SOME FINITELY GENERATED ANALOGUES OF A
GROUP OF A. H. CLIFFORD

JACQUES LEWIN

Introduction. Let #; and %, be two elements of a commutative field { of
characteristic different from 2 that satisfy: (i) #z; # 0; (i) n, # 0; (iii)
n1 + ne # 0. We define the “weighted average’’ a * 8 of two arbitrary elements
a and B of & as

nio + ny B

n1 + 1

axfl =

If we are further given a total ordering > on the set of elements of &, we
associate with the triple (R, #,, #2) the group H(R, i, n.) generated by sym-
bols [a], one for each element « of &, subject to the relations

) [a]Blle] = [axB] if a> 8.

The group H(LQ, 1, 1), where Q is the field of rational numbers, provided
one of the first examples of an ordinally simple group (1). In this paper, we
investigate the groups H (B, n,, ns), where P is the Galois field of order the
prime p, and %y, ne € P satisfy the above conditions. The required total
ordering is obtained by making the usual identification of P with the ordered
set of integers

S, =10,1,...,p — 1}.

Our main theorem states that H (B, n,, n,) is isomorphic to the metacyclic
group M (B, n1, no) defined by

M(B, n1, ne) = gp(a, b; 0 = 1,a 1 "2 a = p*1i"2),
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Preliminaries. For convenience, we write H for H(B, ni, n2), M for
M (B, n1, ns) whenever this is unambiguous. Setting #; = n; + #n., we define
a new operation, denoted by o, on P by

aoﬁzn_aﬁ_:ﬂc_v, @ B € .
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It is easily verified that
1) ao (a*B) =6

Furthermore, it follows immediately from the relations (I) that, if vy = a * £
for some ¢ < a,

@) la]"'[v]la] = [a0 7]
Let & be a positive integer, and let OO € {x,o}. We write « J* 8 for
k terms
aO(C..0 @ORB))...).

If g, and g, are elements of a group, we write [g, g2] for the commutator
g1 828 go ! and g1 for the conjugate g, g1 g2 of g1 by g..

1. The finiteness of a special factor group of H. In this section, we
show that H has a non-trivial centre {(H) and that H/{(H) is finite.

Let N = N(n,, ns) be the smallest positive integer such that n;Y¥ — n,V = 0.
(Such an N always exists since ng#~! = n?~1 = 1.)

LEMMA 1. Let o, B € P and let k be a positive integer. Then if o % B,
axp =4,
if and only if k = 0 (mod N).
Proof. 1t is easy to see by induction on % that

k—1
any Z nsj nzk—]—l + nzk B
(3) a B = =0 % .

ns

Suppose that a ** 8 = 8 for some value of k. We can rewrite (3) as

k—1
k k J k—j—1
(4) ('n3 — Mo )ﬁ = an, Z n3 ne .
=0
Two cases arise. If n* — n* # 0, then
k—1
j k—j—1
any Z n;:,] 2 J
=0 _ any _
B = 3 k = = a,
ny — Mo N3 — Mo

which contradicts the hypothesis that « # 8. This proves the “only if”’ part
of the lemma. If, however, ns¥ — n.* = 0, then

nk nk k—1 1

3 — "2 K—j—

0=="-—"="=3% nn""’
ng — N 7=0

and o #* 8 = n.* B/ns¥ = B, as required.
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The equation
[p —1allp — 17" = [p — 1%*a], a€ P,
now enables us to conclude that [p — 1]~ belongs to {(H). This fact in turn

enables us to prove the following lemma.

LeEMMA 2. AUl the generators [a) of H have a common Nith power that lies in
the centre of H.

Proof. The equation [8] = [£][0][¢]! always has the solution [¢] = [n3 8/n4].
In particular, [p — 1] = [— n3/%,][0][— #3/n:]~'. Raising both sides to the
Nth power, conjugating both sides by [—#s;/n:]7!, and remembering that
[p — 11¥ € ¢(H), we obtain

[p = 11" = [=ns/m]7* [p — 1]V [ns/m1] = [O]V.

Now, since [0]" is a central element, and [8]" is a conjugate of [0]*, [8]*=[0]"
for all 8, and the lemma is proved.

]N

Let Z be the cyclic subgroup of H generated by [p — 1]¥. Z is normal in
H and, by Lemma 2, the factor group G = H/Z is just the group generated
by symbols that we again call [a]

G =gp([a]; 2 € P)
with the relations (I), and the further relations
In [2]¥ =

We now show that G is finite.

ProrosiTION 3. Any non-trivial element of G can be expressed in the ‘‘reduced
form”

(5) [ ]*1 [aa]?2 . o . [a ], o <ay < ...<a,
where the ks are positive integers.

