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Global Well-Posedness and Convergence
Results for the 3D-Regularized
Boussinesq System

Ridha Selmi

Abstract. Analytical study of the regularization of the Boussinesq system is performed in frequency

space using Fourier theory. Existence and uniqueness of weak solutions with minimum regularity

requirement are proved. Convergence results of the unique weak solution of the regularized Boussinesq

system to a weak Leray–Hopf solution of the Boussinesq system are established as the regularizing

parameterα vanishes. The proofs are done in the frequency space and use energy methods, the Arzelà–

Ascoli compactness theorem and a Friedrichs-like approximation scheme.

1 Introduction

Let us consider the following three-dimensional incompressible Boussinesq system

denoted (Bq) and given by

∂tθ − κ∆θ + (u · ∇)θ = 0 in R+ × T
3

∂t u − ν∆u + (u · ∇)u = −∇p + θe3 in R+ × T
3

div u = 0 in R+ × T
3

(u, θ)|t=0 = (u0, θ0) in T
3,

where ν > 0 is the viscosity of the fluid and κ > 0 its thermal conductivity. The

unknown vector field u and the unknown scalars p and θ denote respectively the ve-

locity, the pressure and the temperature of the fluid at the point (t, x) ∈ R+ × T
3.

The data u0 and θ0 are the given initial velocity and temperature, where u0 is diver-

gence free. If u0 and θ0 are quite regular, the divergence-free condition determines

the pressure p, and

(1.1) p = −∆
−1

( 3∑

i, j=1

∂i∂ j(uiu j) − ∂3θ
)
.

As for physical interpretation, the Boussinesq system is used as a toy model for geo-

physical fluids whenever rotation and stratification play important roles. The scalar θ
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may represent temperature variation in a gravity field and the vector θe3 is the buoy-

ancy force. It is well known that actually neither the available theory nor the analyt-

ical advances are sufficient to prove the global well-posedness of three-dimensional

Navier–Stokes-like equations, namely the Boussinesq system, which is a coupling be-

tween the fluid velocity and temperature. To overcome this serious difficulty and to

make practical progress, researchers interested in such fields incorporate many nu-

merical regularizations of three-dimensional fluid mechanic equations. The aim was

usually to obtain models that produce smooth and regular numerical or analytical

solutions which agree with experimental studies in practical situations. In this frame-

work, many models were proposed, including the hyperviscosity [13], the nonlinear

viscosity [10], [11], [21], and the alpha-models [6], [8], [9], [12], [7]. The latter,

denoted also by α-models, produce solutions that are in excellent agrement with em-

pirical data. They also can be implemented in a relatively simple way in numerical

computation of three-dimensional fluid equations. Numerical simulation of fluid

equations in their original formulation introduced by Euler, Navier, and Stokes are

known to be prohibitive, disputable, and very sensitive to initial data [8], [7].

In this paper, filtering only the linear part of the fluid equation, we obtain the

so-called simplified Bardina model, which is one particular case of the family of α-

models. It will be denoted by (Bqα) and reads

∂tθ − κ∆θ + (u · ∇)θ = 0 in R+ × T
3(1.2)

∂t v − ν∆v + (u · ∇)u = −∇p + θe3 in R+ × T
3(1.3)

v = u − α2
∆u in R+ × T

3(1.4)

div u = div v = 0 in R+ × T
3(1.5)

(u, θ)|t=0 = (u0, θ0) in T
3,(1.6)

with periodic boundary conditions and hence periodic solutions. For a detailed

introduction to α-models, especially the Bardina one, readers can see [6] and the

extensive bibliography therein. In such references, existence and uniqueness results

were proved using the Galerkin approximation scheme. To put the α-models in their

historical framework and see some of their numerical applications, we can see the

paper [8]. Convergence results are derived for α-geostrophic equations in [9] and

certain α-MHD in [12] where Aubin–Lions compactness methods are used in the

framework of the phase space.

Throughout this paper, and for both existence and convergence results, we use fre-

quency space computations, since they are well suited for unlimited domains such as

T
3 and R

3. Such domains describe well the physical situations where the Boussinesq

system is properly used, namely atmospheric and oceanographic turbulence, where

rotation and stratification play an important role. We believe that our proofs are new,

simpler and shorter than those done for other α-systems in phase space. In the case

of geophysical magnetohydrodynamic systems, we have already used frequency space

analysis to deal with existence, uniqueness and convergence results as a small param-

eter (Rossby number) vanishes [18], [1], [2], [19], [20]. Using the Fourier transform

as a principal tool, we also gave an asymptotic study and stability results for both
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two-dimensional Leray weak solutions [4] and three-dimensional Fujita–Kato strong

solutions [3] to the periodic Navier stokes equation in critical spaces as time goes to

infinity. Mainly, we gave an alternative simpler and shorter proof for the vanishing

limit of the 2D weak solution of the Navier–Stokes equation using only the frequency

structure of the solution without any additional assumptions [4]. Here, we are deal-

ing with the periodic case. The case of the whole space can be treated using the same

method with some minor modifications.

Our first result is a theorem that addresses the problem of existence of the weak

solution to the system (Bqα) within the minimal regularity of the initial data.

Theorem 1.1 Let θ0 ∈ L2(T
3) and let u0 ∈ Ḣ1(T

3) be a divergence-free vector field.

Then for T = T(u0, θ0) > 0, there exists a weak solution (u, θ) of system (Bqα) such

that

u ∈ C
(

[0,T], Ḣ1(T
3)
)
∩ L2

(
[0,T], Ḣ2(T

3)
)

and

θ ∈ C
(

[0,T], L2(T
3)
)
∩ L2

(
[0,T], Ḣ1(T

3)
)
.

Moreover, this solution satisfies the following energy estimates

‖u(t)‖2
L2(T3) + α2‖∇u(t)‖2

L2(T3) + ‖θ(t)‖2
L2(T3)

+ 2

∫ t

0

ν
(
‖∇u(t)‖2

L2(T3) + α2‖∆u(t)‖2
L2(T3)

)
+ κ‖θ(τ )‖2

L2(T3) dτ

≤ ‖u0‖2
L2(T3) + α2‖∇u0‖2

L2(T3) + ‖θ0‖2
L2(T3) + 2ρα(T)

(1.7)

where ρα is a positive increasing function of time t, defined by

ρα(t) =
1

2
(e2t − 1)(‖u0‖2

L2(T3) + α2‖∇u0‖2
L2(T3)) +

((
t −

1

2

)
e2t + t +

1

2

)
‖θ0‖2

L2(T3).

The proof is done in the frequency space and uses the so-called Friedrichs method,

an approximating method that is well suited for the frequency calculation. First, we

approximate (Bqα) by a system for which we can apply the classical theory of ordi-

nary differential equations to construct an approximate solution. Next, we obtain

uniform estimates that are independent of the approximating parameter n regarding

this approximate solution. To do so, we use conservation laws and product lemmas.

While trying to close the energy estimates, the buoyancy force presents some diffi-

culties that we overcome by a Gronwall-type technique. After that, we run a com-

pactness method based on the Arzelà–Ascoli theorem. Cantor’s diagonal extraction

process allows constructing a convergent subsequence in suitable spaces. Properties

of Friedrichs’ operator are widely used in the proof.

