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Abstract. Using a variation on the concept of a CS module, we describe exactly
when a simple ring is isomorphic to a ring of matrices over a Bézout domain. Our
techniques are then applied to characterise simple rings which are right and left
Goldie, right and left semihereditary.
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1. Introduction. In what follows, rings are always associative with identity, and
modules are unitary modules. For a module M and a positive integer n, Mn denotes
the direct sum of n copies of M.

Recall that a module M is called a CS module or an extending module if
every complement (closed) submodule is a direct summand, or equivalently, if every
submodule of M is essential in a direct summand. A ring R is called a right CS ring
if the right R-module RR is CS. Since their introduction almost thirty years ago by
Chatters and Hajarnavis in [3], CS modules and rings have been studied extensively
(in particular by Japanese algebraists), feature prominently in Mohamed and Müller’s
[16], and are the focus of the text [9] by Dung et al.

Recently, Hanada, Kuratomi and Oshiro in [11] have investigated CS modules of
three different types, listed there as (A), (B) and (C). While their type (A) modules
are just unmodified CS modules, those of types (B) and (C) are defined using
decompositions of the module and involve the so-called “internal exchange property”.
However, for the ring � of integers, although the �-module �n is CS for any n ∈ �,
�n is not CS under either types (B) or (C) of [11]. On the other hand, each uniform
direct summand of �n is isomorphic to � as a �-module. Motivated by this we give the
following definition.

DEFINITION. Given n ∈ �, a uniform R-module U is called an n − CS+ module if Un

is CS and each uniform direct summand of Un is isomorphic to U (as R-modules).

The + here is meant to indicate that this notion is slightly stronger than the usual
CS condition. In section 2 we will assume that our CS+ condition holds for some
uniform right ideal of a simple ring R and use this to describe the structure of R using
Bézout domains. Section 3 will deal with conditions that imply when a simple ring is
semihereditary.
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2. Simple rings that are full matrix rings over Bézout domains. Recall that a (not-
necessarily commutative) integral domain D is called a right (left)Bézout domain if
every finitely generated right (left) ideal of D is principal. A domain is called Bézout
if it is both right and left Bézout. Basic properties of these domains are developed
by Cohn in his text [5]. In particular, [5, Proposition 1.7] shows that a right Bézout
domain is necessarily right Ore.

Although, by definition, the only nonzero ideal of a simple ring R is R itself,
the one-sided ideal structure of R and the associated categories of left and right R-
modules may be quite complex. This is evidenced in the texts of Cozzens and Faith
[8], Goodearl [10], and McConnell and Robson [15]. Our purpose here is to show that,
under an n − CS+ assumption, the structure of a simple ring can be described in terms
of Bézout domains. We first give a simple but effective lemma, prompted by the proof
of Hart’s [12, Theorem 1].

LEMMA 2.1. Let A be any nonzero right ideal of a simple ring R. Then, for some
n ∈ �, there are elements x1, x2, . . . , xn ∈ R such that RR = x1A + x2A + · · · + xnA.
As a consequence, RR is isomorphic to a direct summand of An.

Proof. Since R is simple and RA is a nonzero two-sided ideal of R, we have
R = RA. Thus, for some n ∈ �, there are elements xi ∈ R, ai ∈ A for 1 ≤ i ≤ n giving
1 = x1a1 + x2a2 + · · · + xnan. It now quickly follows that R = x1A + x2A + · · · + xnA.

Furthermore, we have an epimorphism ϕ : An → R defined by setting ϕ :
(b1, b2, . . . , bn) �→ x1b1 + x2b2 + · · · + xnbn for all b1, b2, . . . , bn ∈ A. The projectivity
of RR splits ϕ and so RR is isomorphic to a direct summand of An, as claimed. �

We now prove our main result. It shows that the presence of a uniform right ideal
with 2 − CS+ in a simple ring has a strong influence on the structure of the ring.

THEOREM 2.2. Let R be a simple ring. Then the following conditions are equivalent.
(i) R contains a uniform right ideal V such that VR is 2 − CS+.

(ii) R contains a uniform left ideal T such that RT is 2 − CS+.
(iii) R is isomorphic to the k × k matrix ring over a Bézout domain D for some k ∈ �.

Proof. (i) ⇒ (iii). First note that, since it has a uniform right ideal V, R has finite
right uniform dimension, by Hart’s [12, Theorem 2].

We will show that V is n − CS+ for any positive integer n ≥ 2. We prove this in
two steps. To start with we show that every closed uniform submodule of Vn is a
direct summand, in other words that Vn satisfies the so-called (1 − C1) condition or is
uniform-extending (see [9]). Then we show that each closed submodule of Vn is a direct
summand, i.e. that Vn is CS.

