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MIXED BOUNDARY-VALUE PROBLEMS IN POTENTIAL
THEORY

by A. H. ENGLAND
(Received 8th August 1977)

1. Introduction

The problems associated with finding solutions of Laplace's equation subject to
mixed boundary conditions have attracted much attention and, as a consequence, a
variety of analytical techniques have been developed for the solution of such
problems. Sneddon (1) has given a comprehensive account of these techniques. The
object of this note is to draw attention to some simple orthogonal polynomial
solutions to the most basic mixed boundary-value problems in two and three-
dimensional potential theory. These solutions have the advantage that most quantities
of physical interest are easily evaluated in terms of known functions. Two-dimen-
sional problems are considered in §2 and axially-symmetric three-dimensional prob-
lems in §3.

2. Half-plane problems

In this section solutions are given to the two-dimensional Laplace's equation in the
half-plane y 3= 0, subject to mixed boundary conditions defined on |x| < 1 and |x| > 1 of
y = 0. If we use the complex variable z = x + iy and define the complex functions

Rn(z) = {z- (z2- I)"2}" for n > 0, R0(z) = 1 , (1)

Gn{z) = -^R'n+I(z) = - (frfy/2, n^-l, (2)

the solutions to the simplest mixed boundary-value problems can be expressed in
terms of these functions. The functions Rn(z), Gn(z) are holomorphic in the complex
plane cut along y = 0, |x| « 1 and are generalisations of the Chebyshev polynomials. In
particular on the cut they satisfy

J?;(x) = Tn(x) + i(l - x2)mUn-x(x), (3)

x2)m. (4)

These functions result from generalisations of integrals given in Abramowitz and
Stegun (2) and Erdogan, Gupta and Cook (3). They have been derived by Gladwell
and England (4) and used in the solution of some simple elastostatic problems.

The following list gives solutions to boundary-value problems for the harmonic
functions <f>, 6, x, <P defined in y2=0, which are bounded as |z|-»°°, and satisfy the
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stated conditions on y = 0. The values of the solutions and their normal derivatives on
the boundary are also given.

Problem A. On y = 0, <f> = Tn(x) for |x| « 1, d^jdy = 0 for |x| 5* 1.
Solution: <£ = Re{i?n(z)} for n 2=0. (5)

_. „ dd> nTn(x) , , ,

<j>={x-(x2-iy12}", x>l. (6)

Problem B. On y = 0, i/r = Un(x) for |x| =s 1, dtl>ldy = 0 for |x| 5= 1.

Solution: «A = Re{Gn(z)} = Re j ^ ^ - i ? U , ( r ) } for n 3=0, (7)

homogeneous solution:

u n y - u . - .j -x2)1 ' 2 ( l - ^ 2 ) 3 ' 2 ' ' ' ^ '

i(i = -{x - (x2 - l)l/2}"+7(x2 - I)"2 for x > 1.
The homogeneous solution may be used to remove the boundary
singularities in ij/ at |x| = 1 and the singularities of order \ in di/f/dy at
JJC| = 1 when n is odd.

Problem C. On y = 0, dOldy = Tn(x) for \x\ =£ 1, 0 = 0 for |x| & 1.
Solution:

for n > 1,

0 =
} for n = \, (9)

Im{.R,(z)} f o r n = 0 .

(10)

Problem D. On y = 0, d*/dy = l/B(x) for |oc| *£ 1, x = 0 for |x| & 1.

Solution: X = Im j^-Jry Rn+1(z)}, ns=0. (11)
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Note that these problems are inter-related by the differential and recurrence
relations between the Chebyshev polynomials.

The solutions to problems A, B, C and D may be derived by using elliptical polar
coordinates but do not appear to be well-known. To illustrate their use consider the
harmonic function V defined in the half-plane y s= 0 subject to

V = g(x)for | x | « l , dVldy = 0 f o r | x | > l on y = 0. (13)

If g(x) is expanded in a series of Chebyshev polynomials

g(x) = 2 anTn(x) in | x | ^ l , (14)
o

the general solution is

V = 2>nRe{Rn(x)}. (15)
o

This solution is bounded in the half-plane y s= 0 but dtyldy has a singularity of order \
at (±1,0). The constants an may be determined by using the orthogonality relations
for the Chebyshev polynomials and are

fln = yn f' n
Tn(?2mg(x) dX = 7n f

J - l (1 — X ) Jo
f COSM0 g(COS 6) d6
Jo

where yn = 2/TT, n > 0 and 70 = 1/w.
The expansion (14) is a compact and accurate method of approximating a well-

behaved function and it is interesting to note that such series arise naturally in these
problems. These series representations are discussed by Fox and Parker (5). If g(x) is
a polynomial, then the coefficients an may be found directly from (2, Table 22.3).
Alternatively the integrals may be evaluated numerically by using the Gauss-Che-
byshev integration formula (2, 25.4.38) which gives an accurate means of determining
the constants an. Once this set of constants has been found, the boundary values of
the potential V or dV/dy may be found directly from the solution to problem A..