Our second result deals with one of the main objectives behind the regularization,

that is, uniqueness of weak solution in the three-dimensional case to the regularized

system. Such uniqueness is not available for original Boussinesq system. More than

uniqueness, we get continuous dependence of the weak solution on the initial data.

Mainly, we have the following theorem.
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Theorem 1.2 The weak solution dealt with in Theorem 1.1 is continuously dependent

on the initial data on any bounded interval [0,T]. In particular, that solution is unique.

To prove this theorem, we consider the system satisfied by the difference of two

solutions. The energy method is applied. The nonlinear terms are tracked one by one

using results of the existence part, Young product inequalities, and suitable Sobolev

product laws. Finally, a Gronwall-type differential inequality is derived. This allows

us to infer continuous dependence of the solutions on initial data in any bounded

interval [0,T], and in particular, the solution is unique.

Our third result discusses the weak and strong convergence of the unique weak so-

lution of the regularized system (Bqα) to a Leray–Hopf weak solution of the original

system (Bq) as the regularizing parameterα goes to zero. The latter solution is known

to exist [5]. Actually, in addition to uniqueness, these convergence results make this

regularization very useful for numerical study of the original fluid equation. Those

convergence results are summarized in the following theorem.

Theorem 1.3 Let T > 0, u0 ∈ Ḣ1(T
3) a divergence-free vector field, θ0 ∈ L2(T

3)

and uα, θα, the solutions of system (Bqα) and vα = uα − α2
∆uα. Then there are

subsequences uαk
, vαk

, θαk
, and a scalar function θ̆ and a divergence-free vector field

ŭ both of them belonging to L∞
(

[0,T], L2(T
3)
)
∩ L2

(
[0,T], Ḣ1(T

3)
)

, such that as

αk → 0+ we have

• uαk
converges to ŭ and θαk

converges to θ̆ weakly in L2
(

[0,T], Ḣ1(T
3)
)

and strongly

in L2
(

[0,T], L2(T
3)
)

.

• vαk
converges to ŭ weakly in L2

(
[0,T], L2(T

3)
)

and strongly in L2
(

[0,T], Ḣ−1(T
3)
)

.

• uαk
converges to ŭ and θαk

converges to θ̆ weakly in L2(T
3) and uniformly over [0,T].

Furthermore, (ŭ, θ̆) is a Leray–Hopf weak solution of the Boussinesq system (Bq) and

satisfies for all t ∈ [0,T] the energy inequality

‖ŭ(t)‖2
L2(T3) + ‖θ̆(t)‖2

L2(T3) + 2

∫ t

0

ν‖∇ŭ(t)‖2
L2(T3) + κ‖∇θ̆(τ )‖2

L2(T3) dτ

≤ ‖u0‖2
L2(T3) + ‖θ0‖2

L2(T3) + 2ρ0(t).

(1.8)

The idea of the proof is to extract subsequences that converge to the solution of

(Bq) as α → 0+. First, we derive a uniform bound independent of the parameter α.

This gives the weak convergence. Then, following the lines of the existence proof,

we establish strong convergence of such subsequences in suitable spaces. This strong

convergence allows to take the limit in the quadratic terms, and hence a weak conver-

gence of the unique weak solution of (Bqα) to a weak solution of (Bq) is proved and

the associated energy estimate is derived. Using such energy estimates, we further

ameliorate the strong convergence results derived earlier.

The remainder of our paper is organized as follows. For the sake of completeness,

and to be read independently, we start by recalling some preliminary background and

stating useful definitions. Section 3 is devoted to the proof of the existence result. In

Section 4, we prove continuous dependence of the weak solution on the initial data

and in particular uniqueness. Section 5 is devoted to proving several convergence

results.
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2 Notations and Preliminary Results

This section collects some known results that will be useful in the sequel.

• For T
3
= [0, 2π[3, the Fourier transformation of a suitable distribution f is nor-

malized as

F( f )(k) = f̂ (k) =

∫

T3

exp(−ix.k) f (x) dx, k = (k1, k2, k3) ∈ Z
3

and the inverse Fourier formula is

F
−1(g)(x) = (2π)−3

∑

Z3

exp(ik.x) f̂ (k), x = (x1, x2, x3) ∈ R
3.

• For s ∈ R, Ḣs(T
3) denotes the usual homogeneous Sobolev space on T

3 and

( · , · )Ḣs(T3) the associated inner product;

( f , g)Ḣs(T3) =

∑

Z3

|k|2s
F( f )(k)F(g)(k).

• For any Banach space (B, ‖ · ‖), any real number 1 ≤ p ≤ ∞ and any time T > 0,

we will denote by L
p
T(B) the space of all measurable time-dependent functions

defined on [0,T] with value in B such that
(

t → ‖ f (t)‖
)

belongs to Lp([0,T]).

We denote by C
1/2
loc (R+,B) the space of functions u that belong to L∞(R+,B) and

sup
t 6=t ′

‖u(t) − u(t ′)‖B

|t − t ′|1/2
< +∞.

• If f = ( f1, f2, f3), g = (g1, g2, g3) are two smooth vector fields and θ is a smooth

scalar function, we set

f ⊗ g := (g1 f , g2 f , g3 f ),

and

div( f ⊗ g) :=
(

div(g1 f ), div(g2 f ), div(g3 f )
)
.

Moreover, if div f = 0 we have

div( f ⊗ g) = ( f · ∇)g,

div(θ f ) = f · ∇θ,

( f · ∇g, g)L2(T3) = 0

and

( f · ∇θ, θ)L2(T3) = 0.

The two last equalities can be proved by symmetry.
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• For any subset X of a set E, the symbol 1X denotes the characteristic function of X

defined by

1X(x) =

{
1 if x ∈ X

0 elsewhere.

Finally, we recall the version of the Arzelà–Ascoli theorem that we are using in this

paper.

Theorem 2.1 Let X be a compact metric space, let Y be a metric space and H ⊂
C(X,Y ) the set of continuous functions from X to Y . Then the following statements are

equivalent.

(i) The closure of H is compact in C(X,Y ).

(ii) H is equicontinuous and ∀x ∈ X, and the set H(x) = { f (x), f ∈ H} is relatively

compact in Y .

3 Existence Result

For a strictly positive integer n, we introduce the Friedrichs operator Jn, defined for

any suitable distribution f by

Jn f := F
−1

(
1{|k|<n}F( f )

)
.

One of the advantages of the so-called Friedrichs approximating method is that a par-

tial differential equation will be approximated by an ordinary differential equation.

In fact, derivatives in phase space became multiplications in frequency space. At this

step, we should note that the frequency variable ki , 1 ≤ i ≤ 3, can take any value in Z.

However, when truncation applies, the expression 1{|k|<n}F( f ) is no longer a sym-

bol of derivative and then Jnu is no more a derivative but simply a distribution with a

spectrum supported in the ball B(0, n). Mainly, for the case of (Bq) we approximate

the space L2(T
3) by the sequence of increasing subspaces

L2
n =

{
f ∈

(
L2(T

3)
) 3
, suppF( f ) ⊂ B(0, n)

}
,

and should then approximate the distribution u by a sequence un that belongs to L2
n.

