h)(χ ◦ det)(hg)−1[hg]σχ

so that the above map is indeed B-equivariant. 2

Each f ∈ indB
KZ σ can be written in a unique way as f =

∑
β,δ α(β, δ)[gβ,δ]. The formula(

1 β + λ
0 pδ

)
=
(

1 β
0 pδ

) (
1 λ
0 1

)
and the fact that σ is trivial on

(
1 Zp

0 1

)
imply that we can extend the definition of α(β, δ) to all

β ∈Qp. We then have the formula α(β, δ)(
(

1 λ
0 1

)
f) = α(β − λpδ, δ)(f) if λ ∈Qp.

63

https://doi.org/10.1112/S0010437X09004345 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004345


L. Berger

Figure 2. An example of a 1-block.

Figure 3. An example of a 2-block.

The support of f is the set of gβ,δ such that α(β, δ) 6= 0. Let us say that the height of an
element gβ,δ is δ. We say that f ∈ indB

KZ σ has support in levels n1, . . . , nk if all of the elements
of its support are of height ni for some i. If f ∈ indB

KZ σ, then we can either raise or lower the
support of f using the formula

(1 0
0 p±1

)
gβ,δ = gβ,δ±1.

If n > 0 let us say that an n-block is the set of gβ−jp−n,δ for j = 0, . . . , pn − 1 and that the
initial n-block is the one for which β = 0. We use the same name for the vector of coefficients
α(β − jp−n, δ) for j = 0, . . . , pn − 1 so that an n-block is then an element of Vn from § 1.1
(Figures 2 and 3).

In the following, we study some irreducible quotients of indB
KZ σ of arithmetic interest, but

before we do that, it is worthwhile pointing out that all smooth irreducible representations of B
admitting a central character are a quotient of some indB

KZ σ.

Theorem 1.2.3. If Π is a smooth irreducible representation of B admitting a central character,
then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB

KZ σ.

Proof. The group I1 defined by

I1 =
(

1 + pZp Zp
0 1 + pZp

)
is a pro-p-group and hence ΠI1 6= 0. Furthermore, I1 is a normal subgroup of K so that ΠI1 is a
representation of K/I1 = F×p × F×p . Since this group is a finite group of order prime to p, we have
ΠI1 =

⊕
η ΠK=η where η runs over the characters of F×p × F×p and since Z acts through a character
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Figure 4. A function on the tree.

by hypothesis, there exists a character σ = σ1 ⊗ σ2 of KZ and v ∈Π such that k · v = σ(k)v
for k ∈KZ. By Frobenius reciprocity, we obtain a nontrivial map indB

KZ σ→Π and this map is
surjective since Π is irreducible. 2

Note that σ is not uniquely determined by Π: there are nontrivial intertwinings between some
quotients of indB

KZ σ for different σ.
We finish this section with a useful general lemma. Let τk =

(
1 −1/pk

0 1

)
and let Π be any

representation of B.

Lemma 1.2.4. If v 6= 0 ∈Π
(
1 Zp

0 1

)
and if k > 0, then one of the pk elements

v` =
pk−1∑
j=0

(
j

`

)
τ jk(v), 0 6 ` 6 pk − 1

is nonzero and fixed by τk.

Proof. If all pk elements above were zero, then Lemma 1.1.3 would imply that for any sequence
x= (xj) ∈ Vk we would have

∑pk−1
j=0 xjτ

j
k(v) = 0 and with x= (1, 0, . . . , 0), we get v = 0. Let `

be the smallest integer such that v` 6= 0. If `= 0, then τk(v0)− v0 = 0 since τp
k

k = τ0 ∈
(

1 Zp

0 1

)
and

otherwise τk(v`)− v` =−v`−1 = 0. 2

1.3 Some irreducible representations of B2(Qp)
If n > 1 and 0 6 ` 6 pn − 1, let w`,n ∈ indB

KZ σ be the element

w`,n =
pn−1∑
j=0

(
j

`

) [(
1 −jp−n
0 1

)]
,

so that the initial n-block of w`,n is v`,n.

Definition 1.3.1. If n > 2 and if 1 6 h 6 pn−1 − 1 and if σ = σ1 ⊗ σ2 is a character of KZ such
that σ1(p) = σ2(p), let λ= σ1(p) = σ2(p) and let Sn(h, σ) be the subspace of indB

KZ σ generated
by the translates under the action of B of (−λ−1)n[

(
1 0
0 pn

)
] + wh(p−1),n (see Figure 4).
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The representations we are interested in are the quotients Πn(h, σ) = indB
KZ σ/Sn(h, σ) and

the main result of this section is that they are irreducible if h is primitive. Before we can prove
this, we need a number of technical results.

If f ∈ indB
KZ σ and if 0 6 i 6 n− 1, let

fi =
∑
β∈A

δ≡i mod n

α(β, δ)[gβ,δ]

so that f = f0 + f1 + · · ·+ fn−1.

Lemma 1.3.2. If f ∈ indB
KZ σ, then f ∈ Sn(h, σ) if and only if fi ∈ Sn(h, σ) for all 0 6 i 6 n− 1.

Proof. We only need to check that if f ∈ Sn(h, σ), then fi ∈ Sn(h, σ) and this follows from the
fact that Sn(h, σ) is generated by elements which have their supports in levels equal modulo n. 2

Let in−1 . . . i1i0 be the expansion of h(p− 1) in base p. Note that h 6 pn−1 − 1 implies that
in−1 6 p− 2. Let hk = in−k + pin−k+1 + · · ·+ pk−1in−1 so that hk = phk−1 + in−k and h0 = 0 and
hn = h(p− 1). Recall that the vectors vk,n were defined in § 1.1 and let B+ =

∐
β∈A,δ>0 gβ,δKZ.

Lemma 1.3.3. If the support of g ∈ Sn(h, σ) is in levels > 0, then:

(i) g is a linear combination of B+-translates of (−λ−1)n[
(

1 0
0 pn

)
] + wh(p−1),n;

(ii) if 1 6 k 6 n, then the k-blocks of level 0 of g are in Vhk+1,k.

Proof. Note first that if
(
a c
0 d

)
∈KZ, then(

a c
0 d

)
w`,n =

pn−1∑
j=0

(
j

`

) (
a c
0 d

) [(
1 −jp−n
0 1

)]

=
pn−1∑
j=0

(
j

`

) [(
1 −jp−nad−1

0 1

) (
a c
0 d

)]

= σ1(a)σ2(d)
pn−1∑
j=0

(
jda−1

`

) [(
1 −jp−n
0 1

)]
,

and note also that the initial n-block of
(

1 jp−n

0 1

)
w`,n − w`,n is in V`,n.

