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Summary

Wright first introduced the idea that random genetic drift and classical mass-action selection might
combine in such a way as to allow populations to find the highest peak in complicated adaptive
surfaces. His theory assumes large but structured populations, in which mating is spatially local. If
gene flow is sufficiently low, and the subpopulations (demes) are small enough, they will be subject
to genetic drift. Distant demes drift independently, allowing many independent searches of the
adaptive surface to take place. A deme that has shifted to a higher peak can, by emigration, cause
the rest of the demes to shift to the higher peak. The probability of this shift depends on the
migration rate. Previous studies have concluded that very little migration is necessary to effect the
shift in adaptive peaks that characterizes the last phase of Wright's Shifting Balance Process (SBP).

Here we present the results of a computer study that investigates the roles of dispersal distance,
the degree of epistasis in the fitness surface, and recombination on the shifting balance process. In
particular, we measure their effect on the population's mean fitness. We show that over a range
of dispersal distances the advantage of the SBP is a monotonically increasing function of the
amount of epistasis. Our results show that the extent of dispersal that results in the greatest effect
of the SBP in increasing mean fitness depends on the extent of epistasis. Finally, for low levels of
epistasis, higher recombination performs better, while for intermediate levels, lower recombination
results in a greater advantage of the SBP.

1. Introduction

Fisher (1930) demonstrated that under certain ideal-
ized conditions, natural selection should cause popu-
lation mean fitness to increase monotonically over
time. Wright (1931,1965) recognized that under these
conditions, natural selection may fail to increase the
mean fitness of a population if there is epistasis among
loci. In the presence of epistasis, populations may
become fixed on suboptimal genotypes. To describe
this problem he introduced the metaphor of an
'adaptive landscape'. In one version of the adaptive
landscape (Provine, 1986), the mean fitness of a
population is plotted as a function of the frequencies
of alleles at the loci controlling the trait. Fig. 1 shows
such an adaptive landscape for a trait controlled by
two loci with two alleles each. The classical view

* Corresponding author.

depicted in this figure is a highly simplified view of the
actual state of affairs since it ignores statistical
association between the loci (linkage disequilibrium)
and assumes random mating. In other words, the gene
frequency axes should more properly be replaced by
either chromosome or genotype frequencies.

In terms of the 'adaptive landscape', the classical
models imply that selection can only move a popu-
lation uphill. That is, a population with gene
frequencies starting at the origin of Fig. 1, will move
to peak A and stay there, even though peak B is
higher. This result holds under a set of strong
assumptions, including an effectively infinite popu-
lation.

When populations are smaller, random changes in
gene frequency (genetic drift) become important.
These random effects may shift a population from the
domain of attraction of one local maximum to that of
another. Metaphorically, the population crosses the
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Fig. 1. An adaptive fitness landscape as defined by two
interacting loci. Peak A is located where the allele
frequencies at the two loci are each 0-3 and its altitude is
half of that of peak B located where the allele frequencies
at the two loci are 07.

valley of lower mean fitness separating the two
' adaptive peaks', thus bringing the population into the
domain of attraction of the higher peak. In itself,
reducing the population size is not a solution to the
limitations recognized by Wright. For small popu-
lations selection is generally inefficient, and the
population will wander all over the surface. For larger
populations, however, the waiting time before a
population crosses to a higher peak can be very large
(Lande, 1985).

Wright first introduced the idea that random genetic
drift and classical mass-action selection might combine
in such a way as to allow populations to find the
highest peak in complicated adaptive surfaces. His
theory assumes large, but structured populations, in
which mating is spatially local. If gene flow is
sufficiently low, and the subpopulations (demes) are
small enough, they will be subject to genetic drift.
Distant demes drift independently (Malecot, 1969;
Goldstein & Holsinger, 1992), allowing many in-
dependent searches of the adaptive surface. Thus,
drift allows small populations to cross adaptive
valleys, and genetic isolation of the populations
increases the area of the adaptive surface that can be
visited. This is the first phase of Wright's Shifting
Balance Process (SBP) (Wright, 1931; Barton &
Rouhani, 1993). In the second phase, mass-action
selection carries the deme up the slope to the peak.
That is, the most fit genotypes fix in the deme. In the
third phase, the deme exports these successful geno-
types to other demes resulting in the transformation
of the entire population.

