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Abstract

Before wastewaters can be released into the environment, they must be treated to reduce
the concentration of organic pollutants in the effluent stream. There is a growing
concern as to whether wastewater treatment plants are able to effectively reduce the
concentration of micropollutants that are also contained in their influent streams. We
investigate the removal of micropollutants in treatment plants by analysing a model
that includes biodegradation and sorption as the main mechanisms of micropollutant
removal. For the latter a linear adsorption model is used in which adsorption only occurs
onto particulates.
The steady-state solutions of the model are found and their stability is determined as
a function of the residence time. In the limit of infinite residence time, we show
that the removal of biodegradable micropollutants is independent of the processes of
adsorption and desorption. The limiting concentration can be decreased by increasing
the concentration of growth-related macropollutants. Although, in principle, it is
possible that the concentration of micropollutants is minimized at a finite value of
the residence time, this was found not to be the case for the particular biodegradable
micropollutants considered.
For nonbiodegradable pollutants, we show that their removal is always optimized at a
finite value of the residence time. For finite values of the residence time, we obtain a
simple condition which identifies whether biodegradation is more or less efficient than
adsorption as a removal mechanism. Surprisingly, we find that, for the micropollutants
considered, adsorption is always more important than biodegradation, even when the
micropollutant is classified as being highly biodegradable with low adsorption.
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1. Introduction

Conventional wastewater treatment plants (WWTPs) can effectively remove bulk
carbonaceous organic materials as well as nutrients such as nitrogen and phosphorus.
However, they were not designed to remove organic pollutants which are detected
in trace concentrations, that is, micropollutants [15]. Common micropollutants
include chemicals associated with personal care products, such as pharmaceutical
compounds and their derivatives, and chemicals associated with domestic use, such as
pesticides and surfactants. Other common micropollutants include hormones, metals
and polycyclic aromatic hydrocarbons (PAHs). The release of micropollutants into
aquatic ecosystems has been shown to have an ecotoxic impact. This has led to
European legislation mandating both industry and states to reduce their release [25].

The introduction of relevant legislation has spurred experimental investigations
into the removal mechanisms of typical micropollutants. The development of well-
analysed mathematical models can provide a tool for decision makers to evaluate
the relative importance of the mechanisms which remove micropollutants. These
models can also be used to optimize the operation of wastewater treatment plants to
significantly reduce the micropollutant concentration downstream of a WWTP. This
optimization must be achieved without adversely affecting the removal of “standard”
organic pollutants. A literature review outlining current knowledge about the threats
posed by micropollutants, detailing current mathematical models, is presented in
Section 1.1.

We formulate a mathematical model for the removal of organic micropollutants
from municipal wastewaters. The model includes the four main mechanisms
leading to micropollutant removal: biodegradation, cometabolism, volatilization and
sorption [30]. In this paper, we investigate the special case in which the only removal
mechanisms are biodegradation and sorption. Identifying the relative importance of
each of these mechanisms is a major challenge for emerging new micropollutants. A
surprise from our model is that, for the nine biodegradable micropollutants considered,
adsorption is always a more important removal mechanism than biodegradation—even
for four micropollutants that have been identified as being “highly biodegradable with
low sorption”.

1.1. Literature review Mathematical models for the removal of micropollutants in
WWTPs have recently been reviewed by Pomiès et al. [30]. These authors found 18
models published over the period 1989–2010.

There are four main mechanisms by which micropollutants are removed in
WWTPs [30]. These are biodegradation, cometabolism, mass transfer into the gas
phase and sorption onto particulates. These mechanisms do not necessarily apply to
all contaminants. For example, only volatile organic compounds are removed by mass
transfer into the gas phase. Additional mechanisms may apply to some contaminants.
For example, heavy metals can be removed by precipitation. Identifying the most
important removal mechanism for a particular contaminant is one of the applications
of mathematical models.
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Table 1. Micropollutant removal mechanisms included in activated sludge process models. AD:
Adsorption. AP: Aqueous biodegradation. BC: Biological conversion. PP: Particulate biodegradation.
PPT: Precipitation. DCM: Biodegradation on dissolved and colloidal matter. DES: Desorption. MT:
Mass transfer. (S): Removal of the micropollutant is associated with the growth of a specialized biomass,
that is, it is considered as a growth substrate for this species. The symbol X indicates that the specified
mechanism was included in the model. The superscript (*) indicates that it is assumed that the desorption–
sorption process is at equilibrium.

BC
Author AP PP DCM AD DES MT PPT

Abegglen et al. [1] X — — X X — —
Delgadillo-Mirquez et al. [8] X X X X X X —
Fernandez-Fontaina et al. [14] X — — X X — —
Fernandez-Fontaina et al. [12] X — — X X X —
Jacobsen and Arvin [17] X — — X X — —
Joss et al. [20] X — — X X — —
Melcer et al. [26] X — — X (*) X(*) X —
Parker et al. [29] — — — X (*) X(*) — X
Siegrist et al. [32] X (S) — — X X — —
Urase and Kikuta [39] X — — X X — —

Table 1 summarizes the removal mechanisms that have been included in models.
All models, excepting those for heavy metals, include biotransformation and
sorption–desorption processes. In Sections 1.1.1–1.1.3, we review the modelling of
biodegradation and cometabolism, the processes of adsorption and desorption, and
mass transfer, respectively. In Section 1.1.4, we provide a limited review of activated
sludge process (ASP) models, restricting our attention to those models that have been
used within the context of modelling the removal of micropollutants.

1.1.1 Modelling the biological removal of micropollutants through biodegradation
and cometabolism. Micropollutants may be removed from WWTPs through the
action of biomass. This may be referred to either as the biological conversion
of micropollutants or the biotransformation of micropollutants. Two processes by
which this transformation can occur are biodegradation and cometabolism. There
is no standard definition of what “biodegradation” means in the context of the
removal of micropollutants [30]. A common interpretation is that it is the removal
of micropollutants in a process which is not associated with the growth of the
microorganism. Furthermore, it is widely assumed, as shown in Table 1, that
biodegradation only happens in the aqueous phase. This assumption has been
investigated by Delgadillo-Mirquez et al. [8].

Cometabolism refers to micropollutant degradation in the presence of another easily
degradable substrate. In this case the micropollutants do not serve as the source of
carbon for microbial growth [7]. Many organic micropollutants present in wastewater
treatment plants are biodegraded by a cometabolic mechanism.
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The total rate of biological removal (rbio [µg L−1 day−1]) is given by the sum of the
rate of cometabolism and the rate of biodegradation

rbio = TC
µ(S s)

YH
·

( Cs

KS C + Cs

)
X + kc ·

( Cs

KS C + Cs

)
X, (1.1)

where the first and last terms on the right-hand side of equation (1.1) are the rate due
to cometabolism and the rate due to biodegradation, respectively. In equation (1.1), Cs

is the concentration of soluble micropollutants [µg L−1] and X is the concentration of
active biomass [g COD L−1]. The specific growth rate, µ(S ) [day−1], of the biomass
upon the soluble substrate, S S [g COD L−1], is given by

µ = µmax ·
S s

KS + S s
. (1.2)

The remaining constants in equations (1.1) and (1.2) are: KS [g COD L−1], the
Monod half-saturation constant for the growth of heterotrophic biomass; KS C , the
half-saturation constant of micropollutants; TC , the micropollutant transformation
capacity, which represents YH [(g COD L−1)/(g COD L−1)], the growth yield; kc

[µg (g COD day)−1], the maximum rate of biodegradation of the micropollutant; and
µmax [day−1], the maximum growth rate of the biomass.

Equation (1.1) is often simplified by putting the micropollutant transformation
capacity equal to zero (TC = 0). This removes the cometabolism term, giving

rbiol(TC = 0) = kc ·
Cs

KS C + Cs
X. (1.3)

This formulation implies that biological conversion of the micropollutant is not
associated with growth of the biomass.

The rate functions given in equations (1.1) and (1.3) may be further modified
by multiplying them by switching functions which have the effect of turning
biodegradation “off” if the concentration of a particular substance is either too “high”
(inhibition) or too “low”. The use of switching functions to modify growth rates is
described in [16].

Micropollutants are generally present at low concentrations in WWTPs.
Consequently, the rate of biodegradation may be simplified to

rbiol(TC = 0,Cs � KS C) = kbiolCsX, (1.4)

where kbiol = kc/KS C [L (g COD day)−1] is the degradation rate coefficient. (Formally
this requires Cs � KS C .) Under circumstances in which the biomass concentration is
constant, equation (1.4) reduces to the first-order rate law

rbiol(TC = 0,Cs � KS C , X = constant) = k′biolCs, (1.5)

where k′biol = kbiolX [day−1] is the degradation rate coefficient. This rate expression has
been widely used to model the environmental removal of organic pollutants.
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Table 2. The biotransformation model used to model the biodegradation of a micropollutant.

Cometabolic Monod, Second order, First order,
Monod, equation (1.3) equation (1.4) equation (1.5)

Author equation (1.1)

Abegglen et al. [1] — — X —
Delgadillo-Mirquez
et al. [8]

X X — —

Fernandez-Fontaina
et al. [14]

— — — X

Fernandez-Fontaina
et al. [12]

X — — X

Jacobsen and
Arvin [17]

— X — —

Joss et al. [20] — — X —
Melcer et al. [26] — — X —
Siegrist et al. [32] — X — —
Urase and
Kikuta [39]

— — — X

Regardless of the model used, it is widely assumed that the micropollutant does
not provide a food source for active biomass. This assumption is justified as the
micropollutant is only present in trace levels, typically µg L−1, or, to be more precise,
when the concentration of the micropollutants is much smaller than the concentration
of the soluble substrate.

The use of the rate expressions (1.1) and (1.3)–(1.5) in dynamic models for the
biodegradation of micropollutants is summarized in Table 2.

1.1.2 Modelling adsorption–desorption. We now turn our attention to the
modelling of adsorption–desorption processes. Despite the possible nonlinear
behaviour of adsorption, a linear adsorption model is always chosen due to the
assumed low concentration of micropollutants. The standard assumption is that
adsorption only occurs onto particulates, that is, onto a solid phase. However, based
upon experimental evidence, Delgadillo-Mirquez et al. [8] developed a model in which
adsorption can also occur onto dissolved and colloidal matter, that is, in the aqueous
phase.