Setting un = Jnu, we obtain the nonlinear ordinary differential equations denoted

(Bqα)n and given by

∂tθn − κ∆θn + Jn div(θnun) = 0 in R+ × T
3,(3.1)

∂t vn − ν∆vn + Jn div(un ⊗ un) − θne3(3.2)

= Jn∇∆
−1

( 3∑
i, j=1

∂i∂ j(ui
nu j

n) − ∂3θn

)
in R+ × T

3,

vn = un − α2
∆un in R+ × T

3,(3.3)

div un = div vn = 0 in R+ × T
3,(3.4)

(un, θn)|t=0 = (u0
n, θ

0
n) := ( Jnu0, Jnθ

0) in T
3.(3.5)
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Before going further in our proof, we give some comments on how to apply the

Friedrichs operator to the convective term. First, the distribution u needs to be trun-

cated to belong to L2
n and then replaced everywhere by Jnu. Second, since even when

un belongs to L2
n it is not clear that the nonlinear terms such as un · ∇un belong also

to L2
n, we need to reapply the Friedrichs operator in front. As for the continuous

problem, we obtain the expression of the approximate pressure as a function of the

velocity and the temperature by applying the divergence operator to equations (3.2)–

(3.5) under the hypothesis div( Jnu) = 0. Let us return to our approximating scheme;

system (Bqα)n is an ODE and can be rewritten in the abstract form

d

dt
(vn, θn) = Gn(vn, θn),

where the expression of Gn is given by (Bqα)n. By classical computation, we can verify

that Gn is a continuous function from L2
n into itself; the key idea is that we are using

distributions with bounded spectrum. Hence, the Cauchy–Lipshitz theorem (known

also as the Picard–Lindelöf theorem) asserts that system (Bqα)n has a unique maximal

solution (un, θn) in the space C1
(

[0,T∗
n ), L2

n

)
, where T∗

n is the maximal existence

time. Taking the inner product in L2(T
3) of equation (3.1) by θn and equation (3.2)

by un, we obtain, under the incompressibility condition of un, for t ∈ [0,T∗
n ),

1

2

d

dt
‖θn‖

2
L2(T3) + κ‖∇θn‖

2
L2(T3) = 0,

1

2

d

dt
(‖un‖

2
L2(T3) + α2‖∇un‖

2
L2(T3)) + ν(‖∇un‖

2
L2(T3) + α2‖∆un‖

2
L2(T3)) = 〈θne3, un〉.

Integrating over time, it follows that for all t ∈ [0,T∗
n ),

(3.6) ‖θn(t)‖2
L2(T3) + 2κ

∫ t

0

‖∇θn‖
2
L2(T3) dτ = ‖θ0

n‖
2
L2(T3)

and

‖un(t)‖2
L2(T3) + α2‖∇un‖

2
L2(T3) + 2ν

∫ t

0

(‖∇un‖
2
L2(T3) + α2‖∆un‖

2
L2(T3)) dτ

= ‖u0
n‖

2
L2(T3) + α2‖∇u0

n‖
2
L2(T3) + 2

∫ t

0

∫

T3

θne3un dx dτ .

(3.7)

Let us first prove that these estimates imply that the maximal solution of the ODE

(Bqα)n is global. In fact, applying respectively the Cauchy–Schwartz inequality and

Young product inequality, we obtain

∫ t

0

∫

T3

θne3un dx dτ ≤

∫ t

0

‖θn(τ )‖L2(T3) ‖un(τ )‖L2(T3) dτ

≤

∫ t

0

‖θn(τ )‖2
L2(T3) + ‖un(τ )‖2

L2(T3) dτ

≤

∫ t

0

‖θn(τ )‖2
L2(T3) +

(
‖un(τ )‖2

L2(T3) + α2‖∇u(τ )‖2
)

dτ .
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By the energy inequality (3.6), we have

‖θn(t)‖2
L2(T3) ≤ ‖θ0

n‖
2
L2(T3).

Dropping the non-negative term from the left-hand side of (3.7), we obtain

‖un(t)‖2
L2(T3) + α2‖∇un(t)‖2

L2(T3) ≤ ‖u0
n‖

2
L2(T3) + α2‖∇u0

n‖
2
L2(T3) + 2t‖θ0

n‖
2
L2(T3)

+

∫ t

0

2
(
‖un(τ )‖2

L2(T3) + α2‖∇un(τ )‖2
L2(T3)

)
dτ .

Since the function

t 7→ ‖u0
n‖

2
L2(T3) + α2‖∇u0

n‖
2
L2(T3) + 2t‖θ0

n‖
2
L2(T3)

is non-decreasing, by a Gronwall-type inequality we infer that

‖un(t)‖2
L2(T3) + α2‖∇un(t)‖2

L2(T3) ≤ (‖u0
n‖

2
L2(T3) + α2‖∇u0

n‖
2
L2(T3) + 2t‖θ0

n‖
2
L2(T3))e2t .

Hence,

∫ t

0

‖un(τ )‖2
L2(T3) + α2‖∇un(τ )‖2

L2(T3) dτ

≤
1

2
(e2t − 1)(‖u0

n‖
2
L2 + α2‖∇u0

n‖
2
L2 ) + ‖θ0

n‖
2
L2(T3)

((
t −

1

2

)
e2t +

1

2

)
.

This implies that ∫ t

0

∫

T3

θne3un dx dτ ≤ ρα(t),

where for all non-negative time t , the function ρα is defined by

ρα(t) =
1

2
(e2t − 1)(‖u0

n‖
2
L2(T3) + α2‖∇u0

n‖
2
L2(T3)) +

((
t −

1

2

)
e2t + t +

1

2

)
‖θ0

n‖
2
L2(T3).

A classical computation asserts that for all positive time t , the function ρα(t) is an in-

creasing one with minimum value equal to zero and reached as time vanishes. Hence,

the energy estimate (3.7) reads:

‖un(t)‖2
L2(T3) + α2‖∇un‖

2
L2(T3) + 2ν

∫ t

0

(‖∇un‖
2
L2(T3) + α2‖∆un‖

2
L2(T3)) dτ

≤ ‖u0‖2
L2(T3) + 2ρα(t).

(3.8)

Summing up estimate (3.8) together with estimate (3.6), we deduce that the maximal

solution of the ODE is global. That is, T∗
n = +∞. Otherwise, if T∗

n is finite, the

right-hand side of estimation (3.8) will be so and un would have a life span strictly
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larger than T∗
n , which is in contradiction with maximality. Estimates above imply

that θn is bounded in L∞
(

R+, L
2(T

3)
)
∩ L2

(
R+, Ḣ

1(T
3)
)

and un is bounded in

L∞
(

R+, L
2(T

3)
)
∩ L2

(
R+, Ḣ

1(T
3)
)
∩ L∞

(
R+, Ḣ

1(T
3)
)
∩ L2

(
R+, Ḣ

2(T
3)
)
.