A sophisticated mathematical theory has been
developed to describe the behaviour of small popu-
lations under natural selection (Wright, 1931; Kimura,
1964; Ewens, 1979), and clearly shows the feasibility
of the first phase while providing a quantitative
picture of its operation. The second phase is regular
mass-action selection, described by some of the earliest
models in population genetic theory (Haldane, 1932;

Fisher, 1930). The third phase has received con-
siderably less attention, but has been recently studied
both analytically (Barton, 1992) and by computer
simulation (Crow et al. 1990). While some dispute
remains as to why the third phase works (Crow et al.
1990; Barton, 1992; Moore & Tonsor, 1994), the
general conclusion is that it does in fact work (see also
Sumida & Hamilton, 1994). That is, a deme that has
shifted to a higher peak can, through migration, cause
the rest of the demes to shift to the higher peak. The
probability of this shift depends on the migration rate.
Crow et al. (1990) conclude from their deterministic
numerical analysis of up to nine independent loci that
very little migration is necessary to effect the shift in
adaptive peaks that characterizes phase III.

The discussions pertaining to the success of the
third phase of the SBP have made it clear that the
problem must be considered as a whole. An integrated
approach is needed especially because migration has
opposing effects on the different phases of the SBP.
The first and second phases require low or no
migration between the different demes. When mi-
gration is high, the population can be assumed to be
panmictic and mass-action selection prevents the
discovery and attainment by at least one deme of the
higher adaptive peaks. The effectiveness of the third
phase, however, requires sufficient migrants from the
most fit deme. Similar tradeoffs exist for other
parameters such as deme size, strength of selection,
and in our analysis, dispersal distance. In order to
analyze the effects of these parameters, it is necessary
to consider all three phases simultaneously.

Recently, two approaches have been used to study
all three phases in concert. Barton & Rouhani (1993)
considered an island model with many demes under-
going soft selection (i.e. the number of migrants
contributed by each deme is independent of its genetic
makeup). A diffusion approximation was used to
determine the distribution of allele frequencies, with a
second equation relating the state of the migrant pool
to this distribution. Several assumptions were required
for tractability: (1) migration does not affect the
genetic variance; (2) selection does not depend on
gene frequencies in the population; (3) selection is
sufficiently weak relative to recombination that linkage
disequilibrium can be neglected. They considered two
genetic models: disruptive selection on a trait con-
trolled by the additive contributions of many loci of
equal effect, and underdominance at a single locus.
Based on these two models, Barton & Rouhani
conclude that adaptation is fastest at intermediate
levels of gene flow. More specifically, they find: (1) a
population can 'shift' to a higher peak even if this
second peak is only slightly higher than the one at
which the population starts; (2) migration must be
below a critical value for the SBP to take place at all;
(3) for very strong or very weak selection the SBP
operates only very slowly, while for some intermediate
strengths of selection it can operate much faster.
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Moore & Tonsor (1994) use computer simulations
to determine the range of migration rates that allows
all three phases of the process to operate and to cause
a shift in fitness peaks. They measure the population
mean fitness at the middle and at the end of each
simulation run (6000 and 12000 generations). Their
model uses a pair of loci, with free recombination and
the epistatic fitness matrix introduced by Crow et al.
(1990). It was also assumed that growth in each deme
follows the logistic equation, in which the intrinsic
rate of increase and the carrying capacity are both
independent of genotype. As the authors point out,
these assumptions are not favourable to the SBP
because most demes are usually near carrying capacity.
Therefore, there is little potential for variation in the
number of migrants coming from each deme.

These studies by Barton & Rouhani, and Moore &
Tonsor, tend to support the importance of the SBP,
and conclude that there is a moderately broad range
of migration rates which can result in a shift between
one fitness peak and another. Both sets of authors,
however, point out that the importance of the SBP
will depend on the details of the population de-
mography. They also stress the importance of assump-
tions about the genetic system, including both the
recombination system and the amount and type of
epistasis, although neither study investigated these in
any detail. The treatment by Barton & Rouhani
(1993) is limited to either a purely additive genetic
model with linkage equilibrium, or a single, under-
dominant locus. The treatment of Moore & Tonsor
(1994) is restricted to a single epistatic fitness matrix
for two loci undergoing free recombination.

