
SEMIGROUPS CO-ORDINATIZING ORTHOMODULAR 
GEOMETRIES 

D. J. FOULIS 

1. Introduction. In (2, 3, 4, and 5), the author has established a connection 
between orthomodular lattices and Baer *-semigroups. In brief, the connection 
is as follows. The lattice of closed projections of any Baer *-semigroup forms an 
orthomodular lattice. Conversely, if L is any orthomodular lattice, there 
exists a Baer *-semigroup 5 which co-ordinatizes L in the sense that L is iso­
morphic to the lattice of closed projections in 5. In this note we shall assume 
that the reader is familiar with the results and the notation of the quoted 
papers. 

Suppose that the Baer *-semigroup S co-ordinatizes the orthomodular 
lattice L. We set forth the following natural question: What connections exist 
between lattice theoretic properties which L might possess and semigroup theoretic 
properties which S might possess? 

Finding specific answers to this general question is complicated by the fact 
that although S determines L up to isomorphism, L does not determine 5 up to 
isomorphism. Answers are known only in certain favourable cases. For example, 
it is known (3, Theorem 10, p. 894) that modularity of L is equivalent to the 
•-regularity of some co-ordinatizing S. A "local" version of this same result 
has been proved in (5, Theorem 28, p. 81). A second example is provided by (2, 
Lemma 2, p. 650), which shows that L is a complete lattice if and only if it 
can be co-ordinatized by a complete Baer *-semigroup S. 

We shall use a slight modification of the terminology of Wright (8, Definition 
2.2, p. 476) in connection with Loomis' version of a dimension lattice (7, p. 4). 

Definition 1. Let L be a complete orthomodular lattice. We call L an ortho-
modular geometry if L is equipped with a distinguished equivalence relation ^ 
satisfying the following: 

(i) If e ~ 0, then e = 0. 
(ii) If {ea} is an orthogonal family in L, and if / ^ V« ea, then there exists 

an orthogonal family {fa} in L such t h a t / = V«/« and such that fa ~ ea for 
every a. 

(hi) If {ea} is an orthogonal family in L and if {/«} is a second orthogonal 
family in L with the same indices such that ea ~ fa for every a, then 
V a 6 a ^^ V a J a • 

(iv) If e a n d / have a common complement in Z, then e ^ / . 
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Following (6, p. 19) we introduce the notion of ^-equivalent projections in 
an involution semigroup. 

Definition 2. Let S be an involution semigroup, i.e., a multiplicative semi­
group equipped with an anti-automorphic involution *:S —* S. Let 
e = ei = g* ç. S and / = f2 = f* G S. If there exists an element x G 5 such 
that x = ex/, x*x = / , xx* = e, then we say that e and / are ^-equivalent and 
we write x:e ~*f. If there exist e, f £ S such that x:e ~* f, we say that x is 
a partially unitary element of 5. The notation e ~*f means that there exists 
a partially unitary x G S such that x:e ^ * / . 

It is quite easy to see that ^-equivalence is a bona fide equivalence relation 
on the set of elements e £ S with e = e2 = e*. If S is the Baer *-semigroup of 
bounded operators on a Hilbert space, two projections are *-equivalent if and 
only if they project onto subspaces of the same dimension. 

We now formulate the following special case of our basic natural question: 
What semigroup theoretic property of the Baer ^-semigroup S is equivalent to the 
condition that the orthomodular lattice Pr (S) of closed projections in S is an 
orthomodular geometry under the relation of ^-equivalence? In the present note 
we partially answer the latter question by giving a sufficient condition on .S 
in terms of five postulates (Definitions 9 and 10) abstracted from the postulates 
given by Loomis in (7, pp. 25-32). 