1.1.3 Mass transfer. Melcer et al. [26] modelled volatilization as being due to two
processes: surface volatilization, which is important for transfer from open tanks such
as clarifiers, and air stripping, which occurs in aerated turbulent process vessels. Both
processes are modelled by terms of the form

V
dCs

dt
= −VKLa(Cs −Cg),
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where V is a suitable volume [L], t is time [day], KLa is a mass transfer coefficient
[day−1] and Cg is the gaseous concentration of the micropollutant [µ g COD L−1].
The differences between the two processes is in how the mass transfer coefficient
is calculated. If it can be assumed that air movement above the clarifier/vessel is
sufficient to carry away volatilized compounds, then the equilibrium water phase
concentration of the volatilized compound is negligible, that is, Cg ≈ 0.

Delgadillo-Mirquez et al. [8] modelled volatilization as an equilibrium process
between soluble and gaseous micropollutants with

V
dCs

dt
= −VKLa(HCs −Cg),

where H is Henry’s constant [–], which describes the equilibrium between gas phase
and the soluble concentration of micropollutant.

Fernandez-Fontaina et al. [12] modelled volatilization by the term

V
dCs

dt
= −H · Qair ·Cs,

where Qair is the aeration flow rate [Lair day−1]. This formulation assumes that
air movement above the aerated vessel ensures that the equilibrium gas-phase
concentration of the micropollutant is negligible. This is the approach used in this
paper.

1.1.4 Dynamic models. In a dynamic model a system of differential equations is
written down for the removal of the micropollutant. The alternative is a static model,
in which steady-state expressions for the state variables are developed without starting
from a system of differential equations. Such models may assume that adsorption–
desorption processes reach an equilibrium on a faster time scale than that of other
processes.

Static models include those of Byrns [4], Cowan et al. [6], Fernandez-Fontaina
et al. [13], Struijs et al. [33], Suarez et al. [34] and Wang et al. [40].

Dynamic models involve state variables associated with the operation of the
ASP. Which variables are involved depends upon what assumptions are made
but they commonly include soluble substrate, total suspended solids and biomass
concentration. A key question is therefore how to model the removal of
macropollutants in the ASP.

The simplest approach is not to model the ASP, but to measure the values of the
state variables required for the micropollutant submodel. The second approach is to
use a simplified model for the ASP consisting of a limited number, typically one or
two, biochemical processes. The third approach uses a detailed model for the ASP,
such as the activated sludge model no. 1 (ASM1) [16], which has been developed to
simulate the removal of nutrients and organic matter in WWTPs. A final approach is
to use a “black box” model to simulate the ASP.

In Sections 1.1.4.1–1.1.4.4, we overview how the ASP has been modelled within
the context of models for the removal of micropollutants. This is not a literature review
of ASP models.

https://doi.org/10.1017/S1446181118000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000226


[7] Mathematical modelling of micropollutants 197

1.1.4.1 No ASP model (experimental measurements). Micropollutant removal from
a batch reactor has been modelled by Abegglen et al. [1], Fernandez-Fontaina
et al. [14] and Urase and Kikuta [39]. (Fernandez-Fontaina et al. [14] also investigated
removal in a membrane bioreactor.) In [1, 39], the required inputs were the mixed
liquor suspended solids concentration and the total suspended solids, respectively.
In [14], the required inputs were the biomass concentration and the total solids
concentration.

Fernandez-Fontaina et al. [12] developed a model for micropollutant removal based
upon cometabolic kinetics by nitrifying biomass. The first-order kinetic model (1.5)
was used. The required experimental inputs are the concentrations of biomass, growth
substrate and total suspended solids. These models were used to analyse the removal
of 12 micropollutants associated with pharmaceutical use. Four of these compounds
were found not to be biodegradable. The biotransformation of four of the compounds
was found to be more accurately predicted by cometabolic Monod-type kinetics.

1.1.4.2 Simplified model for the ASP. The ASP model used by Joss et al. [20]
contains a single-step biochemical model. This step is the growth of active biomass
by consumption of soluble substrate. Their model was used to investigate the impact
of the reactor configuration upon the removal of the micropollutant. It was found
that the use of a reactor cascade appreciably improved the removal of nonsorbing and
biodegradable micropollutants compared to a single reactor.

The ASP model used by Jacobsen and Arvin [17] and Delgadillo-Mirquez et al. [8]
contains a two-step biochemical model. The first step is the hydrolysis of slowly
biodegradable particulate substrate to produce soluble substrate. The second step
is biodegradation of the soluble substrate through biomass growth. A third process
is biomass decay. The model of Jacobsen and Arvin [17] can be viewed as a
simplification of the ASM1 [16]. This is not the case for the model of Delgadillo-
Mirquez et al. [8]. For example, the models differ in how hydrolysis is modelled. The
former models hydrolysis using Contois kinetics whereas in the latter it is described
as a first-order process (with respect to the particulate concentration).

A nonstandard assumption made by Jacobsen and Arvin [17] is that the
micropollutant is biodegraded not by the “regular” biomass but by a specialized
microbial species. The micropollutant subsystem consists of five processes: growth
of the specialized biomass by consumption of soluble substrate, biodegradation of
the micropollutant by the specialist biomass, decay of the specialized biomass and
adsorption and desorption processes associated with the micropollutant. It is assumed
that growth of the specialized biomass upon the micropollutant is negligible.

The incorporation of a specialist biomass represents the addition of a specific
microbial culture to the ASP with the hope that it will better remove the micropollutant
than the “standard” WWTP biomass. This strategy is known as biosupplementation or
bioaugmentation.

Delgadillo-Mirquez et al. [8] developed a micropollutant submodel in which the
micropollutant can adsorb onto a solid phase, that is, onto particulates, and into

https://doi.org/10.1017/S1446181118000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000226


198 M. I. Nelson, R. T. Alqahtani and F. I. Hai [8]

the liquid phase, that is, onto dissolved and colloidal matter (DCM). In addition to
biodegradation of the soluble micropollutant, the adsorbed micropollutant, both that
adsorbed onto DCM and that adsorbed onto the particulates, may be biodegraded. As
the rate of biodegradation in the DCM component is different from that for the soluble
micropollutant, indeed it may be zero, the existence of this component can influence
the distribution and bioavailability of the micropollutant.

The model was used to investigate two hypotheses. The first compared the use
of a cometabolic model for biodegradation against the use of a pure Monod model;
the former provided a better fit to experimental data. The second hypothesis tested
which compartment is available for biodegradation. The best fit to experimental data
was obtained when it was assumed that only soluble micropollutant is available for
biodegradation.

1.1.4.3 A detailed model for the ASP. Siegrist et al. [32] modelled the ASP
using the ASM1 model. A nonstandard assumption is made that the micropollutant
(nitrilotriacetate, NTA) is biodegraded not by the “regular” biomass but by a
specialized microbial species. Unlike the model developed by Delgadillo-Mirquez
et al. [8], discussed in Section 1.1.4.2, which made the same nonstandard assumption,
the specialized biomass grows through consumption of both soluble substrate and the
micropollutant. Thus, the micropollutant acts as a growth substrate and its removal is
associated with the growth of the microorganism, that is, it is not “biodegraded” in the
same sense as in the other models discussed in this review.

The micropollutant submodel contains five processes. There are two processes
describing the growth of the specialized biomass, the decay of the specialized biomass
and the reversible adsorption of the micropollutant onto suspended solids. Associated
with these additional processes are three additional state variables: soluble NTA
(S NTA), the biomass of NTA degraders (XB,NTA) and adsorbed NTA (XNTA).

The five-process model was too complex to be fitted against experimental data. A
simplified scheme, in which two processes were removed, could be fitted against the
available data. The removed processes were the growth of NTA degraders upon soluble
substrate and decay of the NTA degraders.

1.1.4.4 A “black box” approach to modelling the ASP. Melcer et al. [26] and
Parker et al. [29] developed models to simulates the operation of activated sludge
systems using the TOXCHEM computer package. TOXCHEM describes contaminant
removal in the grit chamber, the primary clarifier, the aeration basin and the secondary
clarifier.

Melcer et al. [26] developed a model that applies to WWTPs using either diffused or
surface aeration. An interesting feature of this model is that mass transfer into the gas
phase is modelled through two mechanisms: surface volatilization and air stripping. It
is assumed that sorption and desorption are at equilibrium.

The model developed by Parker et al. [29] simulates the removal of metals.
Consequently, biodegradation and mass transfer mechanisms are eliminated. Metals
are removed by sorption onto biological solids and by precipitation.

https://doi.org/10.1017/S1446181118000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000226


[9] Mathematical modelling of micropollutants 199

2. Biochemical processes
In this section, we describe the biochemical processes and reactions that are

included in the model. There are three biochemical reactions. Two of these, equations
(2.1) and (2.2), are associated with the activated sludge process. The third reaction,
equation (2.3), is the degradation of the micropollutants by the biomass.

The model includes two physical processes. These are sorption of the
micropollutants onto the suspended solids to form particulate micropollutants,
equation (2.4), and desorption of the particulates, equation (2.5).

Soluble substrate (S s) is consumed by the biomass (XB,H) to produce new biomass

S s
µ(S s)
−−−−→
XB,H

YHXB,H . (2.1)

In this equation, the parameter YH [(g COD L−1)/(g COD L−1)] is the heterotrophic
yield coefficient.

Death of particulate biomass

XB,H
bH
−−→ decay products, (2.2)

where bH [day−1] is the heterotrophic decay coefficient. The decay products formed
by the decay of particulate matter are not considered in the model.

Biological removal of micropollutants

Cs
kbiol
−−−→
XB,H

products. (2.3)

The products formed during the biological removal of micropollutants are not
considered in the model.

Sorption

Cs + TSS
ksor
−−→Cp. (2.4)

In this equation, TSS [g SS L−1] represents the total suspended solids whilst ksor
[L (g SS day)−1] is the kinetic constant for adsorption.

Desorption

Cp
kdes
−−→Cs + TSS. (2.5)

In this equation, kdes [day−1] is the kinetic constant for desorption. The parameter
Kd [L (g SS)−1] is the equilibrium constant for the sorption–desorption process. By
definition,

Kd =
ksor

kdes
.

3. Equations
In line with practical operation, we formulate the model assuming that aeration

is tightly controlled so that dissolved oxygen does not limit the growth of biomass;
consequently, it is not needed as a state variable.
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3.1. The dimensional model The model contains two differential equations for
the activated sludge process, equations (3.1) and (3.2), and two equations for the
dynamics of the micropollutants, equations (3.3) and (3.4). The rate of change of
soluble substrate

V
dS s

dt
= F(S s,in − S s) −

µmax

YH
· M2(S s) · XB,H · V, (3.1)

where the parameters V , F, S s,in and M2 are the volume of the bioreactor [L], the
flow rate through the bioreactor [L day−1], the substrate concentration in the feed
[g COD L−1] and Monod kinetics for readily biodegradable substrate, respectively.