Here, our primary focus is on the interaction of the
SBP with the genetic system. The earlier studies have
shown that the SBP can increase the rate of adaptive
evolution as measured by changes in mean fitness. We
would like to quantify this increase, and determine
how it depends on the complexity of the fitness
landscape. For this, we need to construct a series of
landscapes that differ in their degrees of ruggedness.
Furthermore, the ruggedness should be expressed at
the level of the genotype and not the phenotype. For
this purpose, we use a modified version of the NK
model introduced by Kauffman (1989). In the fol-
lowing analysis we explore the operation of the SBP
under this selection scheme with a model that includes
isolation by distance at the level of individuals rather
than the more commonly studied discrete populations.
Our purpose is to move away from the classical
analysis of peak shifts in simple two-peak models to
more complex selection regimes, and to investigate
how this complexity interacts with the degree of
isolation by distance and recombination to affect the
SBP.

2. The model

(i) The NK model and an extension to diploids

In the NK model, N is the number of loci and K the
number of other loci influencing the fitness con-
tribution of each locus. To calculate the fitness value
of an allele at a specific locus, denoted here as the
focal locus, one first determines the relevant genetic
background for that locus; that is, the state of the K
loci that influence alleles at that locus. In our
implementation of the NK model, for a locus at
position i the locations of these K loci were chosen
independently of i. For every possible AMocus geno-
type the focal locus is given a particular fitness value
and this value is stored. This process is repeated until
all loci have been assigned fitness values in all possible
genetic backgrounds. Once the fitness values are
assigned, the fitness of a given (N locus) genotype is
computed as the sum of the fitness values of each of
the N loci, where these values depend on the genetic
makeup of the relevant K other loci.

Kauffman introduced the model for the case of
haploid genotypes, but a diploid version can be
constructed by assuming that each of the possible
genotypes at a diploid locus corresponds to an allele in
the haploid case. That is, the NK fitness representation
for N diploid loci with two alleles, Ax and A2,
corresponds to that for N haploid loci with three
alleles, ax, a2 and a3, where the homozygote AXAX

corresponds to av the heterozygote A1A2 corresponds
to a2, and the other homozygote, AZA2, corresponds
to a3. For a given locus /, the K loci epistatic to it can
assume 3K possible genetic backgrounds for each of
the three possible genotypes at the focal locus i. The
fitness landscape, therefore, is represented by 3*+1 N
values. Here we assume that the linkage phase does
not affect a genotype's fitness.

In our simulations, we drew the fitness values of
each locus in each genetic background from a uniform
distribution. We chose five different types of land-
scapes, with N=\0 and K= (0, 2, 4, 6 and 8). It is
clear that the case K = 0 represents no additive
epistasis (that is, a purely additive fitness regime)
because the contribution of a locus to the overall
fitness at any location is not affected by the genetic
composition of any other locus. As K increases in
magnitude, the surface becomes increasingly rugged.
Ruggedness can be described in a number of ways but
one obvious measure is simply the number of
mutational steps, at the genotypic level, separating
local optima on that surface. Local optima on the
landscape surface are defined as points where all one-
step mutation neighbours have a lower fitness value.
The number of mutational steps separating such local
optima decreases as an approximately linear function
of/: (Kauffman, 1993), suggesting that the landscapes
become more rugged in a regular way as Â is increased.
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For other characteristics of NK landscapes, see
Kauffmann (1993).