Let us now prove condition (i). Set B0 = {
(
a b
0 d

)
∈ B such that valp(a) = valp(d)}. It is enough

to prove that any B0-linear combination of ϕ= (−λ−1)n[
(

1 0
0 pn

)
] + wh(p−1),n which is zero in level

zero is actually identically zero. If
∑

i∈I λi
(
ai bi
0 di

)
· ϕ is such a combination where we assume

for example (using the action of the center) that di = 1, then the terms indexed by i1 and i2
contribute to the same n-block in level zero if and only if bi1 − bi2 ∈ p−nZp and we can therefore
assume that (

ai bi
0 di

)
∈ S =

(
Z×p p−nZp
0 Z×p

)
so that we are looking at the initial n-block. The formulas above and Lemma 1.1.5 applied to
da−1 ∈ Z×p show that if g =

(
a c
0 d

)
∈ S, then the initial n-block of g · ϕ− σ1(a)σ2(d)ϕ belongs to

Vh(p−1),n so that in a linear combination of S-translates of ϕ, the coefficient of [
(

1 0
0 pn

)
] is a nonzero

multiple of the coefficient of wh(p−1),n; if the latter is zero, then so is the former and our linear
combination is identically zero.
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Let us now prove condition (ii). The conclusion of condition (ii) is stable under linear
combinations of B+-translates so by condition (i) we only need to check that if b ∈ B+, then the
k-blocks of bwhn,n are in Vhk+1,k. If b= Id, then the n-block of whn,n is vhn,n which belongs to
Vhn+1,n by definition. If we know that the k-blocks are in Vhk+1,k, then the fact that bhk/pc= hk−1

and Lemma 1.1.6 imply that the (k − 1)-blocks are in Vhk−1+1,k−1, so we are done by induction.
Next, the above formula for

(
a c
0 d

)
w`,n and Lemma 1.1.5 applied to da−1 ∈ Z×p show that the

n-blocks of the
(
a c
0 d

)
whn,n are contained in Vhn+1,n and we are reduced to the claim above.

Finally, gβ,δ · f is f moved up by δ and shifted by β and the conclusion of condition (ii) is
unchanged under those two operations since the Vk,n are stable under the cyclic shift. 2

Recall that τk =
(

1 −1/pk

0 1

)
and that α(β, δ)(τk(f)) = α(β + pδ−k, δ)(f) so that the effect of

τk − Id on a k-block y in level zero is to replace it with ∆(y).

Lemma 1.3.4. If the support of f ∈ Sn(h, σ) is contained in a single k-block with 0 6 k 6 n,
then this k-block is in Vhk,k and all such elements do occur: w`,k ∈ Sn(h, σ) for 0 6 ` 6 hk − 1.

Proof. If k = n, then the n-block of τn(whn,n)− whn,n is vhn−1,n and the set of possible n-blocks
is stable under the cyclic shift so we obtain all of Vhn,n but not Vhn+1,n since Πn(h, σ) 6= 0.
If some v`,k occurs as the k-block of some f , without loss of generality in level zero, then
for all 0 6m 6 p− 1 the (k + 1)-block of

∑p−1
i=0

(
i
m

)
τ ik+1(f) is [

(
0
m

)
v`,k, . . . ,

(
p−1
m

)
v`,k] and this

is vp`+m,k+1 since
(
j
`

)(
i
m

)
=
(
pj+i
p`+m

)
by Lemma 1.1.1. In particular, if vhk,k occurred, then so

would vhk+1,k+1 and we obtain a contradiction. Conversely, assuming inductively that the second
assertion of the lemma holds for k + 1, this tells us that all [

(
0
m

)
v`,k, . . . ,

(
p−1
m

)
v`,k] occur as a

(k + 1)-block for p`+m 6 hk+1 − 1 and by taking m= p− 1 and ` 6 hk − 1 we obtain v`,k and
we are done by a descending induction on k. 2

Let us write as above a (n+ 1)-block as [b0, . . . , bp−1] where each bi is a n-block.

Lemma 1.3.5. If the support of g ∈ Sn(h, σ) is in levels 0, 1, . . . , n− 1, then the (n+ 1)-blocks
of level zero of g are of the form

[µ0vhn,n + x0, . . . , µp−1vhn,n + xp−1],

where xi ∈ Vhn,n and (µ0, . . . , µp−1) ∈ Vh1+1,1.

Proof. By Lemma 1.3.2, we may assume that the support of g is in level zero and Lemma 1.3.3
tells us that the n-blocks of g are in Vhn+1,n so that each of them can be written as µivhn,n + xi
where xi ∈ Vhn,n. By subtracting from g appropriate combinations of translates of the w`,n
with 0 6 ` 6 hn − 1 we obtain a g′ such that xi = 0 for all i and by subtracting appropriate
combinations of translates of (−λ−1)n[

(
1 0
0 pn

)
] + whn,n from g′ we obtain an element g′′ of Sn(h, σ)

with support in level n and whose 1-blocks are the−(−λ−1)n(µ0, . . . , µp−1). Lemma 1.3.3 applied
to
(1 0

0 1/pn

)
g′′ gives us (µ0, . . . , µp−1) ∈ Vh1+1,1. 2

Corollary 1.3.6. If the support of f ∈ indB
KZ σ is in levels 0, 1, . . . , n− 1 and if τn+1(f)− f ∈

Sn(h, σ), then the n-blocks of level zero of f are in Vhn+1,n.

Proof. Lemma 1.3.5 applied to τn+1(f)− f tells us that the (n+ 1)-blocks of τn+1(f)− f in level
zero are of the form [µ0vhn,n + x0, . . . , µp−1vhn,n + xp−1] with xi ∈ Vhn,n and (µ0, . . . , µp−1) ∈
Vh1+1,1. If we write f =

∑
β,δ α(β, δ)[gβ,δ], then the coefficient of [gβ,0] in τn+1(f)− f is

α(β + p−n−1, 0)− α(β, 0) so that the n-blocks of τn+1(f)− f are given by (for readability,
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we omit both β and δ = 0 from the notation)

α

(
1

pn+1

)
− α(0) α

(
1

pn+1
+

1

pn

)
− α
(

1

pn

)
. . . α

(
1

pn+1
+
pn − 1

pn

)
− α
(
pn − 1

pn

)

α

(
2

pn+1

)
− α
(

1

pn+1

)
α

(
2

pn+1
+

1

pn

)
− α
(

1

pn+1
+

1

pn

)
. . . α

(
2

pn+1
+
pn − 1

pn

)
− α
(

1

pn+1
+
pn − 1

pn

)

...
...

...

α

(
p

pn+1

)
− α
(
p− 1

pn+1

)
α

(
p

pn+1
+

1

pn

)
− α
(
p− 1

pn+1
+

1

pn

)
. . . α

(
p

pn+1
+
pn − 1

pn

)
− α
(
p− 1

pn+1
+
pn − 1

pn

)
.