It is interesting to note that if the constants an are expressed in terms of the
Gauss-Chebyshev integration formula (2, 25.4.38) and this approximation is sub-
stituted into the form for V, then the following result is produced after some
manipulation:

V = Re [ T F E f z r - f e 2 - D1/2-(-Drd -4)mRN(z)}] (16)
\_1V r=\ Z Xr J

where xr = cos (2r - 1)TT/2N. Note that these expressions are not singular at z = xr.
However, it should be remarked that it is more efficient to determine the constants an

and to use the expansion (15) for V rather than (16).
If it is required that the potential V satisfying (13) tends to zero as |z|-»o°, then

either g(x) must be such that the coefficient a0 in (14) is zero which implies

Li":
or an alternative solution corresponding to g(x) = a0 must be employed. This solution
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is given by problem B with n = 0 and is

This solution is singular on the boundary y = 0.
A similar procedure may be applied to determine the harmonic function W denned

in y 3s 0 and subject to

^ - = h{x) for|jc|«sl, W = 0 for \x\*\ on y = 0. (17)
dy

If a representation of the form of (14) is taken for h(x) then the solution may be
expressed using the results of problem C. A more convenient representation is given
by putting

(18)
o

for then, from problem D,

(19)

This solution is bounded and tends to zero as |z|-»°°. From (18) the coefficients bn are
given by

bn = - f' (1 - x2)mUn{x)h(x) dx = -V sin(n + \)6h(cos 0) sin Odd.
TTj-l TT JO

The representation (18) for a well-behaved function h(x) is a rapidly convergent series
which has similar properties to the expansion (14). If h(x) is a polynomial these
coefficients may be found from (2, Table 22.3). Alternatively the integrals may be
approximated by using the Gauss-Chebyshev integration formulae (2, 25.4.40). If this
formula is used to approximate bn, then after some manipulation

dW T

dx

where xr = cos rirl(N + 1). Note that the terms of (20) are not singular at z = xr. Again
it should be remarked that it is more efficient to evaluate the constants bn and to use
the solution (19) rather than (20).

It is possible to solve these problems by converting them into singular equations of
the type

In particular for Problem A where g(x) = Tn(x) the solution is

/(O = - d - t2)1/2t7n_,(O for n*\. (22)

There is no bounded solution of (21) in the case when g(x) is constant.
For Problem B, when g(x) = Un(x) the solution is
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f(t) = Tn+](t)l(\ - f2)"2 for n ^ 0 (23)

and the solution of the homogeneous case is f(t) = (1 — t2)'112. In fact,

j^jMdt, n>0 (24)

and

( 2 5 )

These are extensions of the integrals given in (2, §22.13) which lead to the
solutions (22) and (23). Problems C and D only lead to solutions of the integral
equation which relate directly to (22) and (23).

Clearly representations of the types (14) or (18) may be used to construct solutions
to the integral equation (21). Since the solution (22) excludes the case of a constant on
the right-hand side then, when g(x) has the representation (14), the solution is

( 2 6 )

where B is an arbitrary constant.

3. Axially-symmetric potential problems

Axially-symmetric problems may be expressed in either cylindrical polar coor-
dinates (p, <j), z) or oblate spheroidal coordinates TJ, <j>, £ where

In oblate spheroidal coordinates an axially-symmetric solution of Laplace's equation
is

where Pn is the Legendre polynomial of degree n and Qn is the Legendre function of
the second kind. These solutions lead directly to the following mixed boundary-value
problems for the harmonic functions x and ty denned in the half-space z s= 0 subject to
the stated conditions on z = 0.

Problem A. On z = 0, x = Pimiil ~ p2)"2} for 0 =£ p « 1, dxldz = 0 for p > 1.

Solution: X = PinWQimd&Qimi+iO) = 2 ' P 2 ™ y Q 2 " ^ (27)

where P2m(0) = (-ir(2m)!/[2mm !]2.

dx 2P2m{(l-p2)lj2}
O n 2 - ° ' t e - 7 r { P 2 ( 0 ) } 1 ( l - p J ) ' ' 1 ' ° ^ P < 1 ' ( 2 8 )

X=~iQ2n,{i(p2- D"2}, P > 1 • (29)
77
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Note that on z = 0,

lim (1 - P
2)mdxldz = 2{irP2m(0)}-1.

p-i

Suppose V is an axially-symmetric harmonic function denned in z s= 0 subject to
the boundary conditions on z = 0,

for 0 « p = s l , dV/dz = 0 for p > l . (30)

Then using the representation

^p=s l , (31)
o

where

an = (4II + 1) f' /(p)P2n{(l - P2)1/2} n-^V72 dp
Jo (i ~ P )

= (4B + 1) f' /{(I - T,2)"2}P2n(7,) dl,,
Jo

the potential V may be expressed as a series of solutions of the type (27). If /(p) is a
polynomial in p2 the constants an may be found using (2, Table 22.9).