(ii) Model dynamics

Because we are interested in how much of an
improvement the SBP provides, as a function of the
shape of the fitness landscape, for each fitness regime
we compare the rate of evolution as a function of
geographical structure represented by a dispersal
distance, d. Furthermore, we consider both the effect
of recombination, r, and the full evolutionary dy-
namics. The mean fitness of a population is denoted by
vv, and we are interested in the dynamic properties of
w as a function of K, d and r. We also define the
'advantage of the SBP' as the difference in mean
fitnesses between structured and unstructured popula-
tions at the time we terminate the simulation (10000
generations):

^ structured unstructured" (1)
The simulation method is modeled after that in
Goldstein & Holsinger (1992). Consider a population
of 2000 diploid individuals arranged as a 1-dimen-
sional array of cells. Each cell houses an individual.
Goldstein & Holsinger (1992) showed that the
qualitative patterns of genetic differentiation are
similar in one and two dimensions; only the scale over
which this differentiation occurs is different (see also
Kimura & Weiss, 1964). We focus on a one-
dimensional model to reduce the computation time.
The fitness of each individual is based upon the
diploid NK model as described above with two alleles
at each locus, arbitrarily denoted 0 and 1. In every
replicate, for each parameter set, all members of the
initial population had allele 0 at every position. Thus
populations began without variation. It should be
noted, however, that there are no special points on the
fitness surface. Thus, the all-zero genotype is, on
average across realizations of the fitness surfaces, the
same as any other genotype.

An offspring generation is constructed from the
parental generation as follows: For each cell in the
array, two parents are chosen at random from the set
of locations that are within + d cells of the focal cell,
where d is the maximal dispersal distance. Once the
parents are chosen, mendelian inheritance with re-
combination is simulated. The probability that a
crossover event occurs on the 10-locus chromosome
is r, and the location of the crossover is chosen
randomly. Multiple crossover events are not allowed.
Symmetric mutation occurs at the rate of 10~4 per
locus in each direction. The probability that an
offspring survives is based on its fitness as computed
according to the NK model. If an offspring does not
survive, new parents are chosen and the process is
repeated until the cell is filled. Once all cells are filled,
the offspring generation becomes the adults who will
give rise to the next generation, and the process is
repeated for 10000 generations. At every 10th

generation, we report the mean fitness of the popu-
lation.

3. Results

We considered five maximal dispersal distances (d =
1, 3, 5, 10 and 1000). The first four distances are
expected to result in spatially structured populations
(Goldstein & Holsinger, 1992), while the final dispersal
distance is equivalent to panmixia and involves no
spatial structure. We also considered two recom-
bination rates (r = 001 and 0-1) and five values of K
(0, 2, 4, 6 and 8). With r = 001 and r = 0-1 the per-
locus-pair recombination rates are roughly 0001 and
0-01 respectively, much lower than is thought typical
for randomly chosen pairs of eukaryotic genes. For
each of the 50 parameter sets, we ran 25 independent
simulations. Each simulation involved a different
realization of the NK fitness surface. For example,
with the parameter set {d = 1, r = 001 and K = 0},
25 different realizations of an NK surface were con-
structed. Altogether we simulated 1250 independent
realizations of the evolutionary process.

Fig. 2 shows the dynamic behaviour of population
mean fitness for some of the parameter sets with K =
0, 2, 6 and 8. The curves show the average value
among the 25 replications for each parameter set.
Each replication is a different realization of the
surface for the given K. Fig. 2 a shows the results for
all dispersal distances and K = 0. Notice first that the
mean fitness in the unstructured population (d =
1000) increases much faster than in any of the
structured populations. Furthermore, the fitness of
the unstructured population is always greater than
that of the population with d = 1. At the end of the
simulation, the fitness of the unstructured population
is higher than that of the most structured population
(d = 1) by 4-3%. Thus, on the very smooth fitness
surface with K = 0, implying no additive epistasis,
unstructured populations achieve a higher mean fitness
than tightly structured ones, even over very long time
scales. In this case, all populations with d > 1 are
essentially equivalent, and the tightly structured
populations {d = 1) have lower mean fitness.

For rugged surfaces, however, we see that restricted
dispersal distance can increase the rate of adaptation.
Furthermore, for intermediate values of ruggedness,
there appears to be an intermediate dispersal distance
that maximizes the final mean fitness value. Fig. 2b
shows the results for K=2, and we see that an
intermediate dispersal distance (d = 5), results in the
highest mean fitness, 40 % higher than in unstructured
populations.