Let y0, . . . , yp−1 be the n-blocks of the (n+ 1)-block of f we are considering. By summing
the rows of the above array, we obtain (recall that α(β) = α(1 + β))

α

(
β +

1
pn

)
− α(β) α

(
β +

2
pn

)
− α

(
β +

1
pn

)
. . . α(β)− α

(
β +

pn − 1
pn

)
which is ∆(y0) so that

∆(y0) =
p−1∑
i=0

(µivhn,n + xi) =
p−1∑
i=0

xi ∈ Vhn,n

since
∑p−1

i=0 µi = 0 because (µ0, . . . , µp−1) ∈ Vh1+1,1 with h1 + 1 = in−1 + 1 6 p− 1 and if ∆(y0) ∈
Vhn,n, then y0 ∈ Vhn+1,n by Lemma 1.1.4. The same result holds for yj by applying the previous
reasoning to τ jn+1(f). 2

Corollary 1.3.7. If the support of f ∈ indB
KZ σ is in levels 0, 1, . . . , n− 1 and the support in

level zero is included in a single n-block and τn(f)− f ∈ Sn(h, σ), then the n-block of f in level
zero is in Vhn+1,n.

Proof. Lemma 1.3.5 applied to g = τn(f)− f tells us that the n-block of τn(f)− f is of the form
µ0vhn,n + x0 with x0 ∈ Vhn,n and (µ0, 0, . . . , 0) ∈ Vh1+1,1 so that µ0 = 0 since h1 + 1 6 p− 1. If y
denotes the n-block of f then the n-block of τn(f)− f is ∆(y) so that ∆(y) ∈ Vhn,n and therefore
y ∈ Vhn+1,n by Lemma 1.1.4. 2

If n > 1 and if 1 6 h 6 pn − 2, we say that h is primitive if there is no d < n dividing n
such that h is a multiple of (pn − 1)/(pd − 1). This condition is equivalent to requiring that if
we write h= en−1 . . . e1e0 in base p, then the map i 7→ ei from Z/nZ to {0, . . . , p− 1} has no
period strictly smaller than n.

Theorem 1.3.8. If n > 2 and if 1 6 h 6 pn−1 − 1 is primitive, then Πn(h, σ) is irreducible.

Proof. It is enough to show that if f ∈ indB
KZ σ is such that f 6= 0 in Πn(h, σ), then some linear

combination of translates of f is equal to [Id] mod Sn(h, σ).
Suppose that the support of f is in levels > a. Since (−λ−1)n[

(
1 0
0 pn

)
] + whn,n is an element

whose support is one element of height n and a n-block of height zero, by subtracting suitable
linear combinations of translates of this from f we may assume that the support of f is in
levels a, a+ 1, . . . , a+ n− 1; multiplying f by some power of

(
1 0
0 p

)
we may then assume that

the support of f is in levels 0, 1, . . . , n− 1. In particular, we have f ∈ (indB
KZ σ)

(
1 Zp

0 1

)
. Let

s0, s1, . . . , sn−1� 0 be such that the support of f is included in the initial s0-block in level zero,
the initial s1-block in level one, . . ., the initial sn−1-block in level n− 1.

Lemma 1.2.4 applied with k = n+ 1 shows that we may replace f by one of the∑pn+1−1
j=0

(
j
`

)
τ jn+1(f) so that τn+1(f)− f ∈ Sn(h, σ). The support of this new f is included in
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the initial max(sj , n+ 1− j)-block in level j for 0 6 j 6 n− 1. Corollary 1.3.6 then shows that
there exists g ∈ Sn(h, σ) which is a linear combination of

(
1 Qp

0 1

)
-translates of (−λ−1)n[

(
1 0
0 pn

)
] +

whn,n and of the w`,n for 0 6 ` 6 hn − 1 such that the n-blocks of f in level zero are the same
as the n-blocks of g in level zero. We can then replace f by

(1 0
0 1/p

)
(f − g) and the support of

this new f is included in the initial max(sj+1, n− j)-block in level j for 0 6 j 6 n− 2 and in
the initial max(s0 − n, 1)-block in level n− 1 if j = n− 1. By iterating the procedure of this
paragraph, we can reduce the width of the support of f until sj = n− j for 0 6 j 6 n− 1.

The modified f coming from the previous paragraph satisfies τn(f)− f ∈ Sn(h, σ) and its
support is included in the initial (n− j)-block in level j for 0 6 j 6 n− 1. Corollary 1.3.7
then shows that there exists g ∈ Sn(h, σ) which is a linear combination of

(
1 Qp

0 1

)
-translates of

(−λ−1)n[
(

1 0
0 pn

)
] + whn,n and of the w`,n for 0 6 ` 6 hn − 1 such that the n-block of g in level zero

is the same as the n-block of f in level zero. We can then replace f by
(1 0

0 1/p

)
(f − g) and the

support of this new f is included in the initial (n− j − 1)-block in level j for 0 6 j 6 n− 1.
The modified f coming from the previous paragraph satisfies τn−1(f)− f ∈ Sn(h, σ) and its

support is included in the initial (n− j − 1)-block in level j for 0 6 j 6 n− 1 and the k-block xk
of f in level n− k − 1 is in Vhk+1,k by applying Lemmas 1.3.2, 1.3.4 and 1.1.4. By Lemma 1.3.4,
we can subtract elements of Vhk,k from xk without changing the class of f in Πn(h, σ) so we can
assume that each xk is a (possibly zero) multiple of vhk,k. If 0 6m 6 p− 1, let Um be the operator
defined by Um(f) =

∑p−1
i=0

(
i
m

)
τ in(f) as in the proof of Lemma 1.3.4. At level n− 1− k it has the

effect of turning vhk,k into vhk+1+m−in−k−1,k+1 since hk+1 = phk + in−k−1 and
(
j
`

)(
i
m

)
=
(
pj+i
p`+m

)
.

If we choose m such that m− in−k−1 6 0 and m− in−k−1 = 0 for at least one value of k, then
Um(f) is made up of (k + 1)-blocks in level n− k − 1 and we can get rid of all of those for which
m− in−k−1 6−1. This allows us to lower the number of nonzero blocks of f unless m= in−k−1

for all the corresponding nonzero blocks. In this case we lower f by one level and if there is a
block in level zero we send it to level n before lowering f by subtracting an appropriate multiple
of (−λ−1)n[

(
1 0
0 pn

)
] + whn,n. By iterating this procedure (replacing f by Um(f) and lowering a

possibly modified f), we can reduce the number of nonzero blocks of f until our procedure starts
cycling.

