A GELFAND-PHILLIPS SPACE NOT CONTAINING *l*₁ WHOSE DUAL BALL IS NOT WEAK* SEQUENTIALLY COMPACT

BENGT JOSEFSON

Department of Mathematics, Linköpings University, S-581 83 Linköping, Sweden e-mail: bejos@mai.lin.se

(Received 25 June, 1999)

Abstract. A set D in a Banach space E is called *limited* if pointwise convergent sequences of linear functionals converge uniformly on D and E is called a GP-space (after Gelfand and Phillips) if every limited set in E is relatively compact. Banach spaces with weak* sequentially compact dual balls (W*SCDB for short) are GP-spaces and $l_1(A)$ is a GP-space without W*SCDB. Disproving a conjecture of Rosenthal and inspired by James tree space, Hagler and Odell constructed a class of Banach spaces ([HO]-spaces) without both W*SCDB and subspaces isomorphic to l_1 . Schlumprecht has shown that there is a subclass of the [HO]-spaces which are also GP-spaces. It is not clear however if any [HO]-construction yields a GP-space—in fact it is not even clear that W*SCDB \Leftrightarrow GP-space is false in general for the class of Banach spaces containing no subspace isomorphic to l_1 . In this note the example of Hagler and Odell is modified to yield a GP-space without W*SCDB and without an isomorphic copy of l_1 .

1991 Mathematics Subject Classification. 46B26, 46B20.

A set *D* in a Banach space *E* is called *limited* if $\lim_{j\to\infty} \sup_{z\in D} \varphi_j(z) = 0$ for every weak* null sequence $(\varphi_i)_{i\in\mathbb{N}}\subset E^*$, where E^* is the dual space; i.e. D is limited if pointwise convergent sequences of linear functionals converge uniformly on D. Obviously relatively compact sets are limited and a Banach space is called a GPspace (after Gelfand and Phillips) if all limited sets are relatively compact. If a bounded sequence $(\varphi_j)_{j\in\mathbb{N}}\subset E^\star$ separates a limited set $(a_j)_{j\in\mathbb{N}}\subset E$, i.e. $\varphi_j(a_j)=1$ but $\lim_{i\to\infty} \varphi_i(a_k) = 0$ for every k (in particular $(a_i)_i$ cannot be relatively compact), then $(\varphi_j)_{j\in\mathbb{N}}$ has no weak* converging subsequence. Thus Banach spaces with weak* sequentially compact dual balls (W*SCDB for short) are GP-spaces. Hence l^{∞} is an example of a Banach space without W*SCDB, since the set of unit vectors of c_0 is a limited set in l^{∞} . Another well known example of a Banach space without W*SCDB, and perhaps the most natural one, is $l_1(A)$, with A uncountable (for a survey of the topic, see [3]). In some sense $l_1(A)$ is the opposite extreme, compared with Banach spaces not being GP-spaces, regarding the W*SCDB-property, since there is hardly any limitedness in constructing sequences of bounded linear functionals on $l_1(A)$. Actually this richness of bounded linear functionals also explains why $l_1(A)$ is a GPspace and even more—no non relatively compact subset of l_1 can be limitedly embedded in any Banach space. In [9] H. P. Rosenthal asked if every Banach space without W*SCDB also contained an isomorphic copy of some $l_1(A)$. J. Hagler and E. Odell [6] disproved this by constructing a space (or a class of spaces) without both W*SCDB and subspaces isomorphic to l_1 . Their space is related to a nonseparable analogue of JT, the James tree [7], which in turn disproved the conjecture that a separable Banach space with a nonseparable dual contained l_1 . By a special choice

of the sets in the construction, T. Schlumprecht showed in [10] that there is a subclass of the [HO]-spaces which are not GP-spaces either. However it is not clear if any [HO]-construction yields a GP-space—in fact it is not even clear that in general W*SCDB \Leftrightarrow GP-space is false in general for Banach spaces without l_1 . In this note we modify the example in [6] to yield a GP-space without W*SCDB and without isomorphic copies of l_1 . Note that limited sets in Banach spaces without l_1 are relatively weakly compact, according to [2], because of a convergence property for certain sequences of linear functionals.

We recall the construction of [6]. There is a well ordered set I, < and a collection of infinite subsets of \mathbb{N} , $(M_{\alpha})_{\alpha \in I}$, such that (1) and (2) hold.