The rate of change of particulate biomass (heterotrophs)

V
dXB,H

dt
= F(XB,H,in − XB,H) + RF(C − 1)XB,H + µmax · M2(S s) · XB,H · V − bHXB,HV,

(3.2)

where the parameters XB,H,in, C and R are the concentration of particulate biomass in
the feed [g COD L−1], the recycle concentration factor [–] and the recycle ratio [–],
respectively. These last two parameters are described in more detail in Section 3.2.

The rate of change of soluble micropollutants

V
dCs

dt
= F(Cs,in −Cs) − HQairCs − VksorXTSS ·Cs + V

ksor

Kd
·Cp − Vrbiol, (3.3)

where the parameters Cs,in and XTSS are the concentration of soluble micropollutants
in the feed [µg L−1] and the total suspended solids [g SS L−1], respectively.

The rate of change of particulates micropollutants

V
dCp

dt
= F(Cp,in −Cp) + RF(C − 1)Cp + VksorXTSS ·Cs − V

ksor

Kd
Cp, (3.4)

where the parameter Cp,in [µg L−1] is the concentration of particulate micropollutants
in the feed.

Monod growth kinetics

M2(S s) =
S s

KS + S s
.

Residence time

τ =
V
F
,

where the parameter τ [day] is the residence time.
Biological removal rate (“linear” biodegradation model)

rbiol = kbiol · XB,H ·Cs. (3.5)

Total suspended solids

XTSS = c2XB,H ,
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Table 3. Typical parameter values. The parameters in the table are: Cs,in, the concentration of soluble
micropollutants in the feed; KS , the Monod constant for heterotrophic biomass; S s,in, the substrate
concentration in the feed; YH , the heterotrophic yield factor; bH , the heterotrophic decay coefficient;
c2, a conversion factor from units of COD to units of TSS for the heterotrophic biomass; and µmax, the
maximum specific growth rate for biomass.

Parameter Unit Value Reference

Cs,in µg L−1 100 Fernandez-Fontaina et al. [12]
KS g COD L−1 0.020 Yoon and Lee [43]
S s,in g COD L−1 0.2 Yoon and Lee [43]
YH (g COD)(g COD)−1 0.67 Yoon and Lee [43]
bH day−1 0.22 Yoon and Lee [43]
c2 g SS(g COD)−1 0.90 Jeppsson and Diehl [19]
µmax day−1 6.0 Yoon and Lee [43]

where the parameter c2 converts units of chemical oxygen demand to units of total
suspended solids [(g SS)/(g COD)]. The nomenclature is defined in Appendix A.
In equations (3.1)–(3.4), the parameters that can be most easily manipulated
experimentally are the specific aeration flow rate (Qair), the concentration of soluble
substrate in the feed (S s,in) and the residence time (τ). The last of these is the main
experimental control parameter.

The typical parameter values for the activated sludge process are taken from [43].
The typical parameter values for the variables associated with the micropollutants
are taken from [12]. These values are presented in Tables 3 and 4, respectively.
The micropollutants are classified into one of four groups depending upon their
characteristics [12].

In Fernandez-Fontaina et al. [12, Table 3], the units of the parameter kbiol are
L (g VSS day)−1. We therefore required a conversion factor to convert these units
to units of L (g COD day)−1. This is given by [28, Ch. 2.2.4.1]

COD = fxVSS,

where fx = 1.42 g cell COD/(g VSS).
In the following section, we discuss the settling unit model.

3.2. The ideal settling unit model In this section, we provide background
information on settling units and our submodel for the settling unit: the ideal settling
unit model, also known as the perfect or point settling unit model. The purpose of a
settling unit, also known as a clarifier, secondary settling unit, sedimentation basin or
solid–liquid separator, is to use the process of sedimentation under gravity to separate
suspended solids, the biological sludge mass, from the liquid phase, the treated
wastewater. Two important processes occurring within a settling unit are clarification
and thickening. Clarification, which occurs in the upper zone of a settling unit, is
the removal of finely dispersed solids from the liquid. This produces a low-turbidity
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Table 4. Parameter values for the variables associated with the micropollutants. The average value of
the two values reported in [12, Table 3] has been taken. The parameters in the table are: Kd , the solid–
liquid partitioning coefficient; kbiol, the biotransformation kinetic constant; and ksor, the sorption kinetic
constant.

kbiol Kd ksor
Type L (g COD day)−1 L (g SS)−1 (g SS)−1

Highly biodegradable with
low sorption

>1.42 <100 × 10−3

Ibuprofen (IBP) 4.76 56.5 × 10−3 96.0
Naproxen (NPX) 2.84 47.0 × 10−3 129.5
Erythromycin (ERY) 2.70 59.5 × 10−3 36.0
Roxithromycin (ROX) 4.05 89.5 × 10−3 236.5

Highly biodegradable with
high sorption

>1.42 >100 × 10−3

Galaxolide (HHCB) 38.20 2704.5 × 10−3 3036.5
Tonalide (AHTN) 21.23 2346 × 10−3 1142.5

Slowly biodegradable <1.42
Fluoxetine (FLX) 1.35 902.5 × 10−3 2074.5
Sulfamethoxazole (SMX) 0.92 48.0 × 10−3 74.5
Trimethoprim (TMP) 0.64 75.5 × 10−3 96.5

Nonbiodegradable 0
Diclofenac (DCF) 0.00 <5.5 × 10−3 9.0
Carbamazepine (CBZ) 0.00 17.5 × 10−3 43.5
Diazepam (DZP) 0.00 125.5 × 10−3 122.5

effluent which is suitable for discharge into aquatic environments. Thickening, which
occurs in the lower zone of a settling unit, is the concentration of sludge.

A settling unit has two output streams: the effluent stream, from the clarification
zone, and the underflow stream, from the thickening zone. The former contains
purified water which is low in suspended solids; ideally free of suspended solids. In
our figure below this is the “top” stream with flow rate (1 − w)F. The latter contains
settled concentrated biomass. This is either recycled back into the reactor, through the
recycle stream, or sent for disposal, through the wastage stream.

Figure 1 shows the process configuration. The flow rate of the recycle stream
from the settling unit, denoted FR, is written as FR = RF, where the parameter R is
the recycle rate. The wastage rate from the settling unit, denoted FW , is written as
FW = wF, where w is the fractional wastage. When a settling unit is deployed we have
R > 0.

The thickening zone concentrates particulates. A common assumption in settling
unit models is that all particulates are the same size and are concentrated equally by the
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Figure 1. Schematic process configuration illustrating recycle and separate sludge wasting. C is the
recycle concentration factor [–]. F is the flow rate through the bioreactor [L day−1]. R is the recycle ratio
[–]. S is the substrate concentration in the bioreactor [g COD L−1]. S 0 is the substrate concentration in
the feed [g COD L−1]. X is the concentration of particulate biomass in the bioreactor [g COD L−1]. Xe

is the concentration of particulate biomass in the effluent stream [g COD L−1]. w is the fraction of the
recycle stream that is wasted [–].

settling unit. In the ideal settling unit model the concentration of particulates leaving
the settling unit in the underflow is given by CP, where the parameter C is known as
the concentration factor of the settling unit. Note that as the settling unit concentrates
particulates, we must have C > 1. We have P = XB,H in equation (3.2) and P = Cp in
equation (3.4).

A mass balance around the settling unit reveals that the particulate concentration in
the effluent stream is

Pe =
1 − wC + R(1 − C)

1 − w
· P,

where P is the concentration in the stream leaving the bioreactor. A standard
assumption is that the settling unit captures all particulates. Then Pe = 0, C = Cmax
and

[R(Cmax − 1)] = 1 − wCmax.

This gives the maximum concentration factor

Cmax =
1 + R
R + w

.

The value of Cmax is independent of the process load, only depending upon the recycle
ratio (R) and the wastage fraction (w). As 0 ≤ w < 1, the value of the maximum
concentration factor is guaranteed to be greater than one.

It follows that when all the solids are captured,

R∗ = R[Cmax − 1] =
R(1 − w)

R + w
.

The parameter grouping R∗ = R[Cmax − 1] is known as the effective recycle ratio. We
have 0 ≤ R∗ ≤ 1. The maximum value (R∗ = 1) can only be achieved if there is no
wastage (w = 0). Thus, in practice, we have 0 ≤ R∗ < 1.
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Although highly simplified, the point settler model is considered acceptable for
conditions under which the flow rate and the total suspended solids in the influent
stream of a WWTP are relatively constant [11]. It is useful when the main focus is on
the overall behaviour of the system. Diehl et al. noted that “It is the most commonly
used assumption for steady-state analysis in text books and papers” [10, Section 7].
However, when modelling dynamic conditions activated sludge models are mostly
coupled with one-dimensional settling unit models [11].

3.3. Other models for the settling unit The ideal settler unit model assumes a
highly idealized operation of the settling unit. A key implicit assumption is that
the settling unit is able to cope with any flux of particulate matter, that is, all the
particulate matter entering the settling unit passes through the thickening zone and
leaves in the underflow. However, in practice, settling units cannot be operated if the
flux of particulate matter is over some maximum value; such a situation is known as
overloading. Overloading, which may be due to reasons such as storm weather or
settleability deterioration, may lead to process failure, for example, particulate matter
may be discharged into the effluent stream. The phenomenon of overloading has
motivated the design of improved models for settling units. In this section, we provide
an overview of some relevant work over recent years. Our focus is on models that
use solid flux theory. Other approaches are possible, for example, by considering the
forces acting on settling particles [42].

Takács and Ekama [35] provided an excellent starting point to learn about settling
units. They covered settling tank configurations, measures of sludge settleability,
and provided an account of flux theory and how it is used to make the engineering
calculations that are required for the design and operation of settling units. The section
on the modelling of settlers divides post 1990 models into one-dimensional (1-D)
models and computational fluid dynamics (CFD) models (2-D or 3-D). The former
are more commonly used in conjunction with ASP models, whereas the latter are used
in the design of settling units.