If this is the case then there exists some d dividing n such that at some point f has nonzero
blocks exactly in levels n− 1− `d for 0 6 ` 6 (n/d)− 1 and the map r 7→ ir is then also periodic
of period d. If d= n, then we are done. If d < n, then we claim that hd is not divisible by
p− 1. Indeed, we have h(p− 1) = hd(pn − 1)/(pd − 1) since r 7→ ir is periodic of period d, and
if p− 1 divides hd, then h is not primitive. If a ∈ Z×p is such that a is a generator of F×p , then
µa(v`,k)− a`v`,k ∈ V`,k by Lemma 1.1.5. This implies that σ2(a−1)

(
1 0
0 a

)
f − f has at least one

fewer block (the top one) and is nonzero (the block of level n− 1− d is not in Sn(h, σ)), so that
we can iterate again our procedure of the previous paragraph (replacing f by Um(f) and lowering
a possibly modified f) until d= n so that f becomes equivalent to an element supported on only
one point. 2

Remark 1.3.9. We have Πn(h, σ)⊗ (χ ◦ det)'Πn(h, σ1χ⊗ σ2χ) by Lemma 1.2.2.

2. Galois representations and (ϕ, Γ)-modules

In this section, we construct the (ϕ, Γ)-modules associated to the absolutely irreducible E-linear
representations of GQp and then apply Colmez’s functor to them in order to obtain a smooth
irreducible representation of B.
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2.1 Construction of (ϕ, Γ)-modules
Let Cp be the completion of Qp and let Ẽ+ = lim←−x7→xp OCp be the ring defined by Fontaine (see

for example [Fon94, § 1.2]). Recall that if x, y ∈ Ẽ+, then

(xy)(i) = x(i)y(i) and (x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))p
j

and that Ẽ+ is endowed with the valuation valE defined by valE(y) = valp(y(0)). If we choose
once and for all a compatible system {ζpn}n>0 of pnth roots of one, then ε= (1, ζp, ζp2 , . . .) ∈ Ẽ+

and we set X = ε− 1 and Ẽ = Ẽ+[1/X] so that by [Win83, § 4.3], Ẽ is an algebraically closed
field of characteristic p, which contains Fp((X))sep as a dense subfield. Given the construction
of Ẽ from Cp, we see that it is endowed with a continuous action of GQp . We have, for instance,
g(X) = (1 +X)χcycl(g) − 1 if g ∈ GQp so that HQp = ker χcycl acts trivially on Fp((X)) and we
obtain a map HQp →Gal(Fp((X))sep/Fp((X))) which is an isomorphism (this follows from the
theory of the ‘field of norms’ of [FW79], see for example [Fon90, Theorem 3.1.6]). We also obtain
an action of Γ = GQp/HQp on Fp((X)).

If W is an Fp-linear representation of GQp , then the Fp((X))-vector space D(W ) =
(Fp((X))sep ⊗Fp W )HQp inherits the Frobenius ϕ of Fp((X))sep and the residual action of Γ.

Definition 2.1.1. A (ϕ, Γ)-module over Fp((X)) is a finite-dimensional Fp((X))-vector space
endowed with a semilinear Frobenius ϕ such that Mat(ϕ) ∈GLd(Fp((X))) and a continuous and
semilinear action of Γ commuting with ϕ.

We see that D(W ) is then a (ϕ, Γ)-module over Fp((X)). If E is a finite extension of Fp,
we endow it with the trivial ϕ and the trivial action of Γ so that we may talk about (ϕ, Γ)-
modules over E((X)) = E ⊗Fp Fp((X)) and we then have the following result which is proved
in [Fon90, § 1.2] and whose proof we recall for the convenience of the reader.

Theorem 2.1.2. The functor W 7→D(W ) gives an equivalence of categories between the
category of E-representations of GQp and the category of (ϕ, Γ)-modules over E((X)).

Sketch of proof. Given the isomorphism HQp 'Gal(Fp((X))sep/Fp((X))), Hilbert’s theorem 90
tells us that H1

discrete(HQp ,GLd(Fp((X))sep)) = {1} if d > 1 so that if W is an Fp-linear
representation of HQp , then

Fp((X))sep ⊗Fp W ' (Fp((X))sep)dim(W )

as representations of HQp so that the Fp((X))-vector space D(W ) = (Fp((X))sep ⊗Fp W )HQp is of
dimension dim(W ) and W = (Fp((X))sep ⊗Fp((X)) D(W ))ϕ=1.

If D is a (ϕ, Γ)-module over Fp((X)), then let W (D) = (Fp((X))sep ⊗Fp((X)) D)ϕ=1. If we choose
a basis of D and if Mat(ϕ) = (pij)16i,j6dim(D) in that basis, then the algebra

A= Fp((X))[X1, . . . , Xdim(D)]
/(

Xp
j −

∑
i

pijXi

)
16j6dim(D)

is an étale Fp((X))-algebra of rank pdim(D) and W (D) = HomFp((X))-algebra(A, Fp((X))sep) so that
W (D) is an Fp-vector space of dimension dim(D).

It is then easy to check that the functors W 7→D(W ) and D 7→W (D) are the inverse of each
other. Finally, if E 6= Fp, then one can consider an E-representation as an Fp-representation with
an E-linear structure and likewise for (ϕ, Γ)-modules, so that the equivalence carries over. 2
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We now compute the (ϕ, Γ)-modules associated to certain Galois representations. If n is an
integer greater than or equal to one, choose πn ∈Qp such that πp

n−1
n =−p. The fundamental

character of level n defined in [Ser72, § 1.7], ωn : IQp → F×p is given by ωn(g) = g(πn)/πn ∈ F×p
for g ∈ IQp . This definition does not depend on the choice of πn and shows that ωn extends
to a character GQpn → F×pn . With this definition, ωn is actually the reduction mod p of the
Lubin–Tate character associated to the uniformizer p of the field Qpn .

In order to describe the (ϕ, Γ)-modules associated to irreducible mod p representations,
we need to give a ‘characteristic p’ construction of ωn. Let ω = ω1 be the mod p cyclotomic
character and let Y ∈ Fp((X))sep be an element such that Y (pn−1)/(p−1) =X. If g ∈ GQp , then
fg(X) = ω(g)X/g(X) depends only on the image of g in Γ. Since fg(X) ∈ 1 +XFpJXK, the
formula fsg (X) makes sense if s ∈ Zp.

Lemma 2.1.3. If g ∈ GQpn , then g(Y ) = Y ωpn(g)f−(p−1)/(pn−1)
g (X).

Proof. Recall that X ∈ Ẽ+ = lim←−OCp is equal to ε− 1 where ε= (ζpj )j>0 and where {ζpj}j>0 is
a compatible sequence. If j > 1, pick πn,j ∈ OCp such that

π
(pn−1)/(p−1)
n,j = ζpj − 1.