2. Basic definitions. In what follows the symbol 5 will always represent 
an involution semigroup with 0; i.e., S is a multiplicative semigroup with a zero 
and S is equipped with a mapping *:5 —> S such that for all x, y G S we have 
(xy)* = y*x* and x** = x. An element e £ S with e = e2 = e* is called a 
projection and the set of all projections in 5 is denoted by P = P(S). Note 
that 0 G P . We partially order P by defining e < / to mean e = ef, e,f G P . 

Definition 3. Two elements x, y G 5 are said to be orthogonal (7, p. 26), in 
symbols x JL y, in case x*y = xy* = 0. 

Clearly, x _L y «=> y _L x <=> x* _L 3/*. Also, two projections are orthogonal if 
and only if their product is zero. 

Definition 4. We shall say that S satisfies the ^-cancellation law or that S is a 
*-cancellation semigroup if x, y G 5 with xx* = 3>x* = xy* implies that x = y. 

The notion of a *-cancellation semigroup was introduced in (5, p. 74). If S 
satisfies the *-cancellation law, then xx* = 0 implies that x = 0. The proof 
of (5, Theorem 13, pp. 74-75) shows that if S is an involution ring, then the 
*-cancellation law is equivalent to the condition xx* = 0 => x = 0 . 

LEMMA 1. Suppose that S satisfies the *-cancellation law. Then x, y, z G S and 
x*xy = x*xs imply that xy = xz. 

Proof. Put a = 3>*x*, b = s*x*. It is enough to prove that a = b. Taking * on 
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both sides of x*xy = x*xz gives ax = bx. It follows that aa* = axy = bxy = ba*. 
Also, Z>a* = z*x*xy = z*x*xz = bb*. By the *-cancellation law, a = b. 

Definition 5. A projection e £ P(S) is said to be closed if there exists a 
(necessarily unique) projection e' Ç P(S) such that for every x Ç 5 

(i) ex = 0 <=> x = e'x and 
(ii) e'x = 0 <̂=> x = ex. 

It is easy to see that if e is a closed projection in 5, then the projection e' of 
Definition 5 is also a closed projection and that e" = e. Consequently, 
Definition 5 generalizes the notion of a closed projection in a Baer *-semigroup 
(5, p. 66). 

We now set forth a definition which will play a central role in the remainder 
of the paper. The motivation for this definition occurs in (7, pp. 27-28). 

Definition 6. Let {aa} be any family of mutually orthogonal elements of S. 
We write a Ç sum« aa in case a Ç S and 

(i) aa<? = aa aa* for all a and 
(ii) for b, c Ç S, aab = aac for all a => ab = ac. 

An interesting example of Definition 6 is obtained as follows. Let L be a 
complete orthomodular lattice and let 5(L) be the co-ordinizating Baer 
•-semigroup as defined in (2, p. 651). Let {<j>a) be an orthogonal family of 
elements of S(L), and define 0:L—>L by e<j> = V«(e0a) for all e G L. Then 
$ Ç -SCO and 0 Ç suma <£a. 

Definition 7. If ikf is any non-empty subset of 5, we define the centralizer of 
M, in symbols Z(M), by 

Z(M) = | 5 f S|sx = xs for all x Ç M}. 

We define ZZ(M) = Z(Z(M)). 

The facts concerning Z(M) given in the following lemma are both well 
known and easy to verify; hence we shall feel free to make use of these facts 
below without explicit reference to the lemma. 

LEMMA 2. Let M and N be non-empty subsets of S. Then 
(i) M C N =» Z(N) C Z(M) ; 

(ii) MCZZ(M); 
(iii) Z(M) = ZZZ(M); 
(iv) if M = ikf*, //zen Z(M) is a sub semigroup of S containing 0 and closed 

under the involution *; 
(v) if x = x* £ Sj then x Ç ZZ(x) C Z(#) and ZZ(x) is a commutative 

subsemigroup of S which is closed under the involution *. 