- (1) If $\alpha < \beta$ then either $M_{\beta} \subset^a M_{\alpha}$ or $M_{\beta} \cap M_{\alpha} =^a \emptyset$.
- (2) If $M \subset \mathbb{N}$, $|M| = \infty$, then there is an $\alpha \in I$ such that $|M \cap M_{\alpha}| = |M \setminus M_{\alpha}| = \infty$.

Here |M| denotes the cardinality of M, $L \subset^a M$ means that $|L \setminus M| < \infty$ and $L \cap M =^a \emptyset$ means that $|L \cap M| < \infty$.

Define a new partial ordering \prec on I as follows: $\alpha \prec \beta$ if $\alpha < \beta$ and $M_{\beta} \subset^a M_{\alpha}$. Note that (I, \prec) is a tree and that every nonempty subset of (I, \prec) has at least one minimal element.

A subset $C = [\gamma, \beta] = \{\alpha \in I : \gamma \prec \alpha \prec \beta\}$ is called a *segment in I*. Let $(g_{\alpha})_{\alpha \in I}$ be a linearly independent set of vectors in some vector space. If $(t_{\alpha})_{\alpha \in I}$ is a finite set of non-zero scalars, we define

(*) $\|\sum_{\alpha \in I} t_{\alpha} g_{\alpha}\| = \sup\{\sum_{i=1}^{k} (\sum_{\alpha \in C_i} t_{\alpha})^2 | ^{1/2} : C_1, \ldots; C_k \text{ are pairwise disjoint segments} \}.$

Let Y be the completion of the linear span of the set $(g_{\alpha})_{\alpha \in I}$. For each $\alpha \in I$, let $1_{M_{\alpha}}$ be the indicator function of M_{α} in l_{∞} and let

$$h_{\alpha} = (1_{M_{\alpha}}, g_{\alpha}) \in (l_{\infty} \oplus Y)_{\infty}.$$

Then

$$\|\sum t_{\alpha}h_{\alpha}\|=\max\{\|\sum t_{\alpha}1_{M_{\alpha}}\|_{\infty},\|\sum t_{\alpha}g_{\alpha}\|\}.$$

Finally X, the closed subspace of $(l_{\infty} \oplus Y)_{\infty}$ generated by $(h_{\alpha})_{\alpha \in I}$, is the space constructed in [6].

Construction of *E*. Let $\{A_{\alpha}^n: \alpha \in I, n \in \mathbb{N}\}$ be a collection of sets such that $A_{\alpha}^n \cap \mathbb{N} = \emptyset$, for all $\alpha \in I$ and $n \in \mathbb{N}$, $A_{\beta}^n \subset A_{\alpha}^n$ if $\alpha < \beta$ and $n \in \mathbb{N}$ but $A_{\beta}^n \cap A_{\alpha}^m = \emptyset$, for all $\alpha, \beta \in I$ if $m \neq n$. Put $A^n = \bigcup_{\alpha \in I} A_{\alpha}^n$ and $A = \bigcup_{n=1}^{\infty} A^n$. Let $U_{\alpha} = \bigcup_{n \in M_{\alpha}} A_{\alpha}^n$ and $1_{U_{\alpha}}$ be the indicator function of U_{α} in $I_{\infty}(A)$ and let

$$u_{\alpha} = (1_{U_{\alpha}}, 1_{M_{\alpha}}, g_{\alpha}) \in (l_{\infty}(V) \oplus Y)_{\infty},$$

where $V = A \cup \mathbf{N}$. Thus

$$\|\sum t_{\alpha}u_{\alpha}\|=\max\{\|\sum t_{\alpha}1_{V_{\alpha}}\|_{\infty},\|\sum t_{\alpha}g_{\alpha}\|\},$$

where $V_{\alpha} = U_{\alpha} \cup M_{\alpha}$. Let E be the closed subspace of $(l_{\infty}(V) \oplus Y)_{\infty}$ generated by $(u_{\alpha})_{\alpha \in I}$.

E has no W*SCDB. Define a linear mapping $P: E \to X$ by $P(u_{\alpha}) = h_{\alpha}$. Obviously P is a norm one projection of E onto X. Thus E has no W*SCDB since X has not.

The main difference between E and the Hagler-Odells space X is pointed out in the following Lemma.