Step 1. We claim that, for any n ≥ 2, each uniform closed submodule of Vn is
a direct summand that is isomorphic to V . This is true for n = 2 by our assumption
(i). Suppose it is true for a fixed n ≥ 2, i.e., each closed uniform submodule of Vn is
a direct summand of Vn which is isomorphic to V . Now let W be a uniform closed
submodule of Vn+1 = Vn ⊕ V . If W ∩ Vn 
= 0, then by the nonsingularity of Vn+1, it
follows that W ⊆ Vn. Then, by our induction hypothesis, W is a direct summand of
Vn isomorphic to V , as required. On the other hand, suppose that W ∩ Vn = 0. In
this case, if W intersects the (n + 1)th direct summand V nontrivially, then W = V
and we are done. If, instead, W ∩ V = 0 we set M = V ⊕ W . Then, by modularity,
we have M = V ⊕ N where N = M ∩ Vn. It follows that N is a uniform submodule of
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Vn and so, by the induction hypothesis, N is essential in a direct summand N∗ of Vn

where N∗ ∼= V . Let M∗ = V ⊕ N∗. Then M∗ is a direct summand of Vn+1. Also W
is a submodule of M∗ and so, since it is a closed submodule of Vn+1, W is a closed
submodule of M∗. On the other hand, M∗ ∼= V2 and so every uniform direct summand
of M∗ is isomorphic to V . Then, since W is a closed submodule of M∗, it is a direct
summand of M∗ and is isomorphic to V . But M∗ is a direct summand of Vn+1, and
hence so also is W . This establishes our claim.

Step 2. It is not difficult to see that, for any direct summand H of Vn, every uniform
direct summand of H is isomorphic to V . Let A be any closed nonzero submodule of
Vn. Then A contains a closed uniform submodule U1 of Vn (cf. [3, Proposition 2.2]).
By step 1, Vn = U1 ⊕ V1. By modularity, A = U1 ⊕ A1 where A1 = A ∩ V1. As a closed
submodule of A, A1 is a closed submodule of V1 (again see [3, Proposition 2.2]). If
A1 
= 0, A1 again contains a closed uniform submodule U2 of V1 that is clearly a direct
summand of V1. Continuing in this way we finally see that A is a direct summand of Vn.

By Lemma 2.1, RR = ∑n
j = 1 xjV for some n ∈ � and x1, . . . , xn ∈ R, and RR is

isomorphic to a direct summand of Vn. Hence RR is CS and each of its uniform direct
summands is isomorphic to V . Noting that, by [12, Theorem 2], R has finite right
uniform dimension, we then have the following information:

(a) VR is projective and principal and
(b) RR ∼= Vk where k = u-dim(RR), the right uniform dimension of R.

Now let W be a finitely generated uniform right ideal of R, say W = w1R + w2R
+ · · · + wmR for some wi ∈ W, for i = 1, 2, . . . , m. Then, substituting R = ∑n

j = 1 xjV
(from above), we get

W =
m∑

i=1

wiR =
m∑

i=1

wi

⎛
⎝

n∑
j=1

xjV

⎞
⎠ =

m∑
i=1

n∑
j=1

wixjV

and so there are elements zk in D, for k = 1, 2, . . . , mn, such that W = z1V + z2V +
· · · + zmnV . Then, as in the proof of Lemma 2.1, we see that there is an epimorphism ψ

of Vmn onto W . Since V is mn − CS+, W is isomorphic to a uniform direct summand
of Vmn. Thus W ∼= V and so, in particular, WR is projective and principal.

On the other hand, from (b) we see that R ∼= EndR(Vk) ∼= Mk(D) where
D = EndR(V ). It follows that every finitely generated uniform right ideal of D is a
principal right ideal. Moreover, by [12, Theorem 1] D is a right Ore domain. Thus D is
a right Bézout domain. In particular, R is a right Goldie ring (see also [12]).

Finally we look at the left side of R. For this we consider the uniform dimension
k of RR.

Case 1. k = 1. In this case (i) implies that Rn is a CS right R-module for any n ∈ �.
Hence, by [9, Corollary 12.9], R is a right and left Ore domain. As above we see that R is
a right Bézout domain. This and [5, Proposition 1.9] show that every finitely generated
left ideal of R is free. But R is a left Ore domain, hence every finitely generated left
ideal of R is principal. Thus R is a left Bézout domain.

Case 2. k ≥ 2. By Huynh et al. [13], R is then left CS. We have seen that every
uniform direct summand of RR is isomorphic to V . But every uniform direct summand
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of R is generated by a primitive idempotent. Therefore, for any pair of primitive
idempotents e, f ∈ R, eR ∼= f R and so, by Anderson and Fuller [1, Proposition 17.18],
we have Re ∼= Rf . As RR is CS, RR is then a direct sum of isomorphic uniform left ideals.
Moreover, if U is a uniform direct summand of RR, then U = Rg for some primitive
idempotent g ∈ R. But gR ∼= eR for any primitive idempotent e ∈ R, so Rg ∼= Re. This
implies that all uniform direct summands of RR are isomorphic to each other. Now,
arguing as we did for the right side of R, we see that R is isomorphic to the full matrix
ring over a left Bézout domain EndR(RT) for some uniform direct summand T of RR.