In (6, p. 30) Kaplansky has introduced the property (EP) (existence of 
projections), which we shall need below. For a while, we shall make do with 
a weaker property (WEP). 
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Definition 8. The involution semigroup S has the property (EP) if, given any 
non-zero element x £ S, there exists an element y £ S such that 
y = y* G ZZ(x*x) and x*xy2 is a non-zero closed projection. If, given any 
non-zero element x Ç 5, there exists an element 2 Ç 5 such that 
z = 2* Ç ZZ(x*:x;) and x*xs is a non-zero closed projection, then we shall say 
that S has property (WEP). 

LEMMA 3. Suppose that the involution semigroup S has the property (WEP). 
Let x be a non-zero element of S. Then there exists a non-zero closed projection 
e G ZZ(x*x) and there exists an element h = h* (z ZZ(x*x) such that x*xh = e 
and h = ehe. 

Proof. By (WEP) there exists z = s* £ ZZ(x*x) such that x*xz — e, a 
non-zero closed projection. Put h = ze. 

3. The postulates. In (7, pp. 25-32), L. H. Loomis gives an elegant 
system of postulates, verified in any weakly closed self-adjoint ring of bounded 
operators on a Hilbert space. In Definitions 9 and 10 below we generalize these 
postulates in such a way that they become applicable to an involution semi­
group. 

Definition 9. We call 5 a weak Loomis ^-semigroup if 5* satisfies the following 
postulates : 

(i) 5 is an involution semigroup with 0; 
(ii) all projections in P = P(S) are closed; 

(iii) S satisfies the *-cancellation law ; 
(iv) if {aa} is an orthogonal family of partially unitary elements of S, then 

suma aa is not empty; 
(v) S satisfies (WEP). 

Definition 10. A Loomis ^-semigroup is a weak Loomis ^-semigroup satisfying 
the (EP) property. 

We remark that the multiplicative semigroup of two-by-two matrices over 
Z3 (equipped with the involution X —> X* = transpose of Z) is a weak Loomis 
*-semigroup but fails to satisfy property (EP). 

THEOREM 4. Let S be the multiplicative involution semigroup of an involution 
ring with unit. Then S is a weak Loomis ^-semigroup if and only if S satisfies 
Conditions (iv) and (v) of Definition 9. 

Proof. Let e be a projection in S, and put e' = 1 — e. Then, e' is a projection 
and Conditions (i) and (ii) of Definition 5 are satisfied; hence, all projections 
in 5 are closed. Clearly, property (WEP) implies that xx* — 0 =» x = 0 ; so 
(by the remarks following Definition 4) S satisfies the *-cancellation law. 

The results in (7, pp. 25-32) show that the multiplicative involution semi­
group of a von Neumann algebra is a Loomis *-semigroup. 
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4. Basic properties of weak Loomis *-semigroups. In the present 
section we assume, once and for all, that S is a weak Loomis *-semigroup. Our 
main result in this section will be Theorem 15, which states that a weak Loomis 
^-semigroup is a Baer ^-semigroup. 

LEMMA 5. Let {aa} be an orthogonal family of elements of S and suppose that 
a, b G suma aa. Then a = b. 

Proof. By Definition 6 we have aaa* = aa aa* = baa* for all a; hence, 
aa a* = aa b* for all a. By Definition 6 again, aa* = ab* and ba* = bb*, so 
aa* = ab* = bb*. By *-cancellation, a = b. 

Definition 11. If {aa} is an orthogonal family of elements of S, and if suma aa 

is not empty, we shall write ]Ta aa for the (necessarily unique) element in 
suma aa. Henceforth, the notation a = 2Za aa will be taken to mean that {aa\ 
is an orthogonal family of elements of S and that £ « aa exists and equals a. 

LEMMA 6. Let a = ^a aa. If b £ S with baa = 0 for all a except possibly for 
a = jS, then ba = bap. 

Proof. For a ^ 0 we have 

aa a*b* = aa aa* b* = aa(baa)* = 0 = aa ap* b*. 

For a = /? we have 

aa a*b* = ap a*b* = ap ap* b* = aa ap* b*. 