If g ∈ GQpn , then g(ζpj − 1) = [ω(g)](ζpj − 1)f−1
g (ζpj − 1) where we also write fg(X) for

[ω(g)]X/((1 +X)χcycl(g) − 1) ∈ 1 +XZpJXK and so there exists ωn,j(g) ∈ F×pn such that

g(πn,j)
πn,j

= [ωn,j(g)]f−(p−1)/(pn−1)
g (ζpj − 1),

where [·] is the Teichmüller lift from F×pn to Q×pn . The map g 7→ ωn,j(g) is a character of GQpn

which does not depend on the choice of πn,j . In addition, we have{
(ζpj+1 − 1)p = (ζpj − 1) · (1 + O(p1/p)) if j > 1,
(ζp − 1)p−1 =−p · (1 + O(p1/p)),

so that ωpn,j+1 = ωn,j if j > 1 and ωn,1 = ωn. This also tells us that we may choose the πn,j so that

πpn,j+1/πn,j ∈ 1 + p1/pOCp . If we write Y = (y(i)) ∈ lim←−OCp , then we have y(i) = limj→+∞ πp
j

n,i+j

since the πn,j are compatible in the sense that πpn,j+1/πn,j ∈ 1 + p1/pOCp so that if g ∈ GQpn ,
then

g(y(i))
y(i)

= [ωn,i(g)] · lim
j→+∞

(f−(p−1)/(pn−1)
g (ζpi+j − 1))p

j
,

and therefore we have g(Y ) = Y ωpn(g)f−((p−1)/(pn−1))
g (X) in Ẽ. 2

If 1 6 h 6 pn − 2 is primitive, the characters ωhn, ω
ph
n , . . . , ω

pn−1h
n of IQp are pairwise distinct.

Let µλ be the unramified character sending the arithmetic Frobenius to λ−1 (so that later when
we normalize class field theory to send the geometric Frobenius to p, then µλ(p) = λ).

Lemma 2.1.4. Every absolutely irreducible n-dimensional E-linear representation of GQp is

isomorphic (after possibly enlarging E) to (ind
GQp

GQpn
ωhn)⊗ µλ for some primitive 1 6 h 6 pn − 2

and some λ ∈ E×.

Proof. If W is such a representation, then by [Ser72, § 1.6], we may extend E so that W |IQp

splits as a direct sum of n tame characters and since W is irreducible, these characters are
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transitively permuted by Frobenius so that they are of level n and there exists a primitive h such
that W =

⊕n−1
i=0 Wi where IQp acts on Wi by ωp

ih
n . Since ωn extends to GQpn each Wi is stable

under GQpn which then acts on it by ωp
ih
n χi where χi is an unramified character of GQpn . The

lemma then follows from Frobenius reciprocity. 2

If λ ∈ F×p is such that λn ∈ F×p , let Wλ = {α ∈ Fp such that αp
n

= λ−nα} so that Wλ is a Fpn-
vector space of dimension one and hence a Fp-vector space of dimension n. By composing the
map Gal(Qnr

p (πn)/Qp)
∼−→ F×pn o Ẑ with the map F×pn o Ẑ→ EndFp(Wλ) given by (x, 0) 7→mh

x

(where mx is the multiplication by x map) and by (1, 1) 7→ (α 7→ αp) we obtain an n-dimensional
Fp-linear representation of GQp which is isomorphic to (ind

GQp

GQpn
ωhn)⊗ µλ after extending

scalars and whose determinant is ωhµn−1
−1 µnλ so that if λn = (−1)n−1, then the determinant

is ωh and we call ind(ωhn) the representation thus constructed; it is then uniquely determined by
the two conditions det ind(ωhn) = ωh and ind(ωhn)|IQp

=
⊕n−1

i=0 ω
pih
n since (ind

GQp

GQpn
ωhn)⊗ µλ1 =

(ind
GQp

GQpn
ωhn)⊗ µλ2 if and only if we have λn1 = λn2 .

Corollary 2.1.5. Every absolutely irreducible n-dimensional E-linear representation of GQp

is isomorphic to ind(ωhn)⊗ µλ for some primitive 1 6 h 6 pn − 2 and some λ ∈ F×p such that
λn ∈ E×.

Theorem 2.1.6. The (ϕ, Γ)-module D(ind(ωhn)) is defined over Fp((X)) and admits a basis

e0, . . . , en−1 in which γ(ej) = fγ(X)hp
j(p−1)/(pn−1)ej if γ ∈ Γ and ϕ(ej) = ej+1 for 0 6 j 6 n− 2

and ϕ(en−1) = (−1)n−1X−h(p−1)e0.

Proof. Let W be the Fp-representation of GQp associated to the (ϕ, Γ)-module described in the
theorem. If f =Xhe0 ∧ · · · ∧ en−1, then ϕ(f) = f and γ(f) = ω(γ)hf so that the determinant
of W is indeed ωh and therefore we only need to show that the restriction of Fpn ⊗Fp W to IQp is

ωhn ⊕ ω
ph
n ⊕ · · · ⊕ ωp

n−1h
n . To clarify things, let us write F\

pn for Fpn when it occurs as a coefficient
field, so that ϕ is trivial on F\

pn .

If we write F\
pn ⊗Fp Fp((X))sep as

∏n−1
k=0 Fp((X))sep via the map x⊗ y 7→ (σk(x)y) where σ is

the absolute Frobenius on F\
pn , then given (x0, . . . , xn−1) ∈

∏n−1
k=0 Fp((X))sep, we have

ϕ((x0, . . . , xn−1)) = (ϕ(xn−1), ϕ(x0), . . . , ϕ(xn−2))
g((x0, . . . , xn−1)) = (g(x0), . . . , g(xn−1)),

if g ∈ GQpn (but not if g ∈ GQp). Choose some α ∈ Fp((X))sep such that αp
n−1 = (−1)n−1 and

define

v0 = (αY h, 0, . . . , 0) · e0 + (0, αpY ph, . . . , 0) · e1 + · · · (0, . . . , 0, αpn−1
Y pn−1h) · en−1

v1 = (0, αY h, . . . , 0) · e0 + (0, 0, αpY ph, . . . , 0) · e1 + · · · (αpn−1
Y pn−1h, 0, . . . , 0) · en−1

...
vn−1 = (0, . . . , 0, αY h) · e0 + (αpY ph, 0, . . . , 0) · e1 + · · · (0, . . . , 0, αpn−1

Y pn−1h, 0) · en−1.

The vectors v0, . . . , vn−1 give a basis of F\
pn ⊗Fp (Fp((X))sep ⊗Fp((X)) D(W )) and the formulas for

the action of ϕ imply that ϕ(vj) = vj so that vj ∈ F\
pn ⊗Fp W . The formulas for the action of Γ

and Lemma 2.1.3 imply that g(vj) = ωhp
1−j

n vj if g ∈ IQp which finishes the proof. 2
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2.2 From Galois to Borel

If α(X) ∈ E((X)), then we can write

α(X) =
p−1∑
j=0

(1 +X)jαj(Xp)

in a unique way, and we define a map ψ : E((X))→ E((X)) by the formula ψ(α)(X) = α0(X).
A direct computation shows that if 0 6 r 6 p− 1, then ψ(Xpm+r) = (−1)rXm. If D is a (ϕ, Γ)-
module over E((X)) and if y ∈D, then likewise we can write y =

∑p−1
j=0(1 +X)jϕ(yj) and

we set ψ(y) = y0. The operator ψ thus defined commutes with the action of Γ and satisfies
ψ(α(X)ϕ(y)) = ψ(α)(X)y and ψ(α(Xp)y) = α(X)ψ(y).