In particular, the facts that the operator I−α2
∆ is bounded from H2(T

3) into L2(T
3)

and that un belongs to L∞
(

R+, Ḣ
1(T

3)
)
∩ L2

(
R+, Ḣ

2(T
3)
)

imply that vn is bounded

in L∞
(

R+, Ḣ
−1(T

3)
)
∩ L2

(
R+, L

2(T
3)
)

. Using the approximating system, Sobolev

embedding, and product laws, we infer that for any fixed time T > 0, d
dt
θn is bounded

in L2
(

[0,T], Ḣ−1(T
3)
)

. At this point, we note that for a fixed positive time, the

diffusion term ∆θn belongs to L2
(

Ḣ−1([0,T],T
3)
)

and the convective one satisfies

‖ div θnun‖Ḣ−1 ≤ ‖θn‖Ḣ1 ‖un‖Ḣ1/2

≤ ‖θn‖Ḣ1 ‖un‖
1/2

L2 ‖un‖
1/2

Ḣ1 ,

where we used respectively Sobolev product laws and interpolation inequality. Thus,

∫ T

0

‖ div θnun‖
2
Ḣ−1 ≤

∫ T

0

‖θn‖
2
Ḣ1 ‖un‖Ḣ1 ‖un‖L2

≤ ‖θn‖
2
L2

T (Ḣ1) ‖un‖L∞

T (Ḣ1) ‖un‖L∞

T (L2).

Here, we note that the maximal regularity associated to the temperature derivative is

imposed by its diffusion process.

For the time derivative of the velocity, on one hand, vn belongs to L2
(

R+, L
2(T

3)
)

,

so ∆vn belongs to L2
(

R+,H
−2(T

3)
)

, the temperature θn belongs to L2
(

R+, Ḣ
1(T

3)
)

and

‖ div(un ⊗ un)‖Ḣ−2 ≤ ‖ div(un ⊗ un)‖Ḣ−3/2

≤ ‖un ⊗ un‖Ḣ−1/2

≤ ‖un‖L2 ‖un‖Ḣ1 .

So it follows that

∫ T

0

‖ div(un ⊗ un)‖2
Ḣ−2 ≤ ‖u‖2

L∞

T (L2) ‖u‖2
L2

T (Ḣ1).

Hence, d
dt

vn is bounded in L2
(

[0,T], Ḣ−2(T
3)
)

.

On the other hand, the operator (I − α2
∆)−1 is bounded from Ḣ−2(T

3) into

L2(T
3), so

∥∥∥ d

dt
un

∥∥∥
L2(T3)

=

∥∥∥ (I − α2
∆)−1 d

dt
vn

∥∥∥
L2(T3)

≤ c
∥∥∥ d

dt
vn

∥∥∥
Ḣ−2(T3)

.
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Hence, for any fixed time T > 0,

d

dt
un is bounded in L2

(
[0,T], L2(T

3)
)
.

To pass to the limit in the approximating system, we use a compactness method based

on the Arzelà–Ascoli theorem. We first note that, for any times s and t ,

‖un(t) − un(s)‖L2 ≤

∣∣∣∣
∫ t

s

‖∂t un‖L2 dτ

∣∣∣∣

≤ |t − s|1/2 ‖∂t un‖L2(R+,L2(T3))

≤ M|t − s|1/2,

where M is a positive real number. So the approximate velocity (un) is equicontin-

uous and belongs to the space C
1/2
loc

(
R+, L

2(T
3)
)

. Likewise, the temperature (θn) is

equicontinuous and it belongs to C
1/2
loc

(
R+, Ḣ

−1(T
3)
)

. Let R+ =
⋃

p∈N
[0,Tp], where

Tp is an increasing sequence such that limt→+∞ Tp = +∞. Using compactness of

the Sobolev embedding of Ḣs1 (T
3) into Ḣs2 (T

3) whenever s1 > s2, we deduce that for

any time t ∈ [0,T0], the set E1(t) = {un(t), n ∈ N} is relatively compact in Ḣ−1(T
3)

and the set E2(t) = {θn(t), n ∈ N} is relatively compact in Ḣ−2(T
3). By the Arzelà–

Ascoli theorem, we infer that (un)n∈N is relatively compact in C
(

[0,T0], Ḣ−1(T
3)
)

and (θn)n∈N is relatively compact in C
(

[0,T0], Ḣ−2(T
3)
)

. So there exists two extrac-

tion maps ϕ0 and ψ0 from N to N such that

uϕ0(n) → ũ0 strongly in C
(

[0,T0], Ḣ−1(T
3)
)

and

θψ0(n) → θ̃0 strongly in C
(

[0,T0], Ḣ−2(T
3)
)
.

Recalling that sequences (un)n∈N and (θn)n∈N are respectively bounded in the space

L∞
(

R+, Ḣ
1(T

3)
)

and the space L∞
(

R+, L
2(T

3)
)

, we use an interpolation argument

to deduce that, for any real number ε > 0,

uϕ0(n) → ũ0 strongly in C
(

[0,T0], Ḣ1−ε(T
3)
)

and

θψ0(n) → θ̃0 strongly in C
(

[0,T0], Ḣ−ε(T
3)
)
.

This is the initial step of an induction process that leads in its step number p to

construction of a sequence of velocity fields (ṽp)p∈N, temperature fields (θ̃p)p∈N and

a sequence of increasing maps from N to N, (ϕp)p∈N and (ψp)p∈N such that for all

p ∈ N and any real number ε > 0,

uϕ0◦ϕ1◦···◦ϕp(n) → ũp strongly in C
(

[0,Tp], Ḣ1−ε(T
3)
)

and

θψ0◦ψ1◦···◦ψp(n) → θ̃p strongly in C
(

[0,Tp], Ḣ−ε(T
3)
)
.
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Then, at this point in the proof, there exists a unique velocity field

u ∈ L∞
(

R+, Ḣ
1(T

3)
)
∩C

(
R+, Ḣ

1−ε(T
3)
)

and a unique temperature θ ∈ L∞
(

R+, L
2(T

3)
)
∩ C

(
R+, Ḣ

ε(T
3)
)

, defined for all

p ∈ N by

(u, θ)(x, t) = (ũ, θ̃)(x, t), for (t, x) ∈ [0,Tp] × T
3.

Using the Cantor diagonal extraction process [17], letting Φ(n) = ϕ0◦ϕ1◦· · ·◦ϕn(n)

and Ψ(n) = ψ0 ◦ ψ1 ◦ · · · ◦ ψn(n), it follows that

(3.9) lim
n→∞

uΦ(n) = ũ strongly in the space C
(

[0,Tp], Ḣ1−ε(T
3)
)

and

(3.10) lim
n→∞

θΨ(n) = θ̃ strongly in the space C
(

[0,Tp], Ḣ−ε(T
3)
)
.

This is due to the fact that, for a given integer p, when n tends to infinity we are

able to consider n ≥ p. So it follows that (vΦ(n)) and (θΨ(n)) are subsequences

of (uϕ0oϕ1o···oϕp(n))n and (θψ0oψ1o···oψp(n))n respectively. In particular, by taking a test

function supported in [0,Tp] × T
3, we use the above limits to deduce that

(3.11) lim
n→∞

vΦ(n) = ṽ in D
′(R+

∗ × T
3)

and

(3.12) lim
n→∞

θΨ(n) = θ̃ in D
′(R+

∗ × T
3).