Hence, for every a we have aa a*b* = aa ap* b*. It follows that 

aa*b* = aap*b* = ap ap*b* = ap a*b*. 

Consequently, 

(ba)(ba)* = baa*b* = bapa*b* = (bap)(ba)* 

and 
(ba)(ba)* = baa*b* = bap ap*b* = (bap) (bap)*. 

The *-cancellation law now yields ba = bap as desired. 

COROLLARY 7. Z>£ a = ]Ta aa. 77^w 

(i) a*aa = aa*aafor all a, and 
(ii) if 6aa = 0 for all a, /Aew &a = 0. 

Proof. To prove (i), put b = a#* in Lemma 6 and conclude that a*a — ap*ap. 
Taking * on both sides of the latter equation and rewriting /3 as a yields (i). 
Conclusion (ii) is evident from Lemma 6. 

THEOREM 8. If a = J^a aay then a* = ]Ta aa*. 

Proof. We must prove (i) a*aa — aa*aa for all a and (ii) aa*b = aa*c for all 
a implies a*b = a*c. Corollary 7 takes care of (i). To prove (ii), suppose that 
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aa*b = aa*c for all a. Then, for all a, aaa*b = aaa<?b — aaaa*c = aaa*c; 
whence aa*b = aa*c. An application of Lemma 1 yields a*b = a*c. 

THEOREM 9. Let a = J^a aa and suppose that x £ S is such that {aa x] is an 
orthogonal family. Then 

Proof. Fix any index 0. Put u = (ax) (ap x)*,v = (ap x) (ap x)*. Our first task 
is to show that u = v. For a 7e 0 we have 

u*aa = ap xx*a*aa = ap xx*aa*aa = 0 

since (ap x) (aa x)* = ap xx*aa* = 0. It follows from Lemma 6 that u*a = u*ap. 
Also, 

v*ap = ap xx*ap*ap = ap xx*a*ap = u*ap. 

It follows that 

u*u = u*ax(apx)* = u*apx(apx)* = u*v 

and 

v*v = v*ap x(ap x)* = u*ap x(ap x)* = u*v. 

The *-cancellation law now yields u = v. This gives us Condition (i) of 
Definition 6. To prove Condition (ii), suppose that aaxb = aaxc for all a. 
Then axb = axe. The proof is complete. 

COROLLARY 10. Let a = ]Ta aa. 

(i) If x, y G S are such that aax = yaa for all a, then ax = ya. 
(ii) If x G S is such that aa x = xaafor all a, then ax = xa. 

Proof. Clearly, it is enough to prove (i). For a ^ 0 we have 

(aax)(apx)* = yaaap*y* = 0 and (aax)*(apx) = x*aa*ap x = 0, 

so {aax} is an orthogonal family and ax = J^aaax. Since aa*y* = x*a«*, the 
result just obtained together with Theorem 8 gives a*j>* = Saaa*;y*; hence, 

ya = Z!« ya<* = S a « x = ax-

COROLLARY 11. If a = ]T« aa> th>en aa* = S« a<* #«*• 

Proof. In Theorem 9, put x = a*. 

LEMMA 12. Let e,f be projections in S and let x £ S. Then 
(i) * < / = > / ' < * ' , 

(i) e,e' < / = » / = 1, 
(iii) ex = xe =» e'x = xe'. 

Proof. To prove (i), suppose that e < / , i.e., 6 = e/. It follows that e/' = 0r 

hence t h a t / ' = e'f, i.e., f < e'. To prove (ii), suppose that e, e' < / . By (i), 
/ ' < e" = e, so / ' < / . Hence, / ' = j f = 0, so / = 0' = 1. To prove (hi), 
suppose that ex — xe. Then exe' = 0, so xe' = efxe'. Since ex = xe, then 
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x*e = ex*, so by the above argument (applied to x* rather than x) x*e' = e'x*e'. 
Taking * on both sides of the latter equation, e'x = e'xe' ~ xef. 