The importance of local mating is even greater,
however, on the more rugged surface, as shown in Fig.
2 c. For K = 6, although the unstructured population
still evolves faster at first, after about 2000 generations
all locally mating populations have a higher mean
fitness than the unstructured population. This dif-
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Fig. 2. Population mean fitness, averaged over 25
different randomly generated fitness landscapes (see text).
(a) K=0,(b)K= 2, (c) K=6,(d)K=S. Dispersal
distances, from light to dark, are d= 1, 3, 5, 10 and
1000.

ference is maintained over the next 9000 generations
and results in a mean fitness in the extremely structured
population (d = 1) which is 8-6 % higher at generation
10000 than that in the unstructured population. Also,
note that for this degree of ruggedness, the most
restricted dispersal distance {d=\) results in the
highest final mean fitness. In Fig. 2dwe see that with
K = 8, all locally mating populations {d ^ 10) behave

K=0 K=2

Fig. 3. Advantage of the SBP in populations with
recombination rate r = 001 at generation 10000, as
defined by S = >v8troctured-vPUMtructured for the set of (a): K
values 0 ( • ) , 2 (#) , 4 (A), 6 (•) and 8 ( • ) and (b):
dispersal distances d = 1 ( • ) , 3 (#), 5 (A) and 10 ( • ) .

similarly, but these are different from the panmictic
one(rf= 1000).

In order to summarize the consequences of the SBP
over a biologically meaningful period of time, we
compared the final mean fitness (namely, the mean
fitness after 10000 generations) in the four structured
populations to that observed in the unstructured
population for each of the five types of fitness surfaces
and each of the two recombination rates. This
measure, defined earlier as 8, directly quantifies the
advantage provided by the SBP. Fig. 3 shows that this
advantage increases with the ruggedness of the fitness
surface up to K — 6. This finding holds for all dispersal
distances considered. Notice in particular, in panel (b)
of Fig. 3, that for d = 1 the advantage of the SBP is an
approximately linear function of K up to K = 6. It
should be noted that for K = 8, S remains positive but
no longer greater than the values observed for smaller
Ks. That linear increase ceases at K = 6 probably
implies that once the surface becomes sufficiently
rugged, even structured populations cannot find the
highest peaks. Fig. 4 represents the same surface as
Fig. 3, but for r = 01. Although the patterns here are
harder to interpret, we can say that recombination has
a large effect on the SBP, and that it interacts with K.

Three statistical analyses of the values of w at 10000
generations were carried out for each of r = 001 and
r = 01. First, for each value of AT, the values d = 1, 3,
5, 10 and 1000 were regarded as treatments for which
each of the w values from the 25 realizations of the
fitness surface for that K were observations. The
overall effect of d was then evaluated using the
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K=0 K=2 K=A K=6

Fig. 4. Advantage of the SBP in populations with
recombination rate r = 0-1 at generation 10000, as (a):
defined by 8 = wstructured - wninstructured for the set of K
values 0, 2, 4, 6, 8, and (b): dispersal distances d= 1, 3, 5
and 10 (symbols as in Fig. 3).

Table 1. Statistical results as a function of
ruggedness

r = 001 r = 01

K=0
K=2
K=4
K=6
K=S

K-W

4-65
6-66

10-82*
24-261
13-36**

F"

5-28
403

14-24**
21-89f
10-46*

K - W

3-60
15-47**
3-22

38-43f
19-58f

F"

410
14-34**
2-72

2906f
17-70***

The null hypothesis is that w does not spend on d.
° Kruskal-Wallis value of H (see Sokal & Rohlf, 1995, p.
424).
"Value of x2 for Friedman's test (see Sokal & Rohlf, 1995,
p. 441).
* P < 0 0 5 ; **/><0-01; ***/><0005; f/

Kruskal-Wallis procedure (Sokal & Rohlf, 1995, p.
424). These results are reported in the first and third
columns of Table 1 where, with r = 001 , the statistical
effect of d increases in magnitude as K increases up to
K = 6. Furthermore, with r = 0 1 we cannot explain
why there is a significant effect of d at K = 2 and
K — 6, but no such effect at K = 4.