LEMMA 1. Let $B = \{\alpha \in I : \gamma < \alpha < \beta\}$ and define $P_B : E \to E_B$ by $P_B(\sum t_\alpha u_\alpha) =$ $\sum_{\alpha \in B} t_{\alpha} u_{\alpha}$, where E_B is the subspace of E generated by $\{u_{\alpha}\}_{\alpha \in B}$. Then P_B is a norm two projection of E onto E_B .

Proof. Note that $A_{\beta}^{n} \subset A_{\alpha}^{n} \subset A_{\gamma}^{n}$ if $\gamma < \alpha < \beta$; that is if $\alpha \in B$. Thus

$$\begin{split} \| \sum t_{\alpha} 1_{V_{\alpha}} \|_{\infty} &\geq \| \sum_{\alpha < \beta} t_{\alpha} 1_{V_{\alpha}} \|_{\infty} \\ &\geq \max \{ \| \sum_{\alpha < \gamma} t_{\alpha} 1_{V_{\alpha}} \|_{\infty}, \frac{1}{2} \| \sum_{\alpha \in B} t_{\alpha} 1_{V_{\alpha}} \|_{\infty} \} \geq \frac{1}{2} \| \sum_{\alpha \in B} t_{\alpha} 1_{V_{\alpha}} \|_{\infty} \}. \end{split}$$

Since pairwise disjoint segments of B are also pairwise disjoint segments of I we have $\|\sum_{\alpha\in B}t_{\alpha}g_{\alpha}\| \leq \|\sum t_{\alpha}g_{\alpha}\|$. Altogether we get $\|\sum_{\alpha\in B}t_{\alpha}u_{\alpha}\| \leq 2\|\sum t_{\alpha}u_{\alpha}\|$. **QED**

REMARK. The corresponding projections in the Hagler-Odells space are bounded if B is a segment but not in general; (there are different ways to generate c_0 vectors in the l_{∞} -part of X).

E is a GP-space. Following an argument in [7], this is almost proved in [1].

We shall prove that a bounded, non-relatively compact sequence $(a_i)_{i\in\mathbb{N}}\subset E$ is not limited. Assume that we have found an infinite set $M \subset \mathbb{N}$, $\epsilon > 0$ and $B_i = \{\alpha \in I : \gamma_i < \alpha < \beta_i\}$ such that $B_i \cap B_j = \emptyset$ if $i, j \in M$, $i \neq j$ and $||b_i|| > \epsilon$, for every $j \in M$, where $b_j = P_{B_i}(a_j)$.

Then there exists, for every $j \in M$, $\varphi_j \in E_{B_i}^{\star}$ such that $\|\varphi_j\| < 1/\epsilon$ but $\varphi_j(b_j) = 1$. Extend φ_i to $\psi_i \in E^*$ by setting $\psi_i(u_\alpha) = 0$ when $\alpha \notin B_i$. Then $\psi_i(b_i) = \varphi_i(b_i) = 1$ and $\|\psi_j\| < 2/\epsilon$ for every $j \in M$ according to Lemma 1. Thus $\psi_j(a_i) = 1$ because $b_j = P_{B_i}(a_j)$. Further $(\psi_j)_{j \in M}$ is a weak* null sequence because $B_i \cap B_j = \emptyset$ if $i \neq j$ in M and because finitely generated vectors are dense in E.

To prove the assumption made above there is no loss of generality in assuming

that $a_j = \sum_{\alpha \in U_j} t_{\alpha,j} u_{\alpha}$, where U_j is finite. If $\beta \in I$ we put $U_j^{\beta} = \{\alpha \in U_j : \alpha < \beta\}$ and $a_j^{\beta} = \sum_{\alpha \in U_j^{\beta}} t_{\alpha,j} u_{\alpha}$. Let ω be the smaller lest $\beta \in I$ such that $(a_i^{\beta})_{i \in \mathbb{N}}$ is not relatively compact. ω exists since (I, <) is well ordered and each U_i is a finite set. We also have, because U_j finite, that $\beta_i < \omega$, where β_i is the smallest $\beta \in I$ such that $\bigcup_{k=1}^i U_i^{\omega} \subset \{\alpha \in I : \alpha < \beta\}$. In particular we get that $(a_i^{\beta_i})_{i \in \mathbb{N}}$ is relatively compact since $\beta_i < \omega$. But then it is clear that there exist a subsequence $M \subset \mathbb{N}$, $\epsilon > 0$ and, for every $j \in M$, $B_j = \{\alpha \in I : \gamma_j < \alpha < \beta_j\}$ such that $B_i \cap B_j = \emptyset$ if $i, j \in M$, $i \neq j$, that is $\gamma_i > \beta_{j-1}$, and such that $||b_j|| > \epsilon$ for every $j \in M$ where $b_i = P_{B_i}(a_i)$.