LEMMA 13. Let {ea\ be any orthogonal family of projections in S. Then {ea} 
has a supremum in the partially ordered set P(S), and this supremum is given 
by e = £ « ea. 

Proof. Setting e = ]C« ea, which exists because of part (iv) of Définition 9, 
and invoking Theorem 8 and Corollary 11, we have e = e* = ee* = e2 G P . 
The remainder of the proof is the same as the proof of (7, Lemma 53, p. 30), 
provided that we write gf rather than 1 — g for a projection g G P. 

THEOREM 14. The partially ordered set P of projections in a weak Loomis 
^-semigroup forms a complete lattice. 

Proof. The proof follows the lines of Loomis' proof in (7, Theorem 9, p. 30). 
Let {ea\ be any family of projections in 5. Let {fa} be an orthogonal family 
of projections in 5 that is maximal with respect to the property that every ea 

is orthogonal to every f$. Let / = Ylpfv = supf/^}, and let e = / ' . Since 
fa < e'a for every ($ and every a, then / < e'a and ea < / ' = e for every a. I t 
remains only to show that e is the least upper bound in P for the family [ea\. 

Let g G P with ea < g for every a. If eg' = 0, then e < g and our argument 
is finished. Hence, we suppose that eg' ^ 0, from which it follows by ^cancel­
lation that eg'{eg'Y = eg'e ^ 0. By (WEP), there exists x = x* G ZZ{eg'ë) 
such that 0 ^ eg'ex = h G P. Now 

hea = eg'exea = xeg'eea = xeg'ea = xeg'gea = 0, 

so h is orthogonal to every ea. Since/^ < / = e', then hfa ~ xeg'efp = 0; hence, 
h is orthogonal to every fa. This contradicts the maximality of {fa}. 

THEOREM 15. If S is a weak Loomis ^-semigroup, then S is a complete Baer 
^-semigroup. 

Proof. We need only show that S is a Baer *-semigroup, since its completeness 
will then follow^ from Theorem 14. Let a G S with a ^ 0. We must show that 
there exists a projection/ = a' G P(S) such that for all y G S, ay = 0 $=> y = fy. 
Let {xa} be a maximal orthogonal family of elements of ZZ(a*a) such that 

0 7^ a*axa = ea G P(S) and xa = eaxaea = xa* for all a. 

By Lemma 3, there exists at least one such xa. Evidently, {ea} is an orthogonal 
family of projections, so we can form the sum e = J^a ea. S e t / = e'. 

If ay = 0, then ea y = xa*ay = 0 for all a; hence, by Theorem 9, ey = 0 and 
y = fy. To show that y = fy =» ay = 0, it is enough to show that af = 0. 
Suppose that af ^ 0, so that {af)*af ^ 0 by *-cancellation. By Lemma 3 there 
exists a non-zero projection k G ZZ(fa*af) and there exists x = x* G ZZ(fa*af) 
such that fa*afx = k and x = &x&. We have 
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for all a, since ef = ee' = 0. Thus, x is orthogonal to every xa. Since every ea 

belongs to ZZ(a*a), then e Ç ZZ(a*a) by Corollary 10 and / 6 ZZ(a*a) by 
part (iii) of Lemma 12. It follows that fa*af Ç ZZ(a*a), and hence that 
x G ZZ(a*a). Since x = kx = fkx = fx, then a*ax = a*afx = fa*afx = jfe; 
hence, x can be adjoined to the supposedly maximal family {xa\. This con­
tradiction completes the proof. 

Because of Theorem 15, all of the machinery of Baer *-semigroups is now 
at our disposal and we shall make use of this machinery in our subsequent 
study of the weak Loomis *-semigroup S. 

LEMMA 16. If a = ^2aaay then a" = J^a (aa)
,f. 