If W = ind(ωhn)⊗ χ with χ= ωsµλ where from now on λ ∈ E×, then Theorem 2.1.6 above
implies that the (ϕ, Γ)-module D(W ) is defined on E((X)) and admits a basis e0, . . . , en−1

in which γ(ej) = ωs(γ)fγ(X)hp
j(p−1)/(pn−1)ej if γ ∈ Γ and ϕ(ej) = λej+1 for 0 6 j 6 n− 2 and

ϕ(en−1) = (−1)n−1λX−h(p−1)e0. Since ω
(pn−1)/(p−1)
n = ω, we can always modify h (and χ

accordingly) in order to have 1 6 h 6 (pn − 1)/(p− 1)− 1 so that h(p− 1) 6 pn − 2. Recall that
in−1 . . . i1i0 is the expansion of h(p− 1) in base p and that hk = in−k + pin−k+1 + · · ·+ pk−1in−1

so that h0 = 0 and hn = h(p− 1).

Lemma 2.2.1. If fj =Xhjej and α(X) ∈ E((X)), then we have

ψ(α(X)fj) =

{
λ−1ψ(α(X)Xin−j )fj−1 if j > 1,

λ−1(−1)n−1ψ(α(X)Xi0)fn−1 if j = 0.

Proof. If j > 1, then we can write α(X)fj = λ−1α(X)Xhjϕ(ej−1) and since hj = phj−1 + in−j ,
we have

ψ(α(X)fj) = λ−1Xhj−1ψ(α(X)Xin−j )ej−1 = λ−1ψ(α(X)Xin−j )fj−1.

If j = 0, then α(X)f0 = α(X)e0 = α(X)(−1)n−1λ−1Xh(p−1)ϕ(en−1) so that

ψ(α(X)f0) = λ−1(−1)n−1Xhn−1ψ(α(X)Xi0)en−1 = λ−1(−1)n−1ψ(α(X)Xi0)fn−1

which finishes the proof. 2

Corollary 2.2.2. The EJXK-module D](W ) =
⊕n−1

j=0 EJXK · fj is stable under ψ and the map

ψ : D](W )→D](W ) is surjective.

Proof. Lemma 2.2.1 implies that D](W ) is stable under ψ. Furthermore, the formula ψ(Xpm+r) =
(−1)rXm for 0 6 r 6 p− 1 implies that the map αj(X) 7→ ψ(αj(X)Xin−j ) is surjective for
j > 1, as well as the map α0(X) 7→ ψ(α0(X)Xi0), which implies that ψ : D](W )→D](W ) is
surjective. 2

A quick computation shows that if y ∈D](W ), then ψn(X−1y) ∈D](W ) so that our D](W )
coincides with the lattice defined by Colmez in [Col07, Proposition II.4.2(iv)]. We now define
Colmez’s functor (see [Col07, § III]):

lim←−
ψ

D](W ) = {y = (y0, y1, . . .) with yi ∈D](W ) such that ψ(yi+1) = yi for all i > 0},
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and we endow this space with an action of B (using the same normalization as in [Ber05] which
differs by a twist from the normalization of [Col07])((

x 0
0 x

)
· y
)
i

= (ωh−1χ2)−1(x)yi;((
1 0
0 pj

)
· y
)
i

= yi−j = ψj(yi);((
1 0
0 a

)
· y
)
i

= γa−1(yi) where γa−1 ∈ Γ is such that χcycl(γa−1) = a−1 ∈ Z×p ;((
1 z
0 1

)
· y
)
i

= ψj((1 +X)p
i+jzyi+j) for i+ j >−val(z).

We then define Ω(W ) = (lim←−ψ D](W ))∗ so that Ω(W ) is a smooth representation (see § 2.3 for a

proof of this) of B whose central character is ωh−1χ2. Denote by θ0 the linear form on D](W )
given by

θ0 : α0(X)f0 + · · ·+ αn−1(X)fn−1 7→ α0(0).

If y = (y0, y1, . . .), then we define θ ∈ Ω(W ) to be the linear form θ : y 7→ θ0(y0).

Lemma 2.2.3. If
(
a b
0 d

)
∈KZ, then

(
a b
0 d

)
· θ = ωh−1(a)χ(ad)θ.

Proof. We have ((
a b
0 d

)
· θ
)

(y) = θ

((
a−1 −ba−1d−1

0 d−1

)
· y
)

= θ

((
a−1 0
0 a−1

) (
1 −bd−1

0 ad−1

)
· y
)

= (ωh−1χ2)(a)ωs(a−1d)θ(y)
= ωh−1(a)χ(ad)θ(y),

since µλ(a) = µλ(d) because
(
a b
0 d

)
∈KZ so that χ(a) = χ(d)ωs(ad−1). 2

For 0 6 k 6 n, recall that hk = in−k + pin−k+1 + · · ·+ pk−1in−1 so that hn = h(p− 1).

Theorem 2.2.4. The linear form θ is killed by

(−1)n−1λn · Id−
pn−1∑
j=0

(
j

h(p− 1)

) (
pn −j
0 1

)
.

Proof. Using the definition of the action of B on lim←−ψ D](W ), we obtain

(
(−1)n−1λn · θ −

pn−1∑
j=0

(
j

h(p− 1)

) (
pn −j
0 1

)
θ

)
(y)

= (−1)n−1λn · θ0(y0)− λ2n · θ0 ◦ ψn
(pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)jy0

)
,
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and this is equal to zero for obvious reasons if y0 = αi(X)fi with i 6= 0 so that we now assume
that y0 = α0(X)f0. Lemma 1.1.2 implies that

pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)j ∈Xpn−hn−1 +Xpn−hnEJXK,

and the fact that p` − h` + in−` = p(p`−1 − h`−1) for 1 6 ` 6 n together with the formulas of
Lemma 2.2.1 and the fact that ψ(Xpm+r) = (−1)rXm then imply that

ψn
(pn−1∑
j=0

(
j

h(p− 1)

)
(1 +X)jα0(X)f0

)
≡ (−1)n−1λ−nα0(X)f0 mod XD](W ),

which proves our claim. 2

2.3 Profinite representations and smooth representations
In this section, we prove that Ω(W ) is a smooth irreducible representation of B if dim(W ) > 2.
In order to do so, we recall a few results concerning profinite representations and their dual.
Let G be a topological group and let X be a profinite E-linear representation of G where E is
as before a finite extension of Fp. Let X∗ be the dual of X, that is the set of continuous linear
forms on X.

Lemma 2.3.1. The representation X∗ is a smooth representation of G.