It remains to take the limit in D ′(R+
∗ × T

3) as n goes to +∞ of the approximate

system. The linear terms follow immediately from (3.11)–(3.12). As usual, the chal-

lenging term is the nonlinear one. At this step, we note that the strong convergence

is compulsory for taking the limit. In the beginning, let us prove that

(3.13) lim
n→+∞

ui
Φ(n)u

j
Φ(n) = uiu j in D

′(R+
∗ × T

3).

To do so, consider a distribution g supported in ]0,T[ × T
3. We have

gui
Φ(n)u

j
Φ(n) − guiu j

= (ui
Φ(n) − ui)gu

j
Φ(n) − (u

j
Φ(n) − u j)gui

Φ(n).

To estimate the first term of the right-hand side, we note that

‖(ui
Φ(n) − ui)gu

j
Φ(n)‖L2(R+,Ḣ3/2−ε(T3))

≤ C‖ui
Φ(n) − ui‖L∞([0,Tp],Ḣ1−ε(T3)) × ‖gu

j
Φ(n)‖L2(R+,Ḣ2(T3)).
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The same holds for the (u
j
Φ(n) − u j)gui

Φ(n) and we deduce that

lim
n→+∞

gui
Φ(n)u

j
Φ(n) = guiu j in L2

(
R+, Ḣ

3/2−ε(T
3)
)
.

This holds for any integer p and any test function g. Thanks to a density argument,

(3.13) is proved.

Now, let us prove that

lim
n→+∞

Jn(ui
nu j

n) = uiu j in D
′(R+

∗ × T
3).

First, note that

Jn(ui
nu j

n) − uiu j
= Jn(ui

nu j
n − uiu j) + ( Jn − Id)uiu j .

The first term of the right-hand side is not problematic thanks to the application of

the truncation operator Jn. However, the second one presents some difficulties since

frequencies are not bounded; it will be dealt with as

‖( Jn − Id)uiu j‖L2(R+,Ḣ3/2−ε(T3)) ≤ n−ε‖u‖L∞(R+,Ḣ1(T3)) ‖u‖L2(R+,Ḣ2(T3)).

So we can take the limit in the velocity convective term. Likewise for the temperature

advection, we have

(3.14) gθΨ(n)u
i
Φ(n) − gθui

= (θΨ(n) − θ)gui
Φ(n) + (ui

Φ(n) − ui)gθ.

The following estimate holds:

‖(θΨ(n) − θ)gui
Φ(n)‖L2(R+,Ḣ−1/2−ε(T3))

≤ C‖θi
Ψ(n) − θ‖L∞([0,Tp],Ḣ−ε(T3)) × ‖gui

Φ(n)‖L2(R+,Ḣ1(T3)).

Since, as n goes to infinity, θΨ(n) converges to θ in L∞
(

[0,Tp], Ḣ−ε(T
3)
)

and since

ui
Φ(n) belongs to L2

(
R+, Ḣ

1(T
3)
)

,

lim
n→+∞

‖(θΨ(n) − θ)gui
Φ(n)‖L2(R+,Ḣ−1/2−ε(T3)) = 0.

Applying Sobolev product rules and the decreasing Sobolev chain spaces, we have

‖(ui
Ψ(n) − ui)gθ‖

L2(R+,Ḣ
−

1
2
−ε

(T3))
≤ C‖ui

Ψ(n)i − ui‖L∞([0,Tp],Ḣ1−ε) ‖gθ‖L2(R+,Ḣ1).

This guarantees the convergence of the second term of the right-hand side of (3.14)

in D(R+
∗ × T

3).

As above, we go further by rewriting

Jn(θnui
n) − θui

= Jn(θnui
nθ − ui) + ( Jn − Id)θui
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and noting that

‖( Jn − Id)θui‖L2(R+,Ḣ−1/2−ε(T3)) ≤ n−ε‖u‖L∞(R+,L2(T3)) ‖θ‖L2(R+,Ḣ1(T3)).

So the limit (u, θ) satisfies system (1.2)–(1.6) in the weak sense, i.e., in D ′(R+
∗×T

3).

The assertions

u ∈ C([0,T], Ḣ1) ∩ L2([0,T], Ḣ2)

and

θ ∈ C([0,T], L2) ∩ L2([0,T], Ḣ1)

follow from the fact that each term of the sequence (un, θn) satisfies the energy es-

timates (3.6) and (3.8), and (un, θn) converges almost everywhere to (u, θ), since it

converges strongly to this limit according to (3.9) and (3.10).

To prove the energy inequality, we again use equations (3.9) and (3.10) to infer

that θn(t) converges weakly in L2(T
3) towards θ(t) and un(t) converges weakly in

Ḣ1(T
3) towards u(t). Hence

‖θ(t)‖2
L2 ≤ lim infn→∞‖θn(t)‖2

L2

and

‖u(t)‖2
L2 + α2‖∇u(t)‖2

L2 ≤ lim infn→∞

(
‖un(t)‖2

L2 + α2‖∇un(t)‖2
L2

)
.

On the other hand (θn) converges weakly to θ in L2
(

[0,T], Ḣ1(T
3)
)

and (un)

converges weakly to u in L2
(

[0,T], Ḣ2(T
3)
)

, so for all non-negative time t , we have

∫ t

0

‖∇θ(τ )‖2
L2 dτ ≤ lim infn→∞

∫ t

0

‖∇θn(τ )‖2
L2 dτ

and

∫ t

0

(‖∇u‖2
L2(T3) + α2‖∆u‖2

L2(T3)) dτ ≤ lim infn→∞

∫ t

0

(‖∇un‖
2
L2(T3) + α2‖∆un‖

2
L2 ) dτ

Taking the lower limit as n goes to infinity in the energy inequality (3.6) yields the

energy inequality (1.7).

To prove that the solution (u, θ) is continuous, we take the scalar product of equa-

tion (1.3) by u and the scalar product of equation (1.2) by θ to infer that d
dt
‖u(t)‖2

L2(T3)

and d
dt
‖θ(t)‖2

L2(T3) both belong to L1[0,T]. Hence, ‖u(t)‖2
L2(T3) and ‖θ(t)‖2

L2(T3) be-

long to C[0,T]. Taking the scalar product of equations (1.3) and (1.2) by a suitable

test function, we deduce that the functions t  u(t) and t  θ(t) are weakly con-

tinuous. This leads to the fact that both u and θ are strongly continuous. The proof

of the existence result is finished.

https://doi.org/10.4153/CJM-2012-013-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-013-5


1428 R. Selmi

4 Continuous Dependence of Weak Solutions on the Initial Data
and Uniqueness

Let T be a strictly positive time, and let (u, θ) and (u, θ) be two weak solutions of

the system (Bqα) on the time interval [0,T] associated respectively to the initial data

(u0, θ0) and (u0, θ
0
). We let δu = u − u, δv = v − v, δθ = θ − θ and δp = p − p.