Proof. Let a “‘string”’
w = [al][a2] e [an]y a; € ﬂsr

be called an ‘‘expanded word.”” Since all the generators of G are of finite order,
every element of G can be expressed as an expanded word. Call the [a,]'s the
“letters” of w, n the ‘length” of w, and «, the ‘“last index” of w. A word in
the form (5), which will be called a “reduced word,” can then be thought of
as an expanded word of length ", k;. We prove the proposition by proving
that every expanded word can be expressed as a reduced word. The proof is
by double induction on length and on last index. Thus assume that for positive
integers k and #»

(i) an expanded word of length 7 can be reduced, and the resulting word
has length at most #;
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(i1) an expanded word of length # + 1 whose last index is greater than %
can be reduced to a word of length at most #» + 1.

Let w be an expanded word of length # 4+ 1 whose last index is k. By
assumption (i), we can reduce the leftmost # letters of w. The resulting word is

W =[] ... [an][k],

where [a] ... [an] is reduced and m < n. If a, < &k, then @ is in reduced
form and has length at most » + 1. We may then assume that «, > k. In
this case

len][k] = [am * k][on]
and hence
W = [C’ll] .o [am * k][am]y

which can be reduced by (ii). Thus we have shown that an expanded word
of length # 4 1 whose last index is k# can be reduced to a word of length
at most n + 1.

To complete the proof of the proposition, we need only prove the initial
stage of each induction. That is, we must show that

(iii) a word of length 1 can be reduced;

(iv) under assumption (i), a word of length # 4+ 1 whose last index is
p — 1 can be reduced, and the resulting word has length at most » + 1.

Statement (iii) is trivially true. To prove (iv), let w be a word of length
n + 1 whose last index is p — 1. By (i), we may reduce the leftmost # letters
of w. The resulting word is then automatically in reduced form, and has
length at most n 4 1.

Since the generators of G all have order N, the exponents k; in (5) can
be reduced (mod IN). There are then at most N? words of the form (5), and
so G is finite, as claimed.

2. A symmetric set of relations for H. In this section we show that the
relations (I) hold even when a < 8.
LeMmMA 4. For all o in B,
[p =21 [allp —2] = [p — 20al.
Proof. By (I), if B #p — 1,
[p —21[8l[p — 217 = [p — 2 %]

or, equivalently,

(6) [p—2I""[p—2+Bl[p—21=108], B#p—1.
By (1), 8 = p — 20 (p — 2 % B), so that, setting v = p — 2 = 8, equation (6)
reads:

[p=21tvllp—21=1[p—207], v=p—2*p—1L
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The proof of the lemma then reduces to the proof of the single relation:
p—2Ip—2+p—1lp—2]=[p—20(p—2xp— 1] =[p—1].
By Lemma 1,

) Pp—2)¥*p—-—1=p—1=k=0 (modN).

Hence, if 2 < N,

p—2+#p—1=p—2+1(p—2xp—1)

is strictly less than p — 1. It then follows that, for 2 < N,

®) p—21"p—2xp—1]lp —2I""V =[p—2+1(p —2xp — 1)]

and hence, by (7) and (8),

p—2]""p—2xp—1l[p —2I"" P =[p — D]

Since [p — 2]¥ € ¢(H), this last equation can be written as

[p—21""[p—2xp—1lp—2]=[p—1]
and the lemma is proved.
Let o,8,v € B. We define (a* B0)* vy recursively by
(@*xBo)y =ax(Boy) and (a*B0)*y = (ax*po) (a*B0)1y.
It then follows from the easily verified formula
ax (Boy) =v+ (n/n3)(e — B)
that, for any positive integer £k,
) (a*xBo)fy = + k(ni/n) (a — B).
We derive from equation (9) two useful corollaries.

LEMMA 5. Let a, 8,7 € B with a 5 B, and let by and k; be two positive inte-
gers. Then (axBo)1y = (a*Bo)2y only when ki = k2 (mod p). In parti-
cular, (a* B0)*y = v only when k = 0 (mod p).

LemMMA 6. Let a, 8, v1, v2 € B and let k be a positive integer. Then

(@xBo)y1 = (a*xB0) v
only when v, = v..

PropoSITION 7. For all a, 8 € B, [a][Blla]™! = [« * B].
Proof. Let v € P. It follows from Lemma 4 and the relations (I) that
[p—1p—=21""I¥llp —2llp =117 =[p—1x(p — 207)]
Hence by induction

(10)  ([p — 1lp — 21 vl — 1l[p — 2T = [(p — 1% p — 20)"y].
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As in Lemma 2, we write v = ¢ * 0. Equation (10) now reads
([p = 1]lp — 2D (= 0]([p — 1][p — 2)* = [(p — L *xp — 20)*(£ % 0)]
or, equivalently,
1) ([p — 1lp — 2I"H*E0][E]  ([p — 11[p — 2]71)F
=[(p—1xp—20)* (£x0)]

Now let @ and B be two arbitrary elements of B. By Lemma 5 there exists
a positive integer k such that (p — 1%p — 20)*0 = 8 and, by Lemma 6,
there exists an element ¢ of P such that (p — 1*xp — 20)*¢ = . For this
choice of & and £, it follows from (10) that

(Ip — 1Ip — 2T H E0E  ([p — 11[p — 2I™H)7*
— [E]([p—-l][p—2]—1)’°[O]([p—1][p—2]")"([S]—l)([p~1][p—2)—1)"’°

= [a][B]l] ™"

Therefore, by (11), [a][B]le]™ = [(p — 1 *p — 20)*(£*0)]. It now follows
from the easily verified formula

ax (Bxy) = (@xf)* (ax7), a,B,v € P,
that

(p—1xp—20)(t*0) = ((p —1*xp —20)%) * ((p — 1*p —2)"0) =a*B
and hence that [a][B][a]™* = [a * B8]. Since a and B were arbitrary elements

of P, the proposition is proved.