Thus the assumption is proved and E is a GP-space.

*E contains no subspace isomorphic to l*₁. Let *F* be the closed linear span of $(1_{A_{\alpha}^n}: \alpha \in I, n \in \mathbb{N})$ in $l_{\infty}(A)$ and note that $F = (\sum_{n=1}^{\infty} \oplus F_n)_{c_0}$, where F_n is the closed

linear span of $(1_{A^n_\alpha}: \alpha \in I)$, and hence is isomorphic to $c_0(I)$ because $A^n_\beta \subset A^n_\alpha$ if $\alpha < \beta$. Thus F does not contain an isomorphic copy of l_1 . Let Z be the closed subspace of $(l_\infty(V) \oplus Y)_\infty$ generated by E and F. The quotient space Z/F is isometric to X. Since X, according to $[\mathbf{6}]$, does not contain an isomorphic copy of l_1 , the Lemma below shows that neither Z nor E contains an isomorphic copy of l_1 .

LEMMA 2. Let Z and F be Banach spaces such that the quotient space Z/F and F contain no isomorphic copy of l_1 . Then Z does not contain an isomorphic copy of l_1 .

Proof. Assume that the Lemma is false and that $(a_j)_{j\in\mathbb{N}}\subset Z$ is a sequence isomorphic to the unit vectors of l_1 . Let $q:Z\to Z/F$ be the quotient map and put $b_j=q(a_j)$. Since $(b_j)_{j\in\mathbb{N}}$ does not contain any isomorphic copy of the basis of l_1 , there exist a subsequence $(j_k)_{k\in\mathbb{N}}$ and, for every $j\in\mathbb{N}$, $t_j\in\mathbb{R}$ such that $\sum_{r=j_{k-1}+1}^{j_k}|t_r|=1$ but $\|\sum_{r=j_{k-1}+1}^{j_k}t_rb_r\|=2^{-k}$, for every $k\in\mathbb{N}$. Put $c_k=\sum_{r=j_{k-1}+1}^{j_k}t_ra_r$ and take $d_k\in F$ such that $\|c_k-d_k\|<2^{-k}$. Note that $(c_k)_{k\in\mathbb{N}}$ is isomorphic to the unit vector basis of l_1 and hence also to $(d_k)_k$, which gives a contradiction. Thus $(a_j)_j$ is not isomorphic to the unit vector basis of l_1 .

Thus E is a GP-space without an isomorphic copy of l_1 whose dual ball is not weak* sequentially compact.

REFERENCES

- **1.** A. Axelsson, Size and structure properties for Banach spaces and some tree-like spaces, *Lith-Mat-Ex-98-01* (1998), 1–61.
- **2.** J. Bourgain and J. Diestel, Limited operators and strict cosingularity, *Math. Nachr.* **119** (1984), 55–58.
- **3.** J. Diestel, *Sequences and series in Banach spaces*, Graduate Texts in Math. No 92 (Springer-Verlag, 1984).
 - **4.** S. Dineen, Bounding subsets of a Banach space, *Math. Ann.* **192** (1971), 61–70.
- 5. J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, *Israel J. Math.* 28 (1977), 325–330.
- **6.** J. Hagler and E. Odell, A Banach space not containing l_1 , whose dual ball is not weak* sequentially compact, *Illinois J. Math.* **22** (1978), 290–294.
- 7. R. C. James, A separable somewhat reflexive space with nonseparable dual, *Bull. Amer. Math. Soc.* 80 (1974), 738–743.
- **8.** H. Rosenthal, A characterization of Banach spaces containing l_1 , *Proc. Nat. Acad. Sci.* **71** (1974), 2411–2413.
- **9.** H. Rosenthal, Pointwise compact subsets of the first Baire class, *Amer. J. Math.* **99** (1977), 362–378.
- 10. T. Schlumprecht, Limited sets in C(K)—spaces and examples concerning the Gelfand-Phillips property, *Math. Nachr.* 157 (1992), 51–64.