Proof. By (5, Theorem 1, part (vii) ) we see that for x, y £ S, x _L y <=$ x" _L y" 
and (x*)" J_ (y*)". From this and the orthogonality of {aa}, it follows that 
{(aa)

f/} is an orthogonal family. Let e = £ « (#«)"• By Lemma 13, e = V« (#«)", 
hence, e' < (aa)

f holds for every a. Consequently, aae
f = aa(a«)V = 0 for 

every a, so (Theorem 9) ae' — 0. On the other hand, if ax = 0, then 
aà*ax = a*aa x = 0 and (aa)" = (aa*aa)" < (x*)' holds for every a. It follows 
that e < (x*)', (x*)" < e', x* = x V , x = e'x. These results imply that 
a' — e'', i.e., a" = e. 

5. The *-equivalence relation in weak Loomis *-semigroups. In the 
present section we maintain the convention that S is a weak Loomis ^semi­
group. We shall show that the lattice P(S), equipped with the equivalence 
relation ^ * of Definition 2, satisfies all conditions of Definition 1 for an 
orthomodular geometry except possibly for Condition (iv). 

LEMMA 17. Let x € S with xx* = e G P(5) . Then f — x*x Ç P(S) and x is 
partially unitary with x:e ^ * / . 

Proof. Since/2 = f = / 4 = x*ex, we h a v e / * = f2f* = f2(f2)*; hence, / = f2 

by *-cancellation. Since xx* = (ex)x* = (ex) (ex)*, we have x = ex by ^cancel­
lation. Similarly, x = x/, so x = ex/ and x:e ^ * / . 

LEMMA 18. Let e,f £ P(S) with a:e~*f. Then, for g Ç PCS), (ga)" = 
Kg' Ae)a]' A / . 

Proof. The proof follows immediately from (5, Theorem 12, p. 73) as soon 
as we note that a is *-regular in S and the relative inverse of a is a*. 

THEOREM 19. Let {ea} be an orthogonal family of projections in S and suppose 
that f ^ * V a ea, where f is a projection in S. Then, there exists a decomposition 
f — V'a fa of f into orthogonal projections {/«} such that fa ^ * eafor all a. 

Proof. Suppose that a:e ~ * / , where e = V« ea. For each a, let/« = (ea a)". 
By (5, Theorem 1, part (xvii)), Va/« = / . By Lemma 18,/« = [(ej A e)a]' A / . 
For /3 ^ a, ^ < e'a A e, sofp < [(e'a A e)a]" and/ a < / / . Let aa = ea a. Since 
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aa #«* = ea eea = ea, then by Lemma 17, aa is partially unitary with 
aa:ea~* (aa)" = fa. 

THEOREM 20. The relation of ^-equivalence on P(S) is completely additive, 
i.e., it satisfies condition (iii) of Definition 1. 

Proof. The proof is the same as the proof of (7, Theorem 10, p. 31). 

The proof of the following theorem is suggested by Tarski's well-known 
proof of the Cantor-Schroeder-Bernstein theorem. The fixed-point theorem 
quoted in the proof can be found in (1, Theorem 8, p. 54). 

THEOREM 21. Let e,f G P(S) and let a, b G S be such that (a*)" = e > b", 
(b*)" = / > a". Then there exist projections m, n G P(S) such that 

(i) m < e, n < / , 
(ii) n — {ma)' /\ f, m = (nb)f A e. 

Proof. Let the mapping 4>:P(S) —> P(S) be defined by 

g<t> =e A {[f A (ga)']i}' 

for g G P{S). Since 0 is a monotone mapping and P{S) is a complete lattice, 
there exists a projection m G -PCS) such that 

m = m<£ = e A {[{ma)r Af]b}'. 

Set ^ = (ma)' A / . Conditions (i) and (ii) now obtain. 

THEOREM 22. Let e,f be projections in P(S). If e is ^-equivalent to a subelement 
of f and if f is ^-equivalent to a subelement of e, then e ~ * jf. 