It is clear that if e ∈ R is an idempotent, then eR is uniform if and only if Re is
uniform. Moreover, EndR(V ) ∼= EndR(eR) ∼= EndR(Re) ∼= eRe (see e.g. [1, Proposi-
tion 4.15]). But as we saw above, eRe is a right and left Bézout domain. This
proves (iii).

It is clear that (iii) ⇒ (i) and so (ii) ⇔ (iii) follows by the symmetry of (iii). �

COROLLARY 2.3. Let R be a simple ring with ACC on principal right and principal
left ideals. Then the following conditions are equivalent.

(i) R contains a uniform right ideal V such that VR is 2 − CS+.
(ii) R contains a uniform left ideal T such that RT is 2 − CS+.

(iii) R is isomorphic to the k × k matrix ring over a principal right and principal left
ideal domain D for some k ∈ �.

Proof. By Theorem 2.2, we only need to show that if (i) holds then the domain
D of Theorem 2.2 is left and right noetherian. By the proof of the Theorem, we have
R = Vk for some k ∈ �, where V is the given uniform right ideal of R, and, if R has
also ACC on principal right ideals, each submodule of VR is principal. Hence R is right
noetherian. Similarly R is also left noetherian. Consequently, D is both left and right
noetherian as required. �

REMARK 2.4. The question arises as to whether Corollary 2.3 remains true if we
assume the ACC only for principal right ideals. However, the answer to this is negative
because Cohn and Schofield give an example in [7] (see also Cohn [6]) of a simple Bézout
domain D which is a right principal ideal domain but not left principal. Obviously, each
full matrix ring R = Mn(D) over D is a ring satisfying the conditions of Theorem 2.2. In
this case R is right noetherian, but not left noetherian. Hence our rings in Theorem 2.2
are generally not noetherian. More interestingly, this ring R is an example showing
that although condition (i) of Theorem 2.2 is left-right symmetric, this symmetry is
not a perfect one in the sense that while every finitely generated uniform right ideal of
R is principal, there are uniform left ideals of R that are not principal. The following
corollary gives more information on this.

COROLLARY 2.5. Let R be a simple ring with a uniform right ideal V as in (i) of
Theorem 2.2, so that R is isomorphic to the full matrix ring Mk(D) for some Bézout
domain D and some k ∈ �. If D is a principal right ideal domain the following conditions
are equivalent.

(i) D is a principal left ideal domain.
(ii) Each uniform left ideal of D is finitely generated.

(iii) Each maximal left ideal of D is finitely generated.
(iv) Each countably generated left ideal of D is projective.
(v) D satisfies the left restricted minimum condition.
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Proof. This is a consequence of a result of Camillo and Cozzens, namely [2,
Theorem 5]. (For (iii) ⇒ (i), note that every simple left R-module is finitely presented
and so, by [2, Lemma 1], embeds in the left R-module Q ⊕ (Q/D) where Q is the left
and right classical quotient ring of D; it then follows from [2, Theorem 2] that D is left
noetherian.) �

Now suppose that R is a ring of Theorem 2.2, that all uniform right ideals of R are
principal, but there is a uniform left ideal U of R which is not finitely generated.
By the proof of Theorem 2.2, there exists a principal uniform left ideal V of R
with R ∼= Mn(End(RV )) for some n ∈ �. The left analogue of Lemma 2.1 also gives
R = Ux1 + Ux2 + · · · + Uxm for some m ∈ � and xi ∈ R. By [12, Lemma 1], there is an
idempotent e ∈ Mm(End(RU)) such that R ∼= eMm(End(RU))e. On the other hand, this
isomorphism does not in general give a Morita equivalence between R and End(RU)
since being a simple ring is a Morita invariant (see, e.g., [1, Corollary 21.12]) but,
by Hart [12,, Lemma 4 and Theorem 5], End(RU) is not simple. We wonder what
relationship exists between the two domains End(RV ) and End(RU).

3. Simple rings with a finitely �-CS uniform one-sided ideal. Recall that a module
M is said to be finitely �-CS if Mn is CS for any n ∈ �. If the right R-module RR is
finitely �-CS, then R is called a right finitely �-CS ring and left finitely �-CS rings are
defined similarly.

THEOREM 3.1. For a simple ring R the following conditions are equivalent.
(i) R contains a finitely �-CS uniform right ideal V.

(ii) R contains a finitely �-CS uniform left ideal T.
(iii) R is left and right Goldie, left and right finitely �-CS.
(iv) R is left and right Goldie, left and right semihereditary.