A bivariate analysis was also carried out with each
of the 25 realizations for each K regarded as a random
effect in an analysis of the role of the treatment
represented by d using Friedman's procedure (Sokal
& Rohlf, 1995, p. 441). The second and fourth
columns of Table 1 report the values of Friedman's
test statistic. Here K = 4, 6 and 8 produce significant

effects of dfor r = 0-01 while K = 2, 6 and 8 do so for
r = 0-l.

A third analysis involved non-parametric multiple
comparisons among the ds using the Mann-Whitney
approach (Sokal & Rohlf, 1995, p. 432). Here, as in
the Kruskal-Wallis tests, for each K the 25 values of
w taken for every d were compared pairwise among
the ds. It is not necessary to give all the details here;
there were no surprises. With r = 001 and K = 6,
dispersal values d = 1, 3, 5 and 10 were all significantly
different from d = 1000, and d = 1 differed from d =
10. For r = 01, d = \, 3 and 5 differed significantly
from d = 1000, but d = 10 did not. In this case, d =
1, 3 and 5 were also different from d = 10. None of the
other ^ s produced nearly as many significant pairwise
differences among the ds as did K = 6.

To analyse the effect of different evolutionary
trajectories for a single landscape we accumulated
simulation results of 25 different runs for a single ran-
domly chosen realization of cases K = 2 and K = 6
respectively. We examined all dispersal values, d =
1, 3, 5,10 and 1000, with recombination rate r = 001 ,
and mutation rate 10~4. The overall effect of d was
then evaluated using the Kruskal-Wallis procedure
(Sokal & Rohlf, 1995, p. 424) separately for the single
randomly chosen realizations of K = 2 and K = 6,
respectively. In each case, the d values were regarded
as treatments, each producing 25 observations. Thus,
for the chosen K = 2 case there were 125 observations
and the same for the K = 6 case. In this analysis, both
examples of K = 2 and K = 6 produced statistically
significant effects of d, with the K = 6 example
providing the stronger result. We again used a
Mann-Whitney multiple comparison procedure
among the ds, and this demonstrated that structured
populations did better than the unstructured popu-
lation at both levels of ruggedness. An anomalous
result was observed in the K = 6 example, where the
intermediate dispersal distance, d= 10, was signifi-
cantly different from all other dispersal distances. This
anomaly may, of course, be due to the particular
realization of the landscape. Further examples of each
K value should be studied although this is a very time-
consuming procedure1. However, the general form of
the results for these two cases studied in detail
supports the conclusions deduced above from Table 1.

Fig. 5 shows the difference between the curves in
Figs 3 and 4, reflecting the difference in the advantage
of the SBP for the two values of r. It appears that the
effect of recombination on the magnitude of the
advantage of the SBP depends on the degree of
ruggedness. For K=2, the higher recombination rate
(r = 01) results in a greater advantage, i.e. ^| r .o l >
^Ir-ooi (see definition (1)), while for K = 4 the situation
is reversed. For even more rugged surfaces, however,
recombination appears to have little effect on average.

1 We restricted our analysis to a limited set of parameters due to
computing limitations. Each parameter setting took the equiva-
lent of about 24 h of an SGI R4400 CPU time.

https://doi.org/10.1017/S0016672300034418 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300034418


Multi-locus shifting balance 91

K=0 K=2 K=4 K=6 K=i

Fig. 5. Difference between the advantage of the SBP
in populations with recombination rates r = 0-01 and
r = 0-1. Consistent behaviour can be observed only at
intermediate levels of ruggedness, K = 2 and 4 (symbols
as in Fig. 3).

There is, however, a strong interaction with the
dispersal distance. For example, at K = 8 and d = 10
higher recombination hinders the SBP, while the
situation is reversed for d = 3. This behaviour is
difficult to interpret, but an explanation of the general
non linearity in the dependence on r may be that
recombination affects two aspects of evolution on
rugged surfaces in opposing ways. First, higher
recombination decreases the waiting time until the
appearance of new multi-locus genotypes (Christian-
sen et al., 1995). Secondly, recombination breaks
up adapted gene complexes, and, if the epistasis
among the loci is strong, the recombinant genotypes
will be selected against in the genetic backgrounds of
those demes that have not yet shifted. In this case, fit
demes cannot export their superior genotypes and the
SBP will not operate as well. Some of the results
observed here would follow if, for sufficiently small K,
the effect of recombination on the generation of novel
multilocus genotypes dominates, and recombination
results in an ultimately higher mean fitness. For larger
K, the effect of recombination in retarding the
emigration of superior chromosomes becomes more
important, and recombination has the opposite effect.
For sufficiently rugged surfaces there is too great an
interaction with dispersal distance to allow a general
description of the effect of recombination.