One-dimensional models describe the vertical sludge profile by discretizing the tank
into horizontal layers, with uniform concentrations in each layer. This simplifies the
hydrodynamic flow within the settling unit to be either “up”, towards the effluent
stream, or “down”, towards the underflow. Three major zones are identified: the
clarification zone, the inlet zone and the thickening zone. The clarification zone, at
the top of the unit, sits above the inlet zone, which sits above the thickening zone, at
the bottom of the unit. Many assumptions have to be made to reduce the complexity
of the model. Standard assumptions include: the constituents of the suspension
are incompressible; the stream from the biological reactor is completely flocculated
before entering the settling unit; there is no mass transfer between the solid and liquid
phases; and that no reactions occur in the settling unit. A fundamental problem in
modelling settling units is that the various settling behaviours that can occur are poorly
understood [22]. This has led to the widespread use of empirical or semi-empirical
expressions for terms such as the settling velocity of particulate material.
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The most common method describes the settling behaviour of particulates using
a single concentration variable. Such models can be subdivided into first-order and
second-order models, also referred to as convection and convection–diffusion models,
respectively. First-order (convection) models are based upon mass continuity and give
rise to a nonlinear hyperbolic partial differential equation (PDE). Two mechanisms are
used to model the continuity of solids flux: hindered settling due to gravity and bulk
transport due to upwards and downwards hydraulic flow. Most early one-dimensional
models only considered conservation of mass and hindered settling [24, p. 235].

In second-order (convection–diffusion) models, a diffusion term is included in an
attempt to incorporate hydrodynamic features. This gives a nonlinear parabolic PDE.
An advantage of second-order models is that there is a clear distinction between
settling parameters, which can be measured, and “lumped parameters”, which lump
together hydrodynamic effects, which are adjusted during the process of model
calibration [11, 31].

At low concentrations, suspended particles are subject to hindered settling. At
high concentrations, particles are instead subject to compression settling. This occurs
due to the transmission of compressive stress as a consequence of the formation of
a (compressible) porous layer of flocculated particles. Although conceptually simple,
the constitutive relationships describing compressive behaviour are still unknown [38].
The interface between the region of hindered settling and compression settling is
known as the sludge blanket. A major complication in modelling compression is that
the location of the sludge blanket is not static. Under conditions of overloading, the
sludge blanket can move from the “bottom” of the settling unit to its “top”, resulting in
process failure due to the discharge of suspended solids into the effluent stream. The
earliest, and simplest, one-dimensional models did not include compressive settling.

The one-dimensional modelling of secondary settling tanks has been reviewed by
Li and Stenstrom [22] and by Cadet et al. [5]. Li and Stenstrom’s review divides
into three main parts: settling theory, one-dimensional models and suitable numerical
techniques. In their complementary review, Cadet et al. explored the defects in one-
dimensional models. These are primarily identified as being a lack of knowledge about
the fundamental physical processes occurring within a settling unit and the difficulties
in numerically solving the resulting PDE models. A complete CFD simulation of the
complicated multiphase fluid motion within a settling tank is currently not feasible due
to the wide range of physico-biochemical phenomena occurring inside it and a lack of
understanding about the settling characteristics of sludge [21, Section 6.1].

The most widely used one-dimensional settling tank model in WWTP modelling
is the first-order model due to Takács et al. [36]. This model has been found to work
best with 10 layers comprising: the top layer, corresponding to the effluent stream,
three clarifier layers, the feed layer, four thickening layers and the bottom layer,
corresponding to the underflow stream. For an applied mathematician, a worrying
feature of the Takács model is that, as the number of layers is increased, its solution
fails to converge to the solution of the underlying PDE [18]. Furthermore, increasing
the number of layers deteriorates the fit of the model to experimental data [41].
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One reason for such behaviour is that the discretized model includes a parameter, a
threshold concentration, which is not present in the PDE model. Despite its defects,
this model can provide reasonable predictions for settling units running under normal
operating conditions, that is, normal dry weather. It has been “implemented in
most commercial simulators as a reference model” [23, p. 814]. However, it is not
recommended to use it under anomalous operating conditions such as peak flows due
to rain [37].

A one-dimensional model that includes compressive settling is the hindered-
compression–dispersion model due to Bürger and Diehl, the Bürger–Diehl model. At
the time of its publication, it was the most advanced one-dimensional settling tank
model [23]. The potential advantages of this model include its ability to provide more
accurate predictions of underflow concentrations and to determine the location of the
sludge blanket under unusual conditions [24].

Torfs et al. [37] coupled the Bürger–Diehl settling unit model to the benchmark
simulation model no. 1 (BSM1) [2], a standard model for a WWTP. The authors’ aim
was not to investigate a fully calibrated model, rather it was to identify circumstances
under which the Bürger–Diehl model captures dynamic features of the settling unit
that were not captured by traditional models. The simulations used a standard input
file for storm weather conditions.

Li and Stenstrom [23] provided a sensitivity analysis of the Bürger–Diehl model
under wet-weather flow and sludge bulking conditions. The modelling platform used
was the BSM1 [2]. The authors found that the relative importance of the parameters
in the settling unit model depended upon the imposed simulation conditions.

Diehl et al. [9] investigated the steady-state behaviour of a bioreactor connected to
a settling unit, the latter using the Bürger–Diehl model. The biological processes were
represented by one reaction: the growth of a single biomass species upon one substrate.
For their steady-state analysis, the authors assumed that all the sludge entering the
settling unit moves through the thickening zone and that there is no sludge in the
effluent stream, that is, the settling unit can never be overloaded. To ensure that this
was the case, the recycle ratio (R) and the wastage ratio (w) unit were varied in order
to ensure that the location of the sludge blanket remained level at 1 m.

Diehl et al. [9] modelled the bioreactor as a continuously stirred tank reactor.
In a complementary study, the bioreactor was instead assumed to be a plug-flow
reactor [10]. As before, the authors assumed that the reactor cannot be overloaded
and varied the recycle ratio and the wastage ratio to ensure that the location of the
sludge blanket remains fixed at 1 m. One point of difference is that the steady-state
solutions obtained using the Bürger–Diehl settling tank model were compared to those
using the ideal settling tank model.

A standard assumption is that no reactions occur in settling units. However,
significant denitrification can occur at the bottom of settling tanks. Bürger et al. [3]
extended the Bürger–Diehl model to include biochemical reactions. A kinetic model
was used containing five state variables, three soluble species and two particulates.
This led to a system of nonlinear convection–diffusion–reaction PDEs, which had to
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be solved using a nonstandard numerical method. The model was solved within the
context of batch settling; it was linked to a model for a WWTP.

A practical obstacle to the use of advanced models for settling units is the paucity
of high-resolution data sets. Well-collected data sets from batch tests are required to
calibrate the empirical functions that are ubiquitous in settling unit models. Such
tests are labour intensive and typically information poor [24, Section 2.2]. Well-
collected data sets from WWTPs are required for model validation and comparison.
The limited observational data, of both types, has ensured that many settling tank
models have not been verified and tested [22]. Even when batch data is available,
the observational data is limited, which means that it is difficult to find a unique
set of model parameter values. The selection of initial guesses for parameters
associated with biomass settleability and compressibility can be challenging due to
insufficient knowledge as to what “typical” values might be [24, Section 2.3]. These
problems have limited the practical applications of advanced settler models, such as
the Bürger–Diehl model [23]. The problems associated with parameter identification
are exacerbated in advanced settler models due to the additional parameters that
they contain compared to traditional models. For example, the Bürger–Diehl model
contains additional parameters associated with compressive setting. More recent
settling unit models contain close to 10 parameters [24, Section 4]. Motivated by
such concerns, the sensitivity of model predictions to both to the choice of settling
unit models and the uncertainty in the values of settling unit parameters has been
investigated [24, 31].

Ramin et al. [31] used global sensitivity techniques to investigate how the choice of
settling tank model and the uncertainty in the settling unit model parameters affect the
performance of WWTP models. First-order and second-order one-dimensional settling
unit models were used. Dynamic simulations were carried out with daily, weekly
and seasonal variation in both dry- and wet-weather conditions. The uncertainty in
the settling unit parameters was found to be as influential as the uncertainty in the
biokinetic parameters of the activated sludge model no. 1. Furthermore, the relative
importance of the settling unit parameters depended upon which submodel was being
considered.

The problem of parameter identifiability in the Bürger–Diehl model without
dispersion was considered by Li and Stenstrom [24]. They investigated which
settling unit parameters can be identified from which experimental configurations, the
influence of the initial guess for the parameter values upon parameter identifiability
and how differences in parameter estimates impact the uncertainty in the prediction of
a model.

The one-dimensional models discussed above describe the behaviour of the
particulates through a single concentration variable. This implies that all the
particulates are the same size. Torfs et al. [38] have extended the Bürger–Diehl model
to include the size distribution of particles. Not only do the different particle classes
have different settleability characteristics, but the model contains “reaction” terms
allowing flocculation of smaller particles to produce larger particles and for larger
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particles to break apart into smaller ones. The model equations were implemented as
a batch sedimentation model containing 10 particle classes; they were not attached to
a WWTP model.

An alternative approach to the use of single-phase models are two-phase models
in which both solid and liquid concentrations are modelled. The use of both mass
continuity and conservation of momentum leads to a system of four PDEs, two for
each phase. Such models provide a more detailed description of physical processes,
in particular those associated with the compression zone. However, this greater detail
comes at the expense of introducing more processes which must be parameterized.
Such models have been reviewed by Li and Stenstrom [22].