Proof. If f ∈X∗, then the map (g, x) 7→ f(gx− x) is a continuous map G×X → E and its
kernel is therefore open in G×X so that there exists an open subgroup K of G and an open
subspace Y of X such that f(ky − y) = 0 whenever k ∈K and y ∈ Y . Since X is compact, Y
is of finite codimension in X and we can write X = Y ⊕

⊕s
i=1 Exi. For each i there is an open

subgroup Ki of G such that f(kxi − xi) = 0 if k ∈Ki and this implies that if H =K ∩
⋂s
i=1 Ki,

then f(hx− x) = 0 for any x ∈X so that f ∈ (X∗)H with H an open subgroup of G. 2

Lemma 2.3.2. If X is topologically irreducible, then X∗ is irreducible.

Proof. If X = lim←−i∈I Xi where each Xi is a finite-dimensional E-vector space, then a linear
form on X is continuous if and only if it factors through some Xi and hence X∗ = lim−→i∈I X

∗
i

so that (X∗)∗ = (lim−→i∈I X
∗
i )∗ = lim←−i∈I Xi =X. If Λ is a G-invariant subspace of X∗, then

ker(Λ) =
⋂
f∈Λ ker(f) is a G-invariant closed subspace of X which is therefore either equal to X

or to {0}. If it is equal to X, then obviously Λ = {0} and if it is equal to {0}, then the fact that
(X∗)∗ =X implies that no nonzero linear form on X∗ is zero on Λ so that Λ =X∗. 2

The representation lim←−ψ D](W ) is a profinite representation of B since D](W )' EJXKdim(W )

and we have the following result (see also [Ber05, Proposition 1.2.3]).

Proposition 2.3.3. The representation Ω(W ) = (lim←−ψ D](W ))∗ is a smooth irreducible

representation of B if dim(W ) > 2.

Proof. Lemma 2.3.2 shows that it is enough to prove that lim←−ψ D](W ) is a topologically
irreducible representation of B, and [Col07, Lemma III.3.6] asserts that any closed B-invariant
subspace of lim←−ψ D](W ) is of the form lim←−ψ M where M is a sub-EJXK-module of D](W ) stable
under ψ and Γ and such that ψ :M →M is surjective. Since D(W ) is irreducible, M is a lattice
by [Col07, Proposition II.3.5] applied to E((X))⊗EJXK M and [Col07, Proposition II.4.2(iv)]
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implies that such an M contains X ·D](W ) and the formulas of Lemma 2.2.1 imply that
ψ(Xfj) ∈ E× · fj−1 if in−j 6= p− 1. Since h(p− 1) 6= pn − 1, at least one of the in−j is 6= p− 1 so
that M contains one fj and hence all of them by repeatedly applying ψ. 2

3. Breuil’s correspondence for mod p representations

In this section, we show that the representations constructed in § 1 are the same as those arising
from Colmez’s functor applied to n-dimensional absolutely irreducible representations of GQp .
We also show that if n= 2, then these representations are the restriction to B of the supersingular
representations of GL2(Qp) predicted by Breuil.

3.1 The isomorphism in dimension n

By Corollary 2.1.5, every absolutely irreducible n-dimensional E-linear representation W of GQp

is isomorphic (after possibly enlarging E) to ind(ωhn)⊗ χ with 1 6 h 6 pn − 2 primitive and
χ : GQp → E× a character. Furthermore, ω(pn−1)/(p−1)

n = ω so we can change h and χ in order to
have 1 6 h 6 (pn − 1)/(p− 1)− 1 which implies that at least one of the n digits of h in base p
is zero. The intertwining ind(ωhn)' ind(ωphn ) implies that we can make a cyclic permutation of
the digits of h without changing ind(ωhn) and if we arrange for the leading digit to be zero, then
1 6 h 6 pn−1 − 1.

Theorem 3.1.1. If W = ind(ωhn)⊗ χ with n > 2 and 1 6 h 6 pn−1 − 1 primitive, then Ω(W )'
Πn(h, σ) with σ = χωh−1 ⊗ χ.

Proof. By Lemma 2.2.3 and Frobenius reciprocity, Ω(W ) is a quotient of indB
KZ σ with

σ = χωh−1 ⊗ χ, the map being given by
∑

β,δ α(β, δ)[gβ,δ] 7→
∑

β,δ α(β, δ)gβ,δ · θ. This map is
surjective (since it is nonzero and Ω(W ) is irreducible by Proposition 2.3.3) and bearing in
mind that

(pn 0
0 pn

)
acts by λ2n, Theorem 2.2.4 implies that its kernel contains (−λ−1)n[

(
1 0
0 pn

)
] +

wh(p−1),n and hence Sn(h, σ), so that we obtain a nontrivial map Πn(h, σ)→ Ω(W ). Since
Πn(h, σ) is irreducible by Theorem 1.3.8, this map is an isomorphism. 2

Note that we can define two B-equivariant operators T+ and T− on indB
KZ σ by

T+([g]) =
p−1∑
j=0

[
g

(
p j
0 1

)]
and T−([g]) =

[
g

(
1 0
0 p

)]
,

so that the ‘usual’ Hecke operator is T = T+ + T− (see Figures 5 and 6). It is easy to see that
Theorem 3.1.1 applied with h= 1 simply says that

Ω(ind(ωn)⊗ χ)' indB
KZ(1⊗ 1)

T− + (−1)nTn−1
+

⊗ (χ ◦ det).

3.2 Supersingular representations restricted to B2(Qp)
We now explain how to relate the representations Π2(h, σ) to the supersingular representations
of [BL94, BL95, Bre03a]. Recall that if r > 0, then Symr E2 is the space of polynomials in x and y
which are homogeneous of degree r with coefficients in E, endowed with the action of GL2(Zp)
factoring through GL2(Fp) given by

(
a b
c d

)
P (x, y) = P (ax+ cy, bx+ dy) and that we extend the

action of GL2(Zp) to an action of GL2(Zp)Z by
(p 0

0 p

)
P (x, y) = P (x, y). We now assume that

0 6 r 6 p− 1.
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Figure 5. The operator T+.

Figure 6. The operator T−.

Lemma 3.2.1. The ‘restriction to B’ map

resB : indGL2(Qp)
GL2(Zp)Z Symr E2→ indB

KZ Symr E2

is an isomorphism.

Proof. This follows from the Iwasawa decomposition GL2(Qp) = B ·GL2(Zp). 2

Let T be the Hecke operator defined in [BL94, BL95]. Let [g, v] ∈ indGL2(Qp)
GL2(Zp)Z Symr E2 be the

element defined by [g, v](h) = Symr(hg)(v) if hg ∈GL2(Zp)Z and [g, v](h) = 0 otherwise, so that
h[g, v] = [hg, v] and [gk, v] = [g, Symr(k)v] if k ∈GL2(Zp)Z.