Taking differences in related (Bqα) systems, classical computations lead to the one

denoted (δBqα) and given by

∂tδθ − κ∆δθ + δu · ∇θ + u · ∇δθ = 0 in R+ × T
3,(4.1)

∂tδv − ν∆δv + δu · ∇u + u · ∇δu = −∇δp + δθe3 in R+ × T
3,(4.2)

δv = δu − α2
∆δu in ,R+ × T

3(4.3)

div δv = div δu = 0 in R+×,T
3(4.4)

(δu, δθ)(0) = (u0 − u0, θ0 − θ
0
) in T

3.(4.5)

According to the proof of the existence result, the temperature time derivative d
dt
δθ

belongs to the space Ł2
(

[0,T], Ḣ−1(T
3)
)

, and both temperatures θ and θ and their

difference δθ belong to the space Ł2
(

[0,T], Ḣ1(T
3)
)

. Also, the filtered velocity field

time derivative d
dt
δv belongs to the space Ł2

(
[0,T], Ḣ−2(T

3)
)

and the velocity field

δu belongs to the space Ł2
(

[0,T], Ḣ2(T
3)
)

. Hence, taking the appropriate duality ac-

tion, we have, in the framework of divergence-free vector fields and equations (4.1)–

(4.2), for almost every time t in [0,T],

〈 d

dt
δθ, δθ

〉
Ḣ−1(T3)

+ κ‖∇δθ‖2
L2(T3) + 〈δu · ∇θ, δθ〉Ḣ−1(T3) = 0

〈 d

dt
δv, δu

〉
Ḣ−2(T3)

+ ν(‖∇δu‖2
L2(T3) + α2‖∆δv‖2

L2(T3))

+〈δu · ∇u, δu〉Ḣ−2(T3) = 〈δθ, δu〉Ḣ−1(T3).

Applying the Lions–Magenes lemma concerning the derivatives of functions with

values in Banach spaces (cf. [22, Chap. 3, p. 169]), we obtain

〈 d

dt
δθ, δθ

〉
Ḣ−1(T3)

=
d

dt
‖δθ‖2

L2(T3)

and 〈 d

dt
δv, δu

〉
Ḣ−2(T3)

=
d

dt
(‖δu‖2

L2(T3) + α2‖∇δu‖2
L2(T3)).

It follows that

d

dt
‖δθ‖2

L2(T3) + κ‖∇δθ‖2
L2(T3) + 〈δu · ∇θ, δθ〉Ḣ−1(T3) = 0(4.6)

d

dt

(
‖δu‖2

L2(T3) + α2‖∇δu‖2
L2(T3)

)
+ ν

(
‖∇δu‖2

L2(T3) + α2‖∆δv‖2
L2(T3)

)

+ 〈δu · ∇u, δu〉Ḣ−2(T3) = 〈δθ, δu〉Ḣ−1(T3).

(4.7)
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We sum equations (4.6) and (4.7) to obtain

d

dt
(‖δu‖2

L2(T3) + α2‖∇δu‖2
L2(T3) + ‖δθ‖2

L2(T3))

+ ν(‖∇δu‖2
L2(T3) + α2‖∆δv‖2

L2(T3)) + κ‖∇δθ‖2
L2(T3)

= 〈δθ, δu〉Ḣ−1(T3)︸ ︷︷ ︸
Q3

−〈δu · ∇u, δu〉Ḣ−2(T3)︸ ︷︷ ︸
Q1

−〈δu · ∇θ, δθ〉Ḣ−1(T3)︸ ︷︷ ︸
Q2

.

Let us estimate Q1, Q2 and Q3. To do so, we recall the following Sobolev inequalities:

for all ϑ ∈ Ḣ1(T
3), it holds that

(4.8) ‖ϑ‖L3(T3) ≤ c‖ϑ‖
1/2

L2(T3)
‖ϑ‖

1/2

Ḣ1(T3)

and

(4.9) ‖ϑ‖L6(T3) ≤ ‖ϑ‖Ḣ1(T3).

• For Q1 we use the Cauchy–Schwartz inequality twice to obtain

Q1 ≤ ‖δu‖L3(T3) ‖∇u‖L2(T3) ‖δu‖L6(T3).

Sobolev inequalities (4.8)–(4.9) imply that

Q1 ≤ c‖δu‖
3/2

Ḣ1(T3)
‖δu‖

1/2

L2(T3)
‖u‖Ḣ1(T3).

Using the Young product inequality, we obtain

(4.10) 〈δu · ∇u, δu〉Ḣ−1(T3) ≤ c(‖δu‖2
L2(T3) + ‖∇δu‖2

L2(T3))‖u‖Ḣ1(T3).

• For Q2, as for the preceding item, we use the Cauchy–Schwartz inequality twice to

obtain

〈δu · ∇θ, δθ〉Ḣ−1(T3) ≤ ‖δu‖L3(T3) ‖∇θ‖L2(T3) ‖δθ‖L6(T3).

Then inequalities (4.8)–(4.9) and the Sobolev norm definition imply that

〈δu · ∇θ, δθ〉Ḣ−1(T3) ≤ c‖δu‖
1/2

L2(T3)
‖δu‖

1/2

Ḣ1(T3)
‖∇θ‖L2(T3) ‖δθ‖Ḣ1(T3)

≤ c‖δu‖
1/2

L2(T3)
‖∇δu‖

1/2

L2(T3)
‖∇θ‖L2(T3) ‖∇δθ‖L2(T3).

Using twice the Young product inequality, we obtain

〈δu · ∇θ, δθ〉Ḣ−1(T3) ≤ c‖δu‖
1/2

L2(T3)
‖∇δu‖

1/2

L2(T3)
‖∇θ‖L2(T3) ‖∇δθ‖L2(T3)

≤ c‖δu‖L2(T3) ‖∇δu‖L2(T3) ‖∇θ‖
2
L2(T3) +

κ

2
‖∇δθ‖2

L2(T3)

≤ c(‖δu‖2
L2(T3) + ‖∇δu‖2

L2(T3)) ‖∇θ‖
2
L2(T3) +

κ

2
‖∇δθ‖2

L2(T3).

Finally,

(4.11) 〈δu·∇θ, δθ〉Ḣ−1(T3) ≤ c(‖δu‖2
L2(T3)+‖∇δu‖2

L2(T3))‖∇θ‖
2
L2(T3)+

κ

2
‖∇δθ‖2

L2(T3).
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• For Q3 we use respectively the Cauchy–Schwartz inequality and Young’s inequality

to obtain

(4.12) 〈δθ, δu〉Ḣ−1(T3) ≤ ‖δu‖2
L2(T3) + ‖δθ‖2

L2(T3).

Summing up estimations (4.10), (4.11), and (4.12), we infer that

d

dt
(‖δu‖2

L2 + ‖∇δu‖2
L2 + ‖δθ‖2

L2 ) + ν(‖δu‖2
L2 + ‖∇δu‖2

L2 ) +
κ

2
‖∇δθ‖2

L2

≤ C(1 + ‖∇θ‖2
L2 + ‖u‖Ḣ1 ) × (‖δu‖2

L2 + ‖∇δu‖2
L2 + ‖δθ‖2

L2 ).

(4.13)

Dropping the dissipative positive term from the left-hand side of (4.13) and putting

g(t) = C(‖∇θ‖2
L2 + ‖u‖Ḣ1 + 1),

we deduce that

(4.14)
d

dt
(‖δu‖2

L2 + ‖∇δu‖2
L2 + ‖δθ‖2

L2 ) ≤ g(t)(‖δu‖2
L2 + ‖∇δu‖2

L2 + ‖δθ‖2
L2 ).