4. Biological removal: a linear biodegradation model
4.1. The dimensionless model In this section, we study the system (3.1)–
(3.4) associated with the linear biotransformation rate defined by equation (3.5).
The model equations (3.1)–(3.4) are scaled using the dimensionless variables:
[S ∗ = S s/KS ], [X∗ = XB,H/YHKS ], [C∗s = Cs/Cs,in], [C∗p = Cp/Cs,in] and [t∗ = µmaxt].
This process introduces: scaled feed concentrations [C∗p,in = Cp,in/Cs,in, S ∗s,in =

S s,in/KS , X∗0 = X0/(YKS s)], a scaled solid–liquid partitioning coefficient [K∗d =

c2KS YH · Kd], a scaled specific aeration rate [Qeff = HQair/(Vµmax,H)], an effective
recycle ratio [R∗ = (C − 1)R], a scaled decay rate [b∗H = bH/µmax,H], a scaled
biotransformation kinetic constant [k∗biol = KS YH · kbiol/µmax,H], a scaled sorption rate
[k∗sor = c2KS YH · ksor/µmax,H] and a scaled residence time [τ∗ = τ · µmax,H]. The system
of scaled equations is

dS ∗

dt∗
=

S ∗s,in − S ∗

τ∗
−

X∗S ∗

1 + S ∗
, (4.1)

dX∗

dt∗
=

X∗0 − X∗

τ∗
+

X∗S ∗

1 + S ∗
− b∗H X∗ +

R∗X∗

τ∗
, (4.2)

dC∗s
dt∗

=
1 −C∗s
τ∗

− Qeff C∗s − k∗sor C∗s X∗ +
k∗sor

K∗d
C∗p − k∗biol X∗C∗s , (4.3)

dC∗p
dt∗

=
C∗p,in −C∗p

τ∗
+

R∗C∗p
τ∗

+ k∗sor C∗s X∗ −
k∗sor

K∗d
C∗p. (4.4)

From now on, we assume that the particulate biomass and the particulate
micropollutant concentrations in the feed are zero (X∗0 = 0 and C∗p,in = 0). Several
authors have reported that stripping, that is, mass transfer into the gas phase, is
negligible [1, 12, 20, 39]. In any case, stripping could only be significant for
volatile micropollutants. Urase and Kikuta [39] provided a bound on the value of
Henry’s constant, below which it can be assumed that transfer of compounds to
the air phase is negligible. Some models do not contain a mass transfer term as
it is assumed that biological removal and sorption are much more important that
volatilization. Examples of this are models for the removal of pentachlorophenol [17]
and nitrilotriacetate [32]. In view of the considerations outlined above, we remove the
specific aeration term from our model, that is, Qeff = 0.
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4.2. Steady-state solutions There are two branches of steady-state solutions. The
first of these is the washout branch,

(S ∗, X∗,C∗s ,C
∗
p) = (S ∗s,in, 0, 1, 0).

This is so-named because the bioreactor is devoid of biomass (X∗ = 0). The second of
these is the no-washout branch

(S ∗, X∗,C∗s ,C
∗
p) =

(
Ŝ ∗,

S ∗s,in − Ŝ ∗

1 − R∗ + b∗Hτ
∗
, d1

[
1 − R∗ + τ∗

k∗sor

K∗d

]
, d1 τ

∗k∗sorX
∗

)
,

Ŝ ∗ =
1 − R∗ + b∗Hτ

∗

(1 − b∗H)τ∗ − (1 − R∗)
,

d1 =
1

[(k∗sor/K∗d) d2 + (1 − R∗)k∗sorX∗]τ∗ + d2(1 − R∗)
,

d2 = 1 + k∗biolX
∗τ∗.

This is so-named because the bioreactor contains biomass (X∗ > 0). Note that we have
d1 > 0 and d2 > 0.

The no-washout branch is only of interest when the components are positive
(0 < S ∗s < S ∗s,in, X∗ > 0, C∗s > 0, C∗p > 0). These conditions are met if the dimensionless
residence time is sufficiently high and the dimensionless decay rate is sufficiently low,

τ∗ > τ∗cr =
(1 + S ∗s,in)(1 − R∗)

S ∗s,in − (1 + S ∗s,in)b∗H
> 0,

0 < b∗H <
S ∗s,in

1 + S ∗s,in
. (4.5)

(Recall from Section 3.2 that we have 0 ≤ R∗ ≤ 1.)
A transcritical bifurcation occurs when τ∗ = τ∗cr. At this point, the no-washout and

washout solution branches intersect. Note that this critical value approaches zero as the
value of the effective recycle parameter approaches its theoretical maximum (R∗ = 1).
The use of a settling unit allows the reactor to operate at lower residence times.

The dimensionless soluble micropollutant concentration and the dimensionless
particulate micropollutant concentration are both decreasing functions of the
dimensionless biotransformation kinetic constant (k∗biol). Differentiating the steady-
state equations (4.3) and (4.4) with respect to k∗biol,

dC∗p
dk∗biol

=
−k∗sor X∗2τ∗2C∗s

[X∗τ∗(k∗sor + k∗biol) + 1][1 − R∗]K∗d + k∗sorτ∗[k∗biol X∗τ∗ + 1]
< 0,

dC∗s
dk∗biol

=
−X∗C∗sτ

∗[(1 − R∗)K∗d + k∗sor τ
∗]

[X∗τ∗(k∗sor + k∗biol) + 1][1 − R∗]K∗d + k∗sor τ∗[k∗biol X∗τ∗ + 1]
< 0. (4.6)

(Prior to differentiating equations (4.3) and (4.4), it is useful to note that the steady-
state expressions for the substrate and biomass concentrations, S ∗ and X∗, respectively,
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are independent of the parameter k∗biol.) Hence, these concentrations decrease as
the dimensionless biotransformation kinetic constant increases. As the value of the
dimensionless biotransformation kinetic constant (k∗biol) increases, the dimensionless
soluble micropollutant is more rapidly removed by the biomass. The removal of
soluble micropollutant induces more particulate micropollutant to be desorbed.

The soluble micropollutant concentration and the particulate micropollutant
concentration are decreasing and increasing as functions of the dimensionless solid–
liquid partitioning coefficient (K∗d), respectively. Differentiating the steady-state
equations (4.3) and (4.4) with respect to K∗d ,

dC∗p
dK∗d

=
(k∗sorτ

∗)2X∗d2

[(1 − R∗)K∗d X∗k∗sorτ∗ + d2{k∗sorτ∗ + (1 − R∗)K∗d}]
2 ,

dC∗s
dK∗d

=
−(1 − R∗)(k∗sorτ

∗)2X∗

[(1 − R∗)K∗d X∗k∗sorτ∗ + d2{k∗sorτ∗ + (1 − R∗)K∗d}]
2 .

(Before carrying out the implicit differentiation, it should be noted that the steady-
state expressions for the substrate and biomass concentrations are independent of
the parameter K∗d .) In our model formulation, increasing the dimensionless solid–
liquid partitioning coefficient corresponds to decreasing the rate of the desorption.
It is therefore to be expected that this acts to increase the particulate micropollutant
concentration at the expense of the soluble micropollutant concentration. We conclude
that the soluble micropollutant concentration is minimized by taking high values for
k∗biol and K∗d .

4.3. Local stability The local stability of the steady-state solutions is governed by
the eigenvalues of the Jacobian matrix of the model (4.1)–(4.4). We have

J(S ∗, X∗,C∗s ,C
∗
p) =


−A1 −A2 0 0
A3 A4 0 0
0 −A5 −A6 A7
0 A8 A9 −A10

 , (4.7)

where

A1 =
1
τ∗

+
X∗

(1 + S ∗)2 , A2 =
S ∗

(1 + S ∗)
, A3 =

X∗

(1 + S ∗)2 ,

A4 =
R∗ − 1 − b∗Hτ

∗

τ∗
+

S ∗

1 + S ∗
, A5 = (k∗sor + k∗biol) C∗s , A6 =

1
τ∗

+ X∗[k∗sor + k∗biol],

A7 =
k∗sor

K∗d
, A8 = k∗sor C∗s , A9 = k∗sorX

∗, A10 =
1 − R∗

τ∗
+

k∗sor

K∗d
.
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4.3.1 Stability of the washout solution branch. Along the washout solution branch,
the eigenvalues of the Jacobian matrix are given by

λ1,2 = −
1
τ∗
< 0,

λ3 =
R∗ − 1 − (k∗sor/K

∗
d)τ∗

τ∗
< 0,

λ4 =
R∗ − 1 − b∗Hτ

∗

τ∗
+

S ∗s,in
1 + S ∗s,in

.

Note that 0 ≤ R∗ < 1. Rearranging the expression for λ4, we find that the eigenvalue is
negative when

[S ∗s,in − b∗H(1 + S ∗0)]τ∗ < (1 − R∗)(1 + S ∗s,in).

This shows that the eigenvalue is always negative when the decay rate is sufficiently
high, that is,

bH ≥
S ∗s,in

1 + S ∗s,in
.

When this inequality does not hold, that is,

bH <
S ∗s,in

1 + S ∗s,in
,

the washout steady-state solution is stable if the dimensionless residence time is
sufficiently low:

τ∗ < τ∗cr =
(1 + S ∗s,in)(1 − R∗)

S ∗s,in − (1 + S ∗s,in)b∗H
.

Using standard methods [27], it can be shown that the washout solution branch is
globally stable if it is locally stable.

4.3.2 Stability of the no-washout solution branch. For any steady-state solution,
we have from equation (4.2) that

0 = X∗
(R∗ − 1

τ∗
+

S ∗

1 + S ∗
− b∗H

)
.

The washout branch corresponds to the solution 0 = X∗, whereas the no-washout
branch corresponds to the solution

0 =
R∗ − 1
τ∗

+
S ∗

1 + S ∗
− b∗H .

Observe that the expression at J2,2 is exactly

J2,2 =
R∗ − 1
τ∗

+
S ∗

1 + S ∗
− b∗H .
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It immediately follows that along the no-washout solution branch we have J2,2 = 0.
Along this solution branch, the characteristic polynomial of the Jacobian

matrix (4.7) is given by

C(λ) = [λ2 + a1λ + a2][λ2 + A1λ + A3A2], (4.8)
a1 = A6 + A10,

a2 = A6A10 − A7A9.

This solution branch is only of interest when the solution components are all positive.
Under these circumstances, the coefficients in the Jacobian matrix, Ai, i = 1, . . . , 10,
are also positive.

Equation (4.8) is a product of two quadratic equations. The conditions for the
steady-state solution to be locally stable are: a1 > 0, a2 > 0, A1 > 0 and A3A2 > 0.
The coefficients a1, A3A2 and A1 are immediately seen to be positive. To prove that
a2 > 0,

a2 =A6A10 − A7A9 =
A10 + X∗τ∗(k∗sor/K

∗
d)k∗biol + X∗[k∗sor + k∗biol][1 − R∗]

τ∗
> 0.

We conclude that when the no-washout branch is physically meaningful, it is stable.