Lemma 3.2.2. We have

T ([1, xr−iyi]) =



p−1∑
j=0

(
p j

0 1

)
[1, (−j)ixr] if i 6 r − 1;

(
1 0
0 p

)
[1, yr] +

p−1∑
j=0

(
p j

0 1

)
[1, (−j)rxr] if i= r.

Proof. See [Bre03b, § 2.2]. 2

The group KZ acts on xr ∈ Symr E2 by ωr ⊗ 1 so that we obtain a nontrivial injective map
indB

KZ ω
r ⊗ 1→ indB

KZ Symr E2.

Proposition 3.2.3. The map

indB
KZ(ωr ⊗ 1)

T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1)
→ indB

KZ Symr E2

T (indB
KZ Symr E2)

is an isomorphism.
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Proof. The map above is injective by construction, and the representation to the right is
generated by the B-translates of [1, yr] since the

(
1 Zp

0 1

)
-translates of yr generate Symr E2.

Lemma 3.2.2 applied with i= r shows that [1, yr] ∈ T (indB
KZ Symr E2) + indB

KZ(ωr ⊗ 1) so that
the map is surjective. 2

Lemma 3.2.4. If r > 1, then T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1) is generated by the B-translates
of 

T ([1, xr−iyi]) for 0 6 i 6 r − 1,

T

(p−1∑
i=0

λi

[(
p i

0 1

)
, yr
])

where (λ0, . . . , λp−1) ∈ V ⊥r,1.

Proof. Lemma 3.2.2 above implies that T ([1, xr−iyi]) ∈ indB
KZ(ωr ⊗ 1) if i 6 r − 1 and hence

likewise for the B-translates of those vectors. We therefore only need to determine when
a vector of the form T (

∑
α[bα, λαyr]) belongs to indB

KZ(ωr ⊗ 1). If v is a vector v =∑
β,δ

∑p−1
i=0 λβ,δ,i[gp−1β+p−1i,δ, y

r] (note that A=
∐p−1
i=0 p

−1A+ p−1i), then we have

T (v) =
∑
β,δ

gβ,δ+1 · T
(
λβ,δ,0

[(
1 0 · p−1

0 p−1

)
, yr
]

+ · · ·+ λβ,δ,p−1

[(
1 (p− 1) · p−1

0 p−1

)
, yr
])
,

so that by Lemma 3.2.2, the set of vectors v such that T (v) ∈ indB
KZ(ωr ⊗ 1) is generated by

the B-translates of the vλ =
∑p−1

i=0 λi[
(1 p−1i

0 p−1

)
, yr] such that T (vλ) ∈ indB

KZ(ωr ⊗ 1). Lemma 3.2.2
shows that this is the case if and only if

p−1∑
i=0

λi

[(
1 i
0 1

)
, yr
]
∈ indB

KZ(ωr ⊗ 1)

and so if and only if
∑p−1

i=0 λi(ix+ y)r ∈ E · xr which is equivalent to (λ0, . . . , λp−1) ∈ V ⊥r,1 since
the vector space generated by the sequences (0`, 1`, . . . , (p− 1)`) for 0 6 ` 6 r − 1 is Vr,1 (here
00 = 1). Finally, we multiply the resulting vλ by

(p 0
0 p

)
. 2

Lemma 3.2.5. If r = 0, then T (indB
KZ(1⊗ 1)) is generated by the B-translates of(

1 0
0 p

)
[1, 1] +

p−1∑
j=0

(
p j
0 1

)
[1, 1]

and if r > 1, then T (indB
KZ Symr E2) ∩ indB

KZ(ωr ⊗ 1) is generated by the B-translates of

p−1∑
j=0

λj

(
p j
0 1

)
[1, xr],

for (λ0, . . . , λp−1) ∈ Vr,1 and of

p−1∑
i=0

µii
r[1, xr] +

p−1∑
i=0

µi

(
p i
0 1

) p−1∑
j=0

(−j)r
(
p j
0 1

)
[1, xr],

where (µ0, . . . , µp−1) ∈ V ⊥r,1.
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Proof. Since indB
KZ(1⊗ 1) is generated by the B-translates of [1, 1], the space T (indB

KZ(1⊗ 1)) is
generated by the B-translates of

T ([1, 1]) =
(

1 0
0 p

)
[1, 1] +

p−1∑
j=0

(
p j
0 1

)
[1, 1]

which proves the first part.
If r > 1, then Lemma 3.2.2 tells us that

T ([1, xr−iyi]) =
p−1∑
j=0

(
p j
0 1

)
[1, (−j)ixr]

for i 6 r − 1 and that

T

(
p−1∑
i=0

µi

[(
p i
0 1

)
, yr
])

=
p−1∑
i=0

µi

[(
1 i
0 1

)
, yr
]

+
p−1∑
i=0

µi

(
p i
0 1

) p−1∑
j=0

(−j)r
(
p j
0 1

)
[1, xr].

The condition (µ0, . . . , µp−1) ∈ V ⊥r,1 implies that
∑p−1

i=0 µi[
(

1 i
0 1

)
, yr] =

∑p−1
i=0 µii

r[1, xr] and we are
done by Lemma 3.2.4. 2

Theorem 3.2.6. If 1 6 h 6 p− 1, then we have an isomorphism of representations of B

Π2(h, σ)'
indGL2(Qp)

GL2(Zp)Z Symh−1 E2

T (indGL2(Qp)
GL2(Zp)Z Symh−1 E2)

⊗ (χ ◦ det).

Proof. First of all, we have

(indGL2(Qp)
GL2(Zp)Z Symh−1 E2)/T ' (indB

KZ Symh−1 E2)/T

by Lemma 3.2.1, so we work with the latter space. We can twist both sides by the inverse of
χ ◦ det so that σ = ωh−1 ⊗ 1 by Remark 1.3.9. Given Proposition 3.2.3, all we need to check is
that if

T (h, σ) = T (indB
KZ Symh−1 E2) ∩ indB

KZ σ,

then T (h, σ) contains S2(h, σ). The space generated by the vectors (λ0, . . . , λp−1) ∈ Vh−1,1 and by
(0h−1, 1h−1, . . . , (p− 1)h−1) is Vh,1 so that by Lemma 3.2.5, T (h, σ) contains all of the elements

p−1∑
i=0

µii
h−1[Id] +

p−1∑
i=0

p−1∑
j=0

µiνj

[(
p2 pj + i
0 1

)]
,

with µ ∈ Vp−h+1,1 and ν ∈ (−1)h−1(h− 1)!vh−1,1 + Vh−1,1. If we take µi =
( −i
p−h
)

and νj =
(h− 1)!

(−j−1
h−1

)
, then the fact that(

−i
p− h

)(
−j − 1
h− 1

)
=
(

−pj − i
p(h− 1) + p− h

)
=
(
−pj − i
h(p− 1)

)
shows that T (h, σ) contains S2(h, σ). 2
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