This differential inequality is of Gronwall type where θ ∈ L2
(

[0,T], Ḣ1(T
3)
)

and

u ∈ L∞
(

[0,T], Ḣ1(T
3)
)

. Gronwall’s lemma applied to inequality (4.14) leads to

(‖δu‖2
L2 + ‖∇δ‖2

L2 + ‖δθ‖2
L2 )(t) ≤ (‖δu0‖2

L2 + ‖∇δu0‖2
L2 + ‖δθ0‖2

L2 ) × exp

∫ t

0

g(s) ds.

Hence, the continuous dependence of the weak solution on the initial data in any

bounded interval of time [0,T] follows. In particular, the solution is unique.

5 Convergence Results

As a result of the preceding sections, we dispose of a family of solutions (uα, θα) that

depends on the parameter α and that is continuously dependent on the initial data

(u0, θ0).

In this section, we are dealing with convergence results as the parameter α goes to

zero (α→ 0+). Hence, we can suppose that there exists a fixed value of α denoted α0,

such that 0 < α ≤ α0. Consequently, taking α = α0 in the right-hand side, the

energy estimates (1.7) reads, for all t ∈ [0,T],

(5.1) ‖uα(t)‖2
L2(T3) + α2‖∇uα(t)‖2

L2(T3) + ‖θα(t)‖2
L2(T3)

+ 2

∫ t

0

ν
(
‖∇uα(t)‖2

L2(T3) + α2‖∆uα(t)‖2
L2(T3)

)
+ κ‖θα(τ )‖2

L2(T3) dτ

≤ ‖u0‖2
L2(T3) + α2

0‖∇u0‖2
L2(T3) + ‖θ0‖2

L2(T3) + 2ρα0
(T),

https://doi.org/10.4153/CJM-2012-013-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-013-5


Convergence Results for the 3D-Regularized Boussinesq System 1431

where ρα0
(T) is defined by

ρα0
(T) =

1

2
(e2T − 1)(‖u0‖2

L2(T3) + α2
0‖∇u0‖2

L2(T3))

+

((
T −

1

2

)
e2T + T +

1

2

)
‖θ0‖2

L2(T3).

Here, as u, θ and v are families of solution that depend on the parameter α, we

changed the notation to uα θα and vα instead of u, θ and v. When α → 0+, we

obtain the following uniform bounds, which are independent of the parameter α.

Namely, we have:

both of θ and u are uniformly bounded in the space L2
(

[0,T], Ḣ1(T
3)
)

and

v is uniformly bounded in the space L2
(

[0,T], L2(T
3)
)
.

Hence, applying the Banach–Alaoglu theorem (see [15, Section 3.15, p. 68]) in the

framework of Hilbert spaces allows us to extract subsequences (uαk
)k, (vαk

)k, and

(θαk
)k of uα, vα, and θα respectively such that

(θαk
, uk) ⇀ (θ̆, ŭ) weakly in L2

(
[0,T], Ḣ1(T

3)
)

as αk → 0+ (or equivalently as k → +∞) and

vαk
⇀ ŭ weakly in L2

(
[0,T], L2(T

3)
)

as αk → 0+ (or equivalently as k → +∞).

Let us now establish uniform estimates to the time derivatives of θαk
and uαk

in

the appropriate spaces. At this step, we note that our target is to derive estimations

that are independent of the parameter α. Hence, it is clear that estimations derived

in the proof of the existence result do not apply because of their dependence on α.

For a fixed positive time, since θαk
is uniformly bounded independently of α in the

space L2
(

[0,T], Ḣ1(T
3)
)

, the diffusion term ∆θαk
belongs to L2

(
Ḣ−1([0,T],T

3)
)

.

The advection will be dealt with as

∫ T

0

‖ div θαk
uαk

‖2
Ḣ−3/2 ≤

∫ T

0

‖θαk
uαk

‖2
Ḣ−1/2 dτ

≤

∫ T

0

‖θαk
‖2

L2 ‖uαk
‖2

Ḣ1

≤ ‖θαk
‖2

L∞

T (L2) ‖uαk
‖2

L2
T (Ḣ1),

where we used the Sobolev norm definition, product laws and classical computation.

Since uαk
and θαk

are subsequences of uα and θα, the energy estimate (5.1) applies

also for uαk
and θαk

, and we have

‖θαk
‖2

L∞

T (L2) ‖uαk
‖2

L2
T (Ḣ1) ≤

1

2ν

(
‖u0‖2

L2(T3) + α2
0‖∇u0‖2

L2(T3) + ‖θ0‖2
L2(T3) + 2ρα0

(T)
)
.
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So it follows that

∫ T

0

‖ div θαk
uαk

‖2
Ḣ−3/2 ≤

1

2ν

(
‖u0‖2

L2(T3) + α2
0‖∇u0‖2

L2(T3) + ‖θ0‖2
L2(T3) + 2ρα0

(T)
)
.

The above temperature diffusion and convection estimations lead to

∥∥∥ d

dt
θαk

∥∥∥
L2

T (Ḣ−3/2)
≤ K1,

where K1 is a real positive constant. Let us now turn to the time derivative of the

velocity field uαk
. Applying the operator (I−α2

∆)−1 to the equation (1.3), we obtain

d

dt
uαk

= ν∆uαk
− (I − α2

∆)−1(uαk
· ∇)uαk

− (I − α2
∆)−1∇pαk

+ (I − α2
∆)−1θαk

e3 in R+ × T
3.

(5.2)

For a fixed positive time, since uαk
is uniformly bounded independently of α in the

space L2
(

[0,T], Ḣ1(T
3)
)

, the dissipation ∆uαk
belongs to L2

(
Ḣ−1([0,T],T

3)
)

. For

the remaining terms, we recall that operator (I − α2
∆)−1 is bounded from H−2(T

3)

into L2(T
3). Moreover, a direct frequency space computation implies that its norm is

uniformly bounded independently of the parameter α and satisfies

(5.3) 9(I − α2
∆)−19 ≤ 1.

Since θα is time square integrable with value in Ḣ1, then

‖(I − α2
∆)−1θe3‖L2(Ḣ3) ≤ K ′

2 ,

where K ′ is a real positive constant. The convection will be estimated as

∫ T

0

‖(I − α2
∆)−1 div(uαk

⊗ uαk
)‖2

L2 ≤

∫ T

0

‖ div(uαk
⊗ uαk

)‖2
H−2

≤

∫ T

0

‖ div(uαk
⊗ uαk

)‖2
H−3/2

≤ ‖uαk
‖2

L∞

T (L2) ‖uαk
‖2

L2
T (Ḣ1),

where we used respectively the inequality (5.3), the Sobolev norm definition and

product laws. Finally the energy estimate (5.1) implies that

∫ T

0

‖(I − α2
∆)−1 div(uαk

⊗ uαk
)‖2

L2

≤
1

2ν

(
‖u0‖2

L2(T3) + α2
0‖∇u0‖2

L2(T3) + ‖θ0‖2
L2(T3) + 2ρα0

(T)
)
.
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Using the preceding bounds of both the temperature and the convection terms, and

recalling equation (1.1), we infer that

‖(I − α2
∆)−1∇p‖L2(Ḣ−1) ≤ K ′ ′

2 .