4.4. Asymptotic solution along the no-washout solution branch At large values
of the dimensionless residence time, the solution components along the no-washout
solution branch are approximated by

S ∗ ≈
b∗H

1 − b∗H
+

1 − R∗

(1 − b∗H)2 ·
1
τ∗

+ O
( 1
τ∗2

)
, (4.9)

X∗ ≈
S ∗s,in − b∗H(S ∗s,in + 1)

b∗H(1 − b∗H)
·

1
τ∗

+ O
( 1
τ∗2

)
, (4.10)

C∗s ≈
b∗H(1 − b∗H)

[S ∗s,in − b∗H(S ∗s,in + 1)]k∗biol + b∗H(1 − b∗H)
−

(1 − R∗)[K∗dC1 − k∗biolC2]

C2

3

·
1
τ∗

+ O
( 1
τ∗2

)
, (4.11)

C∗p ≈
K∗d[S ∗s,in − b∗H(S ∗s,in + 1)]

k∗sor[(S ∗s,in − b∗H(S ∗s,in + 1))k∗biol + b∗H(1 − b∗H)]
·

1
τ∗

+ O
( 1
τ∗2

)
, (4.12)

C1 = b∗H(1 − b∗H)[S ∗s,in − b∗H(1 + S ∗s,in)] > 0,

C2 = (1 − b∗H)2S ∗s,in + b∗H
2 > 0,

C3 = −k∗biol (1 − b∗H)S ∗s,in − b∗H (1 − b∗H − k∗biol).

Note that from equation (4.5), this solution branch is only meaningful when
b∗H < [S ∗s,in/(1 + S ∗s,in)]. Thus, [S ∗s,in − b∗H(1 + S ∗s,in)] > 0. Equations (4.9) and (4.11)
show that the dimensionless effluent concentration and the dimensionless soluble
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micropollutant concentration reach limiting value at large dimensionless residence
times,

lim
τ∗→+∞

S ∗ =
b∗H

1 − b∗H
> 0,

lim
τ∗→+∞

C∗s =
b∗H(1 − b∗H)

[S ∗s,in − b∗H(S ∗s,in + 1)]k∗biol + b∗H(1 − b∗H)
> 0. (4.13)

These limiting concentrations are independent of the values associated with the
adsorption (k∗sor) and desorption (K∗d) processes.

From equation (4.13), note that when there is no biological reaction (k∗biol = 0), the
limiting value of the dimensionless soluble micropollutant concentration is equal to
the dimensionless influent concentration,

lim
τ∗→+∞

C∗s(k∗biol = 0) = 1.

The reason for this is: when k∗biol = 0, there is no biological removal of the
micropollutant. The only removal mechanism for the micropollutant is through
adsorption onto the microorganisms. However, in the limit of the large residence
times, equation (4.10) shows that the microorganism concentration approaches zero.
Consequently, there are no microorganisms to be absorbed onto.

When the micropollutant is not biodegradable, the concentration of soluble
micropollutants along the no-washout branch simplifies to

C∗s(τ∗) =
1 − R∗ + k∗sorτ

∗/K∗d
1 − R∗ + k∗sorτ∗/K∗d + (1 − R∗)k∗sorX(τ∗)τ∗

, τ∗cr ≤ τ
∗.

This is a continuous function with value C∗s = 1 when τ∗ = τ∗cr and limiting value
limτ∗→∞C∗s = 1. As C∗s < 1 for τ∗cr < τ

∗ <∞, we conclude that, when the micropollutant
is nonbiodegradable, there must be a finite value of the dimensionless residence which
minimizes its value. This is an interesting finding that has not been reported previously.

Note from equation (4.11) that if the term (K∗dC1 − k∗biolC2) is positive (negative),
then the soluble micropollutant concentration increases (decreases) to its limiting
value. This shows that in the former case the concentration of soluble micropollutant
is minimized at a finite residence time. This case happens when

K∗d
k∗biol

>
(1 − b∗H)2S ∗s,in + b∗

2

H

b∗H(1 − b∗H)[S ∗s,in − b∗H(1 + S ∗s,in)]
. (4.14)

This behaviour cannot occur in the limit b∗H = 0.
The right-hand side of inequality (4.14) only depends upon the values of S ∗s,in

and b∗H . Using the parameter values in Table 3, we find that the right-hand
side is equal to 27.38089632. In Table 7, we calculate the left-hand side of
the inequality (4.14) for each of the 11 micropollutants. We observe that only
nonbiodegradable micropollutants (CBZ and DZP) satisfy inequality (4.14) and thus
these are the only micropollutants that increase to their limiting values.
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Equations (4.10) and (4.12) show that both the dimensionless microorganism
concentration and the dimensionless particulate micropollutant concentration decrease
to zero.

We note that the limiting value of all solution components is independent of the
effective recycle ratio (R∗). In equations (4.9)–(4.12), the recycle ratio only influences,
as a second-order effect, the concentrations of the soluble substrate and the soluble
micropollutant. When the micropollutant is not biodegradable (k∗biol = 0), we have
from equation (4.11) that

dC∗s
dR∗

∣∣∣∣∣
k∗biol=0

=
S ∗s,in − b∗H(1 + S ∗s,in)

b∗H τ
∗(1 − b∗H)

· K∗d ·
1
τ∗
> 0. (4.15)

This shows that when the micropollutant is not biodegradable that recycle increases
the concentration of soluble micropollutants at large residence times.

4.5. Steady-state diagrams: no settling unit In this section, we investigate
steady-state diagrams when there is no settling unit (R = R∗ = 0). Although this is
not realistic from the perspective of an ASP plant, it does model another treatment
method: the aerated lagoon. In any case, this section provides a baseline for evaluating
the effect of recycle.

Steady-state diagrams for 11 micropollutants are shown in Figure 2. It is assumed
that there is no recycle. The micropollutants considered are those investigated in [12].
These compounds represent four possible types of micropollutant behaviour [12].
These are (i) highly biodegradable with low sorption; (ii) highly biodegradable with
high sorption; (iii) slowly biodegradable; and (iv) nonbiodegradable.

The soluble micropollutant concentration is equal to one along the washout branch
(τ∗ < τ∗cr = 1.146). After the transcritical bifurcation, the concentration of soluble
micropollutants initially decreases. At sufficiently high residence times it may increase
to its limiting value. This depends upon the sign of the coefficient of the term τ∗

in equation (4.11). For nonbiodegradable compounds, equation (4.15) shows that
the soluble micropollutant decreases to the minimum point before increasing to its
asymptotic value.

From equation (4.11), note that the concentration of soluble micropollutants
approaches the limiting value

lim
τ∗→+∞

C∗s =


b∗H(1 − b∗H)

[S ∗s,in − b∗H(S ∗s,in + 1)]k∗biol + b∗H(1 − b∗H)
, k∗biol > 0,

1, k∗biol = 0.

Figure 2(d) shows, as noted in Section 4.4, that if the micropollutant is
nonbiodegradable then the soluble micropollutant concentration approaches the value
in the influent at large residence times. The limiting value of the soluble micropollutant
concentration for all compounds is presented in Table 5. The limiting soluble
micropollutant concentration is only influenced by one parameter associated with
the micropollutants (k∗biol) and two parameters associated with activated sludge (b∗H
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Figure 2. Steady-state diagrams for the dimensionless soluble micropollutant concentration when there
is no settling unit (R∗ = 0) (colour available online). In (d) the concentrations of CBZ and DZP are
minimized at dimensionless residence times τ∗ = 2.91 and τ∗ = 2.92, respectively. The washout line
corresponds to process failure as there is no active biomass in the bioreactor (X∗ = 0). Parameter values
stated in Tables 3 and 4.

and S ∗s,in). Note that the limiting soluble micropollutant concentration can be decreased
by increasing the influent substrate concentration (S ∗s,in).

From equation (4.6), we know that as the biotransformation kinetic constant (kbiol)
increases, the concentration of soluble micropollutant decreases. Suppose that we
specify a desired maximum concentration of the micropollutant in the effluent (0 <
C∗s,e < 1). Then, at high residence times, equation (4.11) gives the requirement that

k∗biol >
b∗H(1 −C∗s,e)(1 − b∗H)

C∗s,e[S ∗s,in − b∗H(S ∗s,in + 1)]
.

In practice, it may not be possible to increase the value for the biotransformation
constant k∗biol. However, increasing the substrate concentration in the feed has an
equivalent effect.

Figure 2(b) shows that the removal of the micropollutant is optimized when it is
highly biodegradable with high sorption, while the removal of the micropollutant
decreases if it is slowly biodegradable, as in Figure 2(c). Figure 2(d) demonstrates
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Figure 3. Steady-state diagrams for the dimensionless particulate micropollutant concentration when
there is no settling unit (R∗ = 0) (colour available online). The washout line corresponds to process
failure as there is no active biomass in the bioreactor (X∗ = 0). Parameter values stated in Tables 3 and 4.

that when the micropollutant is not biodegradable, its concentration is minimized at
a finite value of the residence time. At this point, the removal of CBZ and DZP are
0.1785% and 1.265%, respectively. Thus, there is an insignificant removal of these
nonbiodegradable compounds.

Figure 3 shows the steady-state particulate micropollutant concentration when there
is no recycle. Along the no-washout branch, the concentration increases sharply from
its initial zero value to reach a maximum value. These maximum values are shown
in Table 5. After the maximum value, the concentration decreases towards a limiting
value, given by equation (4.12) when the residence time approaches infinity.

For a nonbiodegradable micropollutant shown in Figure 3(d), the maximum
particulate micropollutant concentration is very low. This accounts for the negligible
removal of soluble micropollutant shown in Figure 2(d).

4.6. Steady-state diagrams: the effect of recycle We now investigate how the
particulate micropollutant concentration and the soluble micropollutant concentration
change in response to the deployment of a settling unit. We pick one example of each
of the four classes of micropollutants: IBP, HHCB, FLX and DZP. We show that when
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Figure 4. Steady-state diagrams for the dimensionless soluble micropollutant concentration as a function
of the effective recycle ratio (colour available online). In each diagram the curve with the highest value of
the dimensionless residence time at the transcritical bifurcation corresponds to the case R∗ = 0.0 and the
curve with the lowest value of the dimensionless residence time at the transcritical bifurcation corresponds
to the case R∗ = 0.99. The washout line corresponds to process failure as there is no active biomass in the
bioreactor (X∗ = 0). Parameter values stated in Tables 3 and 4.

the micropollutant is biodegradable, recycle decreases the soluble concentration of
micropollutants at intermediate values of the residence time. However, equation (4.11)
shows that recycle does not change the limiting value for the soluble concentration of
micropollutants.

Figure 4 shows the soluble micropollutant concentrations for four values of
the effective recycle ratio (R∗ = 0, 0.5, 0.9, 0.99). Figure 4(a)–(c) show that
concentration of biodegradable micropollutants reduces as the effective recycle ratio
is increased. Thus, recycle has a positive effect in reducing the soluble micropollutant
concentration. (At sufficiently high values of the residence time the concentration may
increase; see discussion of equation (4.14).)