3. The commutator subgroup of . We now turn our attention to H’,
the commutator subgroup of H, and show that it collapses to a cyclic group

of order .
It is clear, since H/H’ is infinite cyclic, that the set {. .., [p — 1]7, [p—1]°,
[p — 1],...} is a set of coset representatives of H' in H. A straightforward

application of Schreier’s technique for finding generators for a subgroup (2,
p. 33) shows that W = {[y][p — 1]7'; v € B} is a set of generators for H’.
As a first approximation, we prove

LeEMMA 8. H' is abelian.

Proof. From (9) it follows that
105 [0 % p — 10)5] = [y + (n1/n3)k]
and that
PP = o (p — Dov] = [y + m1/m) (@ + 1)].

Let £ be the integer in S, that corresponds to the element ¢ of B. Then we
have, for all o, v € P,

[,Y]((oup—n-lﬁﬂ = [y]@e-n
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The elements ([0][p — 1]-1)*+! and [a][p — 1]-! then define the same inner
automorphism of H. In other words,
([0llp — 117" = [allp — 17" (mod ¢ (H)).

Since {[a][p — 1]7';a € B} generates H’', H' is cyclic mod {(H) and the
lemma is proved.

It is clear that, for any @ and 8 in B, [a][8]"! € H'. It then follows from
Lemma 8 that, for all o, 8,y € B,

V18I e8]t = [al[BI[Y1I8]!
or, equivalently,

(V1B a] = [][B]'[¥], B, v € P
Thus

[o][8]7 = [v][B] M ally]™* = [y * B]![y * o]
for any choice of v in PB. If we let v = (n38 — n90)/ny, we find that

olfgr? = | e = et BTy

L n3
and hence
(12) 10817 = _("3 8= ’Z("‘ - 3))] )
Now,
(13) [a]~[Blla]t = [a]'[B]la][a]? = [0 B]la]~?
and applying (12) to the right-hand side of (13), we obtain
(14) [a][Blla]™* = [2a — BT

Suppose now that for some positive integer £ and some « in P

la][p — 117t = ([0][p — 1]71)%.
Then

([0l[p — 117)*** = [0][p — 11*([0][p — 11H)**[0][p — 1]-*[0][p — 1]
= ([0][p — 1]7'[a][p — 17 [OD)[p — 1]
= [0][p — 1]7M[a][p — 1]77[0] = [0][—2 — a]~'[0]

—=2+a
by (14). Hence
[e + 2][p — 1]7* = ([0][p — 1]71)*+2

It follows immediately from these considerations that

([0l[p — 179+ = [2&][p — 1]
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Since, by (14),
(0llp — 117)* = [0][p — 1]*[0][p — 1]7* = [1][p — 1],
it also follows that ([0][p — 11"1)%* = [2k — 1][p — 1] Finally, we have
(15) [k]lp — 117 = ([0][p — 1]7)**™
We have now essentially proved
ProprosITION 9. H' is cyclic of order p.

Proof. Since the set {[k][p — 1]1; & € P} generates H’, (15) assures that
H’ is cyclic. To see that H' has order p, it suffices to note that

(ollp — 117 = [p — 11[p — 11"~

4. The structure of H. We are now in a position to prove the main
theorem. We remind the reader that we defined the group M as

M =gp(a, b: 0" = 1,a7 ' b2 a = b"3).

The relations (15) assure us that the elements [p — 1] and [0][p — 1]-?
together generate H. Let ¢ = [p — 1] and d = [0][p — 1]7%. Then d? =1
and

v = [p — 1 0)p — 1lp — 1] = (m/mallp — 112y
= ([0][p — 1172 ((n1/ns) + 1) = d™a.

The correspondence @ — ¢, b — d can then be extended to an epimorphism
$: M—H.

To show that H is an epimorphic image of M, we define for every « € S,
the element z(e) = &*t'a of M. The set {z(a);a € S,} clearly generates M
and

(8(@0)z(B)z ()™t = botlabftlaa=1p— D = patigph—e,

Let us again consider 72 and 73 as elements of . Then 532 is defined and
g
ab* = ps/"dkg, Hence

petlghh—e = pat(B—nzind+ly — plakd)+lg,

Consequently,
2(2)2(B) (2(e)) ™! = z(a )

and the correspondence [a] — z(a) can again be extended to an epimorphism
V. H— M.

It is easy to verify that ® and ¥ are mutually inverse. ® is then an iso-
morphism and the proof is complete.
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