So equation (5.2) implies that

∥∥∥ d

dt
uαk

∥∥∥
L2

T (Ḣ−1)
≤ K2.

Using the Arzelà–Ascoli theorem and the Cantor diagonal extraction process, we can

extract subsequences of uαk
, θαk

, which we relabel also by uαk
, θαk

, such that uαk
→ ŭ

and θαk
→ θ̆ strongly in C

(
[0,T], Ḣ−ε(T

3)
)

for all ε > 0 as αk → 0+. Following the

lines of the proof of the existence result, we can extract further subsequences that we

relabel again uαk
, vαk

and θαk
and show that as αk → 0+, ŭ and θ̆ are solutions in the

weak sense of the system (Bq). In fact, we use weak convergence to take the limit in

the linear part and obtain for almost every time t of [0,T], any test solenoidal vector

field Λ, and any test scalar function Ξ,

(vαk
− ŭ,Λ)L2 → 0

and

(θαk
− θ̆,Ξ)L2 → 0

as k → +∞, or equivalently as αk → 0+. Mainly, uαk
(t) converges to ŭ(t) and θαk

(t)

converges to θ̆(t) weakly in L2 and uniformly in [0,T]. Moreover,

∫ t

0

(vαk
− ŭ,∆Λ)L2 dτ → 0,

and ∫ t

0

(θαk
− θ̆,Ξ)L2 dτ → 0.

Likewise for the existence part, to handle the nonlinear terms, as a first step, we prove

that as αk → 0+ (or equivalently k → +∞) that

lim
k→+∞

ui
Φ1(k)u

j
Φ1(k) = ŭi ŭ j in D

′(R+
∗ × T

3)

and

lim
k→+∞

ui
Φ1(k)θ

j
Ψ1(k) = ŭi θ̆ j in D

′(R+
∗ × T

3).

After that, we establish that

lim
k→+∞

Jkui
Φ1(k)u

j
Φ1(k) = ŭi ŭ j in D

′(R+
∗ × T

3)

and

lim
k→+∞

Jkui
Φ1(k)θ

j
Ψ1(k) = ŭi θ̆ j in D

′(R+
∗ × T

3).
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Finally, we infer, for any divergence-free test vector fieldΛ and any test scalar function

Ξ belonging both of them to C1([0,T],C∞
0 ), that

(θ̆,Ξ) +

∫ t

0

(θ̆,∆Ξ) dτ +

∫ t

0

(u · ∇θ,Ξ) dτ = 0

(ŭ,Λ) +

∫ t

0

(ŭ,∆Λ) dτ +

∫ t

0

(u · ∇u,Λ) dτ +

∫ t

0

(θe3,Λ) dτ = 0.

As for the energy estimate, we note that every weak solution fulfills the energy es-

timates (1.7), so we deduce the energy estimates (1.8) by taking the lower limit as

αk → 0+.

To prove that uαk
converges to ŭ strongly in L2([0,T], L2), we note that

‖uαk
− ŭ‖L2([0,T],L2) ≤ ‖uαk

− ŭ‖L∞([0,T],Ḣ−1) ‖uαk
− ŭ‖L2([0,T],Ḣ1)

≤ ‖uαk
− ŭ‖C([0,T],Ḣ−1) ‖uαk

− ŭ‖L2([0,T],Ḣ1)

≤ ‖uαk
− ŭ‖C([0,T],Ḣ−1)(‖uαk

‖L2([0,T],Ḣ1) + ‖ŭ‖L2([0,T],Ḣ1)).

We use the energy estimate (1.8) to bound ‖ŭ‖L2([0,T],H1) in addition to the uni-

form bound of uαk
in L2([0,T],H1). Hence, the fact that uαk

→ ŭ strongly in

C
(

[0,T], Ḣ−ε(T
3)
)

for all ε > 0 as αk → 0+ accomplishes the job. The same proof

applies to show that θαk
converges to θ̆ strongly in L2([0,T], L2).

To show that vαk
→ ŭ strongly in L2([0,T], Ḣ−1), we note that

‖vαk
− uαk

‖2
L2([0,T],Ḣ−1) = α4

∫ T

0

(∑

k∈Z3

|k|−2 |∆̂uαk
|2
)

= α4

∫ T

0

(∑

k∈Z3

|k|2 |ûαk
|2
)

= α4‖uαk
‖2

L2([0,T],Ḣ1).

The fact that uαk
belongs to L2([0,T], Ḣ1) implies the aim.

Acknowledgements This work was completed in the Department of Mathematics

of University of Cádiz, Spain. It was fully supported by the Averroès programme.

The author is thankful for the invitation, the kind hospitality and the facilities given

by Prof. Francisco Ortegón Gallego and all the department members.

References

[1] J. Benameur and R. Selmi, Study of anisotropic MHD system in anisotropic Sobolev spaces. Ann. Fac.
Sci. Toulouse Math. 17(2008), 1–22. http://dx.doi.org/10.5802/afst.1172

[2] , Anisotropic rotating MHD system in critical anisotropic spaces. Mem. Differential Equations
Math. Phys. 44(2008), 23–44.

[3] , Long-time behavior of periodic Navier–Stokes equations in critical spaces. In: Progress in
Analysis and its Applications, World Scientific Publishing Co., Nackensack, NJ, 2010, 597–603.

https://doi.org/10.4153/CJM-2012-013-5 Published online by Cambridge University Press

http://dx.doi.org/10.5802/afst.1172
https://doi.org/10.4153/CJM-2012-013-5


Convergence Results for the 3D-Regularized Boussinesq System 1435

[4] , Long-time decay to the Leray solution of the two-dimensional Navier–Stokes equation. Bull.
Lond. Math. Soc., to appear.

[5] L. Brandolese and M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq
system. Trans. Amer. Math. Soc., to appear.

[6] Y. Cao, E. M. Lunasin, and E. S. Titi, Global well-posedness of three-dimensional viscous and inviscid
simplified Bardina turbulence models. Comm. Math. Sci. 4(2006), 823–884.

[7] Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional α-models of turbulence to the
Navier–Stokes equations. Numer. Funct. Anal. Optim. 30(2009), 1231–1271.
http://dx.doi.org/10.1080/01630560903439189

[8] M. Ebrahimi, M. Holst, and E. Lunasin, The Navier–Stokes Voight for image inpainting. Cited on 15
Dec 2009. arxiv:www.arXiv:math.NA/0901.4548/

[9] B. Khouider and E. S. Titi, An inviscid regularization for the surface quasi-geostrophic equation.
Comm. Pure Appl. Math. 61(2008), 1331–1346. http://dx.doi.org/10.1002/cpa.20218

[10] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. Appl. Math. Sci. 49,
Springer-Verlag, New York, 1985.

[11] , New equations for the description of motion of viscous incompressible fluids and solvability in
the large of boundary value problems for them. Proc. Steklov Inst. Math. 102(1967), 95–118.

[12] J. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamics-α-models. J. Math. Phys.
48(2007), 065504. http://dx.doi.org/10.1063/1.2360145

[13] J. L. Lions, Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires. Bull.
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