Figure 4(d) illustrates the case when the micropollutant is not biodegradable. In
this case, we obtain a surprising result, namely, that the minimum value of the soluble
micropollutant concentration is obtained when there is no recycle. This is confirmed
by the values shown in Table 6. However, in practice, this effect is likely to be

https://doi.org/10.1017/S1446181118000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000226


218 M. I. Nelson, R. T. Alqahtani and F. I. Hai [28]

Table 5. The maximum value for the dimensionless particulate micropollutant concentration (C∗p) and the
limiting value for the dimensionless soluble micropollutant concentration (C∗s ).

Compound τ∗max C∗p,max C∗s (τ∗ →∞)

Highly biodegradable with low sorption
Ibuprofen (IBP) 2.0391702 0.0047462771 0.25718594
Naproxen (NPX) 2.2118545 0.0042216033 0.36721044
Erythromycin (ERY) 2.2404870 0.0053477151 0.37903397
Roxithromycin (ROX) 2.0918480 0.0076770846 0.28923227

Highly biodegradable with high sorption
Galaxolide (HHCB) 1.5040588 0.10878801 0.041358696
Tonalide (AHTN) 1.6213181 0.11922515 0.072036863

Slowly biodegradable
Fluoxetine (FLX) 2.4515015 0.0795152878 0.54970941
Sulfamethoxazole (SMX) 2.5597808 0.0046597008 0.64175347
Trimethoprim (TMP) 2.6462659 0.0074043554 0.72028754

Nonbiodegradable
Carbamazepine (CBZ) 2.9075954 0.0017853091 1
Diazepam (DZP) 2.9200865 0.0126477035 1

Table 6. The dependence of the minimum value of the dimensionless soluble micropollutant
concentration (C∗s ) upon the effective recycle parameter for DZP.

R∗ τ∗min C∗s,min

0 2.9201 0.9873522979
0.5 1.4600 0.9873522977
0.9 0.2920 0.9873523123
0.99 0.0292 0.9873539515

insignificant due to the negligible removal of nonbiodegradable micropollutant. Only
when the reactor is operated at residence times lower than that at washout (τ∗ <
τ∗cr(R

∗ = 0)) does recycle have a positive effect in reducing the soluble micropollutant
concentration.

Figure 5 shows how the recycle affects the particulate micropollutant concentration
for the same values of the effective recycle ratio (R∗ = 0, 0.5, 0.9, 0.99). In all cases,
the particulate micropollutant concentration increases as the recycle increases. This
is expected, as increasing the effective recycle parameter decreases the amount of
particulate matter that is discharged in the waste stream and thereby increasing the
amount in the reactor.
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Figure 5. Steady-state diagrams for the dimensionless particulate micropollutant concentration as a
function of the effective recycle ratio (colour available online). In each diagram the curve with the highest
value of the dimensionless residence time at the transcritical bifurcation corresponds to the case R∗ = 0.0
and the curve with the lowest value of the dimensionless residence time at the transcritical bifurcation
corresponds to the case R∗ = 0.99. The washout line corresponds to process failure as there is no active
biomass in the bioreactor (X∗ = 0). Parameter values stated in Tables 3 and 4.

Our asymptotic result revealed that the concentration of nonbiodegradable
micropollutants is minimized at a finite value of the residence time. This is shown
in Figure 2(d). Figure 6 shows a curve in the Kd–ksor parameter space along which
the minimum soluble micropollutant concentration is equal to 0.1, representing 90%
removal of the micropollutant. In the region above the curve, the minimum soluble
micropollutant concentration is less than 0.1. Thus, 90% removal of the micropollutant
is only possible for parameter values above the curve. In the region below the
curve, the minimum soluble micropollutant concentration is greater than 0.1. Note
that this figure is plotted using the dimensional values, Kd and ksor, rather than
dimensionless values, K∗d and k∗sor, to facilitate comparison with the typical values
for nonbiodegradable micropollutants shown in Table 4. From this comparison
we conclude that 90% removal of nonbiodegradable micropollutants is impossible.
Finally, we note that recycle has a negligible effect on the demarcation line as indicated
in Table 6.
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Figure 6. Diagram showing that the effective recycle ratio (R∗) has a negligible effect upon the locus
C∗s,min = 0.1 in the Kd [L (g SS)−1]–ksor [L (g SS day)−1] plane for nonbiodegradable micropollutants. For
any point on the locus, there is a value of the residence time at which the minimum soluble micropollutant
concentration is 0.1. Parameter values stated in Tables 3 and 4.

Figure 7 shows curves in the Kd–ksor parameter space for nonbiodegradable
micropollutants along which the soluble micropollutant concentration is equal to 0.5,
representing 50% removal of the micropollutant, for different values of the effective
recycle ratio. In the region above the curve the soluble micropollutant concentration is
less than 0.5. Thus, 50% removal of the micropollutant is only possible for parameter
values above the curve. In the region below the curve, the soluble micropollutant
concentration is greater than 0.5. Note that recycle now has a significant effect on the
location of the boundary.

4.7. Which removal mechanism is the most effective? At steady state, the rate at
which soluble micropollutants enters the reactor (D1) is given by

D1 =
1
τ∗

+
k∗sor

K∗d
C∗p.

This expression contains two terms. The first term on the right-hand side of the
equation is the rate at which soluble micropollutants enter the reactor in the feed. The
second term on the right-hand side is the rate at which micropollutants are generated
inside the reactor due to desorption from particulates. There are three processes which
lead to a decrease in the concentration of soluble micropollutants.

Rate at which soluble micropollutants leave the reactor in the effluent stream

D2 =
C∗s
τ∗
.

Rate at which soluble micropollutants are adsorbed onto particulates

D3 = k∗sorC
∗
s X∗.
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Figure 7. Diagram showing how the locus C∗s = 0.5 in the Kd [L (g SS)−1]–ksor [L (g SS day)−1] plane
for nonbiodegradable micropollutant depends upon the value of the effective recycle ratio (R∗) (colour
available online). For any point on the locus, there is a value of the residence time at which the minimum
soluble micropollutant concentration is 0.5. Parameter values stated in Tables 3 and 4.

Rate at which soluble micropollutants are biodegraded

D4 = k∗biol X∗C∗s .

At steady state, we have D1 = D2 + D3 + D4. We define the percentage removed in
the effluent stream (C), the percentage removed by adsorption (B) and the percentage
removed by biodegradation (A) as

A = 100
D4

D1
, B = 100

D3

D1
, C = 100

D2

D1
.

Figure 8 shows how the percentage removal for each mechanism changes as the
dimensionless residence time is changed. Whilst the removal percentages due to
biodegradation (A) and due to adsorption (B) are both increasing functions of the
residence time, the removal percentage in the effluent stream (C) decreases.

In the vicinity of the washout point, the most important removal mechanism
is removal in the effluent stream (mechanism C). At slightly higher values of the
residence time the most important removal mechanism is adsorption (mechanism B).
This is noteworthy, as in Table 4 IBP is classified as being highly biodegradable with
low sorption. In fact, for the parameter values used in this figure biodegradation
(mechanism A) is insignificant, never being more than 5.1%. Even at the residence
time τ∗ = 10, we have A ≈ 5.1%. In fact, the percentage removed through adsorption
is always higher than that removed by biodegradation.

There is a simple explanation for this finding. The ratio of the percentage removal
rate for biodegradation to the percentage removal rate for adsorption is

D4

D3
=

k∗biol

k∗sor
.

Thus, biodegradation is only more effective than adsorption if k∗biol > k∗sor.
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Figure 8. The percentage removal of soluble IBP due to: biodegradation (A = 100(D4/D1)), adsorption
(B = 100(D3/D1)) and removal in the effluent stream (C = 100(D2/D1)). (Colour available online). The
values of the recycle parameter and wastage fraction are R = 0.4 and w = 0.1, respectively. Parameter
values stated in Tables 3 and 4.

At large residence times, the percentage removal by each mechanism is
approximately

A ≈ 100ξ[S ∗s,in − b∗H(S ∗s,in + 1)]k∗biol + O
( 1
τ∗

)
,

B ≈ 100ξ[S ∗s,in − b∗H(S ∗s,in + 1)]k∗sor + O
( 1
τ∗

)
,

C ≈ 100ξb∗H(1 − b∗H) + O
( 1
τ∗

)
,

where

ξ =
1

[S ∗s,in − b∗H(S ∗s,in + 1)][k∗biol + k∗sor] + b∗H(1 − b∗H)
.

5. Conclusion

We have formulated a mathematical model for the activated sludge process
which included the main mechanisms for the removal of micropollutants: biological
removal due to biodegradation and/or cometabolism, volatilization and sorption.
We considered a simplified model for biotransformation with no cometabolism and
representing the rate of biodegradation as a linear function of the concentration of
micropollutants.

Experimental evidence indicates that in many circumstances volatilization plays
only a minor role in removing micropollutants. Consequently, we removed the
volatilization term prior to our analysis. Analytical formulae for the steady-state
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Table 7. The dimensionless values of the micropollutant biotransformation parameters.

K∗d
k∗biol

,

Compound k∗biol K∗d k∗sor equation (4.14)

Highly biodegradable with low sorption
Ibuprofen (IBP) 0.010631 0.000681 0.192960 0.0640966
Naproxen (NPX) 0.006343 0.000567 0.260295 0.0893662
Erythromycin (ERY) 0.006030 0.000718 0.072360 0.1190000
Roxithromycin (ROX) 0.009045 0.001079 0.475365 0.1193333

Highly biodegradable with high sorption
Galaxolide (HHCB) 0.085313 0.032616 6.10337 0.382312
Tonalide (AHTN) 0.047414 0.028293 2.29643 0.596722

Slowly biodegradable
Fluoxetine (FLX) 0.003015 0.010884 4.169745 3.610000
Sulfamethoxazole (SMX) 0.002055 0.000579 0.149745 0.281739
Trimethoprim (TMP) 0.001429 0.000911 0.193965 0.637031

Nonbiodegradable
Carbamazepine (CBZ) 0 0.000211 0.087435 ∞

Diazepam (DZP) 0 0.001514 0.246225 ∞

solutions were then found and their stability was determined as a function of the
residence time (hydraulic retention time). Asymptotic solutions for large residence
times were provided.