Proof. Let a:e ~ * / i < / , 6 : / ^ * ex < e. By Theorem 21, there exist pro­
jections m, n G PCS) with m < e, w < / , w = (ma)' A / , m = (ne)' A e. 
Routine computation shows that ma:m ~* (f A n') and b*n:(e A m') ~ * ?z. 
An application of Theorem 20 completes the proof. 

We have already mentioned that the Baer *-semigroup 5 of two-by-two 
matrices over Z3, equipped with the involution X -^ X* = transpose of X, is a 
weak Loomis *-semigroup, but not a Loomis *-semigroup. One easily verifies 
that its lattice of projections PCS), equipped with the equivalence relation 
^ * , does not satisfy Condition (iv) of Definition 1; hence it fails to be an 
orthomodular geometry. 

We shall go on to prove that if S is a Loomis *-semigroup, i.e., if the (EP) 
property holds in S, then P(S) is an orthomodular geometry under 
•-equivalence. 

THEOREM 23. Let S be a Loomis ^-semigroup. Then, for a G S, a" ^ * (a*)". 

Proof. We can assume a ^ 0. Let \xa\ be a maximal orthogonal family of 
elements of ZZ{a*a) such that 

xa = x«*, 0 7* a*axa
2 = ea G ZZ(a*a) and (xa)" = ea 
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for all a. The existence of at least one such xa follows from (EP) and the same 
argument given in Lemma 3 in connection with (WEP). Obviously, {ea} is an 
orthogonal family of projections, so we can form e = ]£« ea = \Zaea. Since, for 
every a, ea = (xa

2a*a)" < an', then e < a". We claim that e = a"; for if not, 
then a*aef = e'a*aef 9e 0, and by (EP) there exists 

x = x* Ç ZZ(e'a*aef) C ZZ(a*a) 

such that a*ae'x2 = f ^ 0 , / Ç P , a n d / = #". Clearly,/ < e\ so # is orthogonal 
to every xa and a*ax2 = / , contradicting the maximality of {xa}. 

Put wa = axa for every a. Then for every a, wa*wa — a*axa
2 = £a; hence, 

wa: (wa*)" ^ * e«. Also, (zca*)" = axa
2a* for every a, so for a ^ 0 we have 

(wd*)"(wfi*)" = axa
2a*axp2a* = aa*axa

2Xi32a* = 0. 

Hence, the projections ((«/a*)"} form an orthogonal family. By Theorem 20, 
V«(w«*)"~*e = a". Since, for every a, (wa*)" = (xa a*)" < (a*)", then 
a" ~* V a (WO" < (a*)". Reversing the roles of a and a*, we see that (a*)" is 
also *-equivalent to a subelement of a". Theorem 22 can now be applied to 
complete the proof. 

THEOREM 24. If S is a Loomis ^-semigroup, then the complete orthomodular 
lattice P (5) of projections in S is an orthomodular geometry under the relation of 
^-equivalence. 

Proof. We have only to establish the validity of Condition (iv) of Definition 
1. The proof in (7, Theorem 12, Corollary, p. 32) does the job. 

6. The hull operation. In the present section the symbol 5 will always 
refer to a Loomis *-semigroup. Loomis makes extensive use of the so-called 
hull operation e —» \e\ in his study of dimension lattices (7, p. 13). In Theorem 
25 we shall obtain an interesting formula for the hull in the orthomodular 
geometry P{S). 

Definition 12. If e Ç P(S), then the hull of e, in symbols \e\, is defined by 

\e\ = V{feP(S)\le1<eJ^e1}. 

If L is any orthomodular lattice, then the center of L, in symbols C(L), was 
defined in (5, p. 66). By (7, Theorem 2, p. 13), for e £ P(S) we always have 
\e\ Ç C(P(S)). In addition, it is easy to verify that the hull operation has the 
following properties: 

(i) e<\e\e C(P(S)), 
(ii) |0| = 0, 

(iii) \e A l/l | = \e\ A |/| f o re , / G L, 
(iv) the mapping rj:P(S) —»P(S) defined by ey = \e\ for 6 G P(5) is a 

projection in the Baer *-semigroup S(P(S)) defined in (2, p. 651). 