Alternatively they may be evaluated using the Gauss integration formula (2,
25.4.36). The representation (31) is the expansion in Legendre polynomials over the
range - 1 =£ 17 =e 1 of the even function denned by /{(I - TJ2)"2} over the range 0 =s 17 =£ 1.

Problem B. On z = 0 , ^ = Pln+.l}(l ' ^ ^ f o rO=s P < l ,
dz (I — p )

</> = 0 for p > 1.

Solution. *
,-Q;n+l(+l-0) - w (2n + l)P2n(0) •

J £ : S forO<p<l. (33)

| f f ( p _ 1 ) y p - l ) 1 / 2 } , P > 1 . (34)

Note that on z = 0,

lim (p2 -
dz n(2n+l)P2n(0y

Suppose W is an axially-symmetric harmonic function denned in z & 0 subject to
the following boundary conditions on z = 0:

for Osspssl , W = 0 for p > l . (35)

If (1 - p2)mg(p) has the representation given by

- V)"2} = E W»2.+I(TI), 0 « v « 1, (36)
n=0
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then W may be expressed as a series of solutions of type (32). The representation (36)
is the expansion in Legendre polynomials over - 1 «17 « 1 of the odd function denned
by ??g{(l - T)2)"2} over 0=£ TJ =S 1.

If g(p) is a polynomial in p2, the constants bn may be found by using (2, Table
22.9). Alternatively

bn = (An + 3) I"' T,g{(l - •ny
n}Pu+i(n) dt\

Jo

= (4n + 3) f' pg(p)P2n+,{(l - p2)"2} dp.
Jo

This integral may be evaluated numerically using a Gauss integration formula such as
(2, 25.4.34). These solutions have been given by Tranter (6).

In both problems A and B it is probable that the quantities of interest are the
'unknown' boundary values on 2 = 0. Over the range 0 =£ p =£ 1 these depend on
JMO -p2)"2} and over the range p s* 1 these depend on Qn{i(p2- I)"2}. The associated
singularities in the normal derivaties at p = 1 are given above together with the
appropriate multiplicative factors. The Legendre polynomials Pn(t) are tabulated in (2,
Table 8.1). The function Qn(it) does not appear in most standard tables. It may be
shown that

The following recurrence relation is given in (2, 8.5.3):

(n + l)Qn+1(2) = (2B + l)zQn(z)- nQn-,(z)

for complex values of z. From these relations it is possible to generate Qn(it) by a
straightforward numerical procedure.

4. Discussion

The solutions presented in this note stem from the method of separation of
variables in elliptical and ellipsoidal coordinate systems. These solutions have been
used by Gladwell and England (4) in the solution of some crack and punch problems
in elasticity. England and Shail (7) have recently examined these solutions in more
detail and considered the relation between these methods and integral equation
techniques for the solution of mixed boundary-value problems. This note has been
written in an attempt to collate these solutions with reference to Laplace's equation.
The two-dimensional solutions given in §2 do not appear to be well-known. However
Tricomi (8) has derived solutions (22), (23) of the Hilbert integral equation by an
alternative method but comments that these relations may be deduced from the
analytic functions (1) and (2). A referee has drawn my attention to Pykhteev (9). In
this paper and in two earlier works referred to in (9), Pykhteev considers solutions of
Hilbert integral equations in particular deriving the representations (24) and (25). His
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attention is concentrated on expansions of the type SjLi a2s-\<f>2s~i(z) where <j>s(z) =
2°=2 J?2n-i(z)/(2n — I)1 in the notation used in this paper. These expansions are rather
more complicated than those suggested earlier in this paper and the reasons for their
adoption are not explained. Pykhteev also uses the definition Un(x) = sinn6 rather
than the more common Un(x) = sin(n + l)0/sin 9, where x = cos 6, which affects cer-
tain formulae.

Erdogan, Gupta and Cook (3) have used Gaussian integration formulae to develop
a numerical technique for the solution of integral equations with singular parts of the
form

f' w(f)
J-l t —X

in which w(t) is a known weight function and f(t) the unknown function. Their
method is to choose the related polynomials to be orthogonal with respect to the
weight function w(t) over the interval (—1,1). In the case of the problems of §2 the
corresponding integral equations have the weight functions (1 - 12)±l/2 and the resulting
polynomials are the Chebyshev polynomials (which arise naturally from the separa-
tion of variables technique). Some of the special solutions given in (4) and this note
may be derived from (3) but these solutions are not quoted in (3).

The corresponding use of oblate spheroidal coordinates in three-dimensional
problems is relatively well-known and the axially-symmetric solution Pn(r})Qn(i^) is
given in several texts. Sneddon (1, p. 69) comments that it is a fairly difficult matter to
compute the field quantities at any point whose Cartesian coordinates are prescribed,
but, at points on z = 0, the calculation of the potential or its normal derivative would
seem relatively straightforward using the tables given in (2) and the recurrence
relation to define Qn(i^).
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