Our steady-state results were used to analyse the the removal of soluble
micropollutants. The analysis showed that the removal of soluble micropollutants is
optimized when they are highly biodegradable with high sorption. We have shown
that in the limit of infinitely large residence time, the concentration of biodegradable
micropollutants is independent of the parameter values associated with the processes
of adsorption and desorption. The limiting concentration can be minimized by either
increasing the value of the biological degradation kinetic constant or concentrating the
substrate in the feed. Thus, the removal of biodegradable pollutants can be enhanced
by concentrating the feed.

Our asymptotic results show that it is possible that the soluble micropollutant
concentration approaches its limiting value from below. For such a compound, there
is a finite value of the residence time that optimizes its removal. None of the nine
biodegradable micropollutants considered in this study behaved in such a manner.

It follows from our asymptotic results that the removal of nonbiodegradable
pollutants is optimized at a finite value of the residence times, as in the limit of infinite
residence times their values approach that of the influent.
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We found that the use of a settling unit enhances the removal of biodegradable
micropollutants (see Figure 4(a)–(c)). However, the use of a settling unit only
enhanced the removal of nonbiodegradable micropollutants if the residence time is
sufficiently low (see Figure 4(d)). However, in the limit of infinite residence time the
value of the soluble micropollutant concentration is independent of the operation of
a settling unit. For nonbiodegradable micropollutants, we found a surprising result,
namely, that the maximum amount of micropollutant removed may be a decreasing
function of the effective recycle ratio. The removal of such micropollutants is,
therefore, optimized by not using a settling unit.

We have used our steady-state analysis to investigate the relative effectiveness of the
mechanisms by which micropollutants are removed from the reactor. We have shown
that the condition for biodegradation to be more effective than adsorption is k∗biol > k∗sor.
The values of these parameters for the micropollutants considered in this paper are
provided in Table 7. From this, we see that the condition k∗biol > k∗sor never holds.

We conclude that even for the micropollutants described as being “highly
biodegradable with low sorption”, adsorption is a more effective removal mechanism
than biodegradation.
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Appendix A. Symbols used

In the following we denote the units of S and X by |S | and |X|, respectively. The
scaled variables are listed at the end of the table.

AHTN Tonalide
ASM1 Activated sludge model no. 1
ASP Activated sludge process
C The recycle concentration factor (C > 1) —
Cmax The maximum value of the concentration factor —

Cmax = (R + 1)/(R + w)
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Cg Gas-phase concentration of micropollutant µg L−1

Cp The concentration of particulate micropollutants µg L−1

Cp,in The concentration of particulate micropollutants µg L−1

in the feed
Cs The concentration of soluble micropollutants µg L−1

Cs,in The concentration of soluble micropollutants µg L−1

in the feed
CBZ Carbamazepine
COD Chemical oxygen demand
DCF Diclofenac
DZP Diazepam
ERY Erythromycin
F Flow rate through the bioreactor L day−1

FLX Fluoxetine

H Henry coefficient of the micropollutant
(µg L)wastewater

(µg L)air
HHCB Galaxolide
IBP Ibuprofen
Kd Solid–liquid partitioning coefficient L (g SS)−1

KLa Mass transfer coefficient (day−1)
KS Monod constant for heterotrophic biomass g COD L−1

KS C Micropollutant affinity constant µg L−1

M2 Monod kinetics for readily biodegradable —
soluble substrate

NPX Naproxen
Qair Aeration flow rate Lair day−1

PDE Partial differential equation
R Recycle ratio based on volumetric flow rates —
ROX Roxithromycin
S s Concentration of soluble substrate g COD L−1

S s,in Substrate concentration in the feed g COD L−1

SMX Sulfamethoxazole
TC Micropollutant transformation capacity µg/(g COD)
TMP Trimethoprim
TSS Total suspended solids g SS L−1

V Volume of the bioreactor L
XB,H Concentration of particulate biomass (heterotrophs) g COD L−1

XB,H,in Concentration of particulate biomass (heterotrophs) g COD L−1

in the feed
XTSS Total suspended solids in the reactor g SS L−1

YH Heterotrophic yield factor
g COD L−1

g COD L−1

bH Heterotrophic decay coefficient day−1
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c2 Conversion factor from COD to TSS
g SS

g COD
for component XB,H

kbiol Biological degradation kinetic constant L (g COD day)−1

k′biol Biological degradation kinetic constant under day−1

conditions of constant biomass
kc The maximum rate of biodegradation of the µg (g COD day)−1

micropollutant when there is no growth substrate
kdes Desorption kinetic constant day−1

ksor Sorption kinetic constant L (g SS day)−1

rbiol Biological removal rate µg L−1 day−1

t Time day
w The fraction of the recycle stream that is wasted —
µ Specific growth rate model day−1

µmax Maximum specific growth rate for biomass day−1

τ Residence time day
τ = V/F

C∗p Scaled concentration of particulate micropollutants —
C∗p = Cp/Cs,in

C∗p,in The concentration of particulate micropollutants —
in the feed C∗p,in = Cp,in/Cs,in

C∗s Scaled concentration of soluble micropollutants —
C∗s = Cs/Cs,in

K∗d The dimensionless solid–liquid partitioning coefficient —
K∗d = c2KdYHKS

Qeff The dimensionless effective aeration flow rate —
Qeff = HQair/Vµmax

R∗ Effective recycle parameter —
R∗ = (Cmax − 1)R

S ∗ Scaled concentration of soluble substrate —
S ∗ = S S /KS

S ∗s,in The dimensionless substrate substrate concentration —
in the feed S ∗s,in = S s,in/KS

X∗ Scaled concentration of particulate biomass —
X∗ = XB,H/(KS YH)

X∗0 Scaled concentration of particulate biomass in the feed —
X∗0 = XB,H,in/(KS YH)

b∗H The dimensionless heterotrophic decay coefficient —
b∗H = bH/µmax

k∗biol The dimensionless biotransformation kinetic constant —
k∗biol = kbiolYHKS /µmax

k∗sor The dimensionless sorption kinetic constant —
k∗sor = c2KsorYHKS /µmax
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t∗ Scaled time —
t∗ = µmax,H · t

τ∗ Dimensionless residence time —
τ∗ = Vµmax/F

τ∗cr Value of the scaled residence time at the transcritical —
bifurcation
τ∗cr = (1 + S ∗s,in)(1 − R∗)/[S ∗s,in − (1 + S ∗s,in)b∗H]
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Thomsen and H. Siegrist, “Biological degradation of pharmaceuticals in municipal wastewater
treatment: proposing a classification scheme”, Water Res. 40 (2006) 1686–1696;
doi:10.1016/j.watres.2006.02.014.

[21] A. M. Karpinska and J. Bridgeman, “CFD-aided modelling of activated sludge systems—a critical
review”, Water Res. 88 (2016) 861–879; doi:10.1016/j.watres.2015.11.008.

[22] B. Li and M. K. Stenstrom, “Research advances and challenges in one-dimensional modeling of
secondary settling tanks—a critical review”, Water Res. 65 (2014) 40–63;
doi:10.1016/j.watres.2014.07.007.

[23] B. Li and M. K. Stenstrom, “A sensitivity and model reduction analysis of one-dimensional
secondary settling tank models under wet-weather flow and sludge bulking conditions”, Chem.
Eng. J. 288 (2016) 813–823; doi:10.1016/j.cej.2015.12.055.

[24] B. Li and M. K. Stenstrom, “Practical identifiability and uncertainty analysis of the one-
dimensional hindered-compression continuous settling model”, Water Res. 90 (2016) 235–246;
doi:10.1016/j.watres.2015.12.034.

[25] Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang and X. C.
Wang, “A review on the occurrence of micropollutants in the aquatic environment and their
fate and removal during wastewater treatment”, Sci. Total Environ. 473–474 (2014) 619–641;
doi:10.1016/j.scitotenv.2013.12.065.

[26] H. Melcer, J. P. Bell, D. J. Thompson, C. M. Yendt, J. Kemp and P. Steel, “Modeling volatile
organic contaminants fate in wastewater treatment plants”, J. Environ. Eng. 120 (1994) 588–609;
doi:10.1061/(ASCE)0733-9372(1994)120:3(588).

[27] M. I. Nelson, J. L. Quigley and X. D. Chen, “A fundamental analysis of continuous flow bioreactor
and membrane bioreactor models with non-competitive product inhibition”, Asia-Pac. J. Chem.
Eng. 4 (2009) 107–117; doi:10.1002/apj.234.

[28] D. Orhon, F. G. Babuna and O. Karahan, Industrial wastewater treatment by activated sludge, 1st
edn (IWA, London, 2009).

[29] W. J. Parker, H. D. Monteith, J. P. Bell, H. Melcer and P. Mac Berthouex, “Comprehensive fate
model for metals in municipal wastewater treatment”, J. Environ. Eng. 120 (1994) 1266–1283;
doi:10.1061/(ASCE)0733-9372(1994)120:5(1266).

[30] M. Pomiès, J.-M. Choubert, C. Wisniewski and M. Coquery, “Modelling of micropollutant
removal in biological wastewater treatments: a review”, Sci. Total Environ. 443 (2013) 733–748;
doi:10.1016/j.scitotenv.2012.11.037.

https://doi.org/10.1017/S1446181118000226 Published online by Cambridge University Press

https://doi.org/10.1007/s10532-012-9568-3
https://doi.org/10.1016/0043-1354(87)90058-3
https://doi.org/10.1016/0043-1354(95)00259-6
http://wst.iwaponline.com/content/34/5-6/19
https://doi.org/10.1016/0273-1223(96)00632-4
https://doi.org/10.1016/j.watres.2006.02.014
https://doi.org/10.1016/j.watres.2015.11.008
https://doi.org/10.1016/j.watres.2014.07.007
https://doi.org/10.1016/j.cej.2015.12.055
https://doi.org/10.1016/j.watres.2015.12.034
https://doi.org/10.1016/j.scitotenv.2013.12.065
https://doi.org/10.1061/(ASCE)0733-9372(1994)120:3(588)
https://doi.org/10.1002/apj.234
https://doi.org/10.1061/(ASCE)0733-9372(1994)120:5(1266)
https://doi.org/10.1016/j.scitotenv.2012.11.037
https://doi.org/10.1017/S1446181118000226


[39] Mathematical modelling of micropollutants 229

[31] E. Ramin, X. Flores-Alsina, G. Sin, K. V. Gernaey, U. Jeppsson, P. S. Mikkelsen and B. G. Plósz,
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