Proof. (i) ⇒ (iii). By [12], R is right Goldie and, by Lemma 2.1, there is a positive
integer m such that RR is a direct summand of Vm. Hence, for any positive integer k,
Rk is a direct summand of (Vm)k = Vmk. This proves that (Rk)R is CS for any k ∈ �,
i.e., RR is finitely �-CS.

We consider the case k > 1. As Rk is CS, Mk(R) is CS by [9, 12.8]. Since Mk(R) is
a simple right Goldie ring with uniform dimension at least 2, it follows that Mk(R) is
left CS and left Goldie by [13]. Then, again by [9, 12.8], R(Rk) is CS, proving that RR
is finitely �-CS. Of course, R is left Goldie.

The implications (iii) ⇒ (i) and (iii) ⇒ (ii) are clear, and (iv) ⇔ (iii) holds by [9,
12.18]. �

Notice that in the proof of Theorem 2.2, using the assumption that V is 2 − CS+,
we were able to establish that V is n − CS+ for any n ∈ �. However, assuming simply
that V2 is CS, we have been unable to show that even V3 is CS. Therefore we pose the
following question.

QUESTION 3.2 Let R be a simple right Goldie ring. Is R necessarily right finitely
�-CS if (R2)R is CS?

If (R2)R is CS, then M2(R) is right CS (cf. [9, 12.8]). Then, if R is also a simple
right Goldie ring, it follows from [13] that M2(R) is left Goldie and, consequently, so
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is R. Thus, for any n ∈ �, Mn(R) is a simple right and left Goldie ring. It now follows
from [9, 12.6] that every right (left) closed ideal of Mn(R) is a right (left) annihilator.
Thus the ring Mn(R) is right and left CS if and only if Mn(R) is a Baer ring (cf. [9,
12.7]). (Here a ring is Baer if each of its right annihilators, or equivalently each of its
left annihilators, is generated by an idempotent.)

Secondly, comparing with a result of Huynh et al. in [14], we see that any finitely
generated right or left ideal of the ring R in Theorem 3.1 is CS. Moreover, the following
holds.

COROLLARY 3.3. Let R be a simple ring with a uniform right ideal. Then the following
conditions are equivalent.

(i) R has a nonzero finitely �-CS right ideal A.
(ii) Every finitely generated right ideal of R is finitely �-CS.

(iii) Every finitely generated left ideal of R is finitely �-CS.
(iv) R is left and right Goldie, left and right semihereditary.

Proof. R is right Goldie by [12, Theorem 2]. Thus Theorem 3.1 gives (i) ⇔ (iv) and
(ii) ⇒ (iv).

(iv) ⇒ (ii). By [9, Corollary 12.18], R is right finitely �-CS. Let A be a finitely
generated right ideal of R. Since R is right semihereditary, AR is projective and
so isomorphic to a summand of Rm for some m ∈ �. Then, for each k ∈ �, Ak is
isomorphic to a direct summand of (Rm)k = Rmk. Hence Ak is CS for each k ∈ �,
giving (ii). Similarly we obtain (iv) ⇒ (iii).

(iii) ⇒ (iv). By (iii), RR in particular is finitely �-CS. Hence, by [9, Corollary 11.4],
R is left semihereditary. Since R is right Goldie, R is also right semihereditary (cf. Small
[17]). Now since R(R2) is CS, the ring M2(R) is left CS (cf. [9, Lemma 12.8]). By [13,
Theorem 1], M2(R) is then left Goldie and so R is left Goldie. This proves (iv). �

For a module M and a set I we let M(I) denote the direct sum of |I| copies of M.

COROLLARY 3.4. For a simple ring R the following conditions are equivalent.
(i) R contains a uniform right ideal V such that V (�) is CS.

(ii) R contains a uniform left ideal T such that T (�) is CS.
(iii) R is right and left artinian, i.e., R ∼= Mn(S) for some division ring S and some

n ∈ �.

Proof. (i) ⇒ (iii). By Lemma 2.1, RR is isomorphic to a direct summand of Vm

for some m ∈ �. Hence R(�) is isomorphic to a direct summand of V (�) and so R(�)

is also CS. Then, since R is a right Goldie ring, R is semisimple artinian by Clark and
Wisbauer [4, Corollary 2.9]. This show that (iii) holds.

The implication (iii) ⇒ (i) is clear, while (iii) ⇔ (ii) follows from the symmetry
of (iii). �

REMARK 3.5. Further to the results above, the authors have shown that if R is a
simple ring in which every right ideal is the direct sum of quasi-continuous right ideals
then either R is artinian or R is a non-selfinjective right Goldie ring in which each right
ideal is a direct sum of uniform right ideals (and there are such non-artinian rings).
Details will appear elsewhere.
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