4. Discussion

Wright's shifting balance process facilitates the dis-
covery of new adaptive peaks over a moderate range
of conditions, both in terms of the migration

parameters and the characteristics of the fitness
landscape. In this work we focused on the dynamics of
the SBP and the advantage that it may provide in
facilitating a population's attainment of a globally
optimum mean fitness. We have shown that the degree
of population structure and the ruggedness of the
fitness surface together influence the population's
mean fitness and the rate at which higher mean fitness
is attained. The use of the NK model (Kauffman,
1989) as a means of generating the adaptive landscape
allowed us to create fitness surfaces that are tunably
rugged at the genetic level. Thus, ruggedness can be
characterized by the number of mutational steps
separating local optima. This way of representing
fitness constitutes a departure from the usual analysis
of shifts between two peaks. Here, there may be many
peaks and the population might transit through several
peaks during the dynamics that we observe. We have
shown that over a range of dispersal distances, the
advantage of the SBP is a monotonically increasing
function of the ruggedness, and increases approxi-
mately linearly with K up to a critical level of
complexity (K = 6). This result has two important
implications: First, it suggests that K is a reasonable
measure of ruggedness and has a predictable influence
on the dynamics of mean fitness in structured and
unstructured populations. Second, for intermediate
levels of ruggedness, the SBP substantially increases
the level of improvement in the population's mean
fitness.

How population structure influences the effect of
the SBP has also been examined. In our framework,
migration and deme size have been combined in a
single parameter, the dispersal distance. Our results
show that the extent of dispersal that results in the
highest mean fitness after 10000 generations depends
on the degree of ruggedness, K.

In the discussion of the role of migration, Moore &
Tonsor attempt to separate the operation of the
different phases of the SBP. Their computations
produced an unexpected non-monotonicity in the
effect of migration on the probability that a deme
finds and climbs the higher peak (that is, phases one
and two). In their figure 2, the broad effect of
migration is to retard the operation of phases one and
two, but for the low migration rates, an increased rate
briefly leads to an apparent increase in the operation
of phases one and two. We suspect that this non-
monotonicity is due to a confounding of phases one
and two with phase three. Moore & Tonsor report the
percentage of those simulations in which one or more
demes have made the switch to the higher peak after
6000 generations. They do not report the number of
simulations in which a deme finds the higher peak at
some point during the evolution. We suspect that in
many cases, demes find the higher peak but are unable
to stay there through generation 6000 because of
migration in exactly those cases where phase three
does not operate. Barton & Rouhani's arguments
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about the power of migration are also consistent with
this interpretation.

Finally, our results show that the effect of the
recombination rate on the SBP is complicated, even
for the low recombination rates studied here. For low
levels of ruggedness, high recombination performs
better (K = 2), while for intermediate levels, low
recombination results in a greater advantage of the
SBP (K = 4). For more rugged surfaces, there is little
consistent effect of the recombination rate. To draw
more definite conclusions concerning the effect of
recombination on the SBP, a larger range of re-
combination values must be considered as well as
other ways of realizing rugged landscapes (e.g.
Bergman & Feldman, 1992). These studies are
underway. The interaction between K and r in
influencing the advantage of the SBP suggests that it
would be interesting to investigate the fate of genes
that modify the recombination rate in populations
subject to this form of epistasis (see also Bergman &
Feldman, 1992). In particular, it is important to
determine whether the direction of selection on the rate
of recombination depends on an interaction between
the degree of ruggedness and the dispersal distance.

The authors are grateful to Dr Mony Slatkin, and an
anonymous reviewer for helpful comments on an earlier
version of the manuscript. This research was supported in
part by NIH grant GM 28016 and NASA grant NC 2-778.
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