THEOREM 25. For e 6 PCS), we have \e\ = V {(ex)"\x G S}. 
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Proof. Put g = V {(ex)"\x G S\. Let x be any element of S and use Theorem 
23 to conclude that {ex)" ~ * (x*e)" < e. It follows that (ex)" < |e|, and 
consequently that g < |e|. On the other hand, suppose that / G P(5) with 
a\f ~* ei < e. Using parts (iv) and (xiii) of (5, Theorem 1, p. 66) we have 

a" = (a*a)" = ex" = ex < e; 

hence, a = ae, a* = ea*, and 

/ = / " = (aa*)" = (a*)" = (ea*)" < g. 

Consequently, \e\ < g and the proof is complete. 

THEOREM 26. For e e P(S), \e\ € Z(S). In fact, for e € P(S), \e\ = 

A{/ | /G Z ( 5 ) H P ( 5 ) and « < / } . 

Proof. By Theorem 25 we have (ex)" < |e| for every x Ç 5; hence, ex = ex|e| 
for every x G 5. It follows that, for every x Ç 5, |e|x = |e|x||e|| = |e|x|e|. 
Taking * on both sides of the latter equation and replacing x by x* gives 
x\e\ = \e\x\e\ = \e\x. This shows that \e\ G Z(S). Suppose t h a t / G Z ( 5 ) n ? ( 5 ) . 
Using Theorem 25 we have |/| = V {(fx)"\x G S). But, since / G Z(S), 
(Jx)" = (xf)" < / for all x G 5; hence, |/| < / , / = |/|. Now, if/ G Z(S) H P(5) 
with e < / , we have |e| < |/| = / ; hence, |e| is a lower bound for the set 
{/|/ G Z(5) H P(5) , e < / } . Since \e\ G Z(5) H P(5) and e < |e|, the theorem 
is proved. 

If we compare Theorem 26 with (6, Definition 3, p. 5), we see that the 
central cover, as defined by Kaplansky, of an element a G S is just the hull, 
as defined by Loomis, of the projection a". In particular, then, we can adapt 
Kaplansky's proof of (6, Lemma, p. 30) to Loomis *-semigroups to prove the 
following : 

THEOREM 27. For x, y G S, xSy = 0 if and only if \x"\ is orthogonal to \y"\. 

Using Theorem 27, and following the proof in (6, Lemma 1, p. 32), we obtain 
the following result: 

THEOREM 28. If e is a projection in S, then the central projections in the 
subsemigroup eSe of S are those of the form eh with h G Z(-S'). 

7. Open questions. The results obtained in the preceding sections suggest 
many questions, most of which are open at present. In this concluding section 
we shall list some of the more provocative questions which thus arise. 

1. Can every orthomodular geometry be co-ordinatized by a Loomis 
*-semigroup? 

2. Can every Loomis *-semigroup be embedded in a suitable Baer *-ring? 
3. Which orthomodular lattices can be co-ordinatized by Baer *-semigroups 

5 satisfying the *-cancellation law? 
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4. Which orthomodular lattices can be co-ordinatized by Baer *-semigroups 
5 in which all projections are closed? 

5. If the orthomodular geometry L is modular, can it be co-ordinatized by a 
Loomis *-semigroup which is *-regular in the sense of (5, p. 71)? 

6. Say that an orthomodular lattice L has the relative centre property in 
case for every e G L the centre of the interval sublattice L(0, e) is the set of 
all elements of the form e A h with h in the centre of L. Using Theorem 28, it 
can be shown that if L can be co-ordinatized by a Loomis *-semigroup, then 
L has the relative centre property. Does every orthomodular geometry have 
the relative centre property? 
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