
MATRIX COMMUTATORS 

M. F. SMILEY 

Introduction. A classical theorem states that if a square matrix B over 
an algebraically closed field F commutes with all matrices X over F which 
commute with a matrix A over F, then B must be a polynomial in A with 
coefficients in F (2). Recently Marcus and Khan (1) generalized this theorem 
to double commutators. Our purpose is to complete the generalization to 
commutators of any order. 

Let F be an algebraically closed field and let Fn be the ring of all n by n 
matrices with elements in F. We define AYZ — [Z, Y] = ZY — YZ for all 
F, Z in Fn. 

THEOREM. Let A, B G Fn be such that for some positive integer s, AA
SX = 0 

for X in Fn implies that AX
SB = 0. Let the characteristic of F be 0 or at least n. 

Then B is a polynomial in A with coefficients in F. 

For 5 = 1 we have the classical theorem except for the restriction on the 
characteristic of F. For s = 2 we have the result of Marcus and Khan with 
a bit more freedom for the characteristic of F. We feel that even for s = 2 
our proof has interest. We first observe that 5 > 1 is "rather without meaning" 
for semi-simple matrices and then we use this observation to reduce our 
theorem to the classical case. Here we call A in Fn semi-simple in case the 
roots of the minimal polynominal of A are distinct. 

1. Some lemmas. The results of this section will be used in the next 
section in which we will prove our theorem. 

LEMMA 1. If A is semi-simple in Fn, then AA
SX = 0 for some positive 

integer s only if AAX = 0. 

Proof. We use induction on 5. Let Ek(k = 1, . . . , q) be the principal idem-
potents of A so that A = fxiE1 + . . . + fxqEq with ixk £ F (k = 1, . . . , q). 
Then each Ek is a polynomial in A with coefficients in F. The Jacobi identity 
[F, [Z, W]] + [Z, [W, Y]] + [W, [Y, Z}] = 0 for all F, Z, W in Fn shows 
that if E = Ek (k = 1, . . . , q), then AAAEY - AEAAY = 0 for all F in Fn. 
N o w A / I = [AA

s~lX, A] = 0 gives [A^X, E] = 0 and hence AA
s-1A^X = 0. 

By our inductive hypothesis, AAA#X = 0 from which AE
2X = 0 follows at 

once. But AE
2X = 2EXE + XE - EX = 0 yields EX = XE upon right and 

left multiplication by E. Thus AEX = 0 for all E = Ek (k = 1, . . . , q) and 
consequently AAX = 0, completing our inductive proof of the lemma. 
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An al ternat ive proof of L e m m a 1 is suggested by the referee. W e m a y 
assume t h a t A is a diagonal matr ix and use the well-known matr ix repre­
sentat ion L = I ® A — A ® I for AA, where ® denotes the Kronecker 
product . Bu t then L is a diagonal matr ix so t h a t L and Ls have the same 
null-space, and this proves Lemma 1. 

At this point we introduce the usual matr ix units e^ (i, j = 1, . . . , k) in 
Fk. T h e matr ix e^ has 1 in the ith row and j t h column and zeros elsewhere. 

L E M M A 2. In Fk, let C = \Ik + e2i + £32 + . . . + ekk~i 'with X in F and 
X = en + 2e22 + . . . + kekk. Then AC

2X = 0, and for Y = (C - \)X, 
AC

2Y = 0. 

Proof. A simple computa t ion shows t h a t ACX = XC — CX = C — XIk. 
Since AC(C — \)T = (C — \)ACT for all T in Fk, the lemma follows. (The 
matrices X and F are special cases of certain matrices used in (1) on pp . 
273-274.) 

L E M M A 3. Let C, X, Y be as in Lemma 2 and let B £ Fk. Assume that the 
characteristic of F is 0 or at least k. Then [B, X] = 0 implies that B is a diagonal 
matrix and [B, X] = [B, Y] = 0 implies that B is a scalar matrix. 

Proof. Wi th B = 2btjeij we find t h a t BX = Hjbijeij and XB = ^ib^e^. 
Hence [B, X] = 0 gives btj = 0 for i ^ j and i, j = 1, . . . , k. WTith 
B = diag(6i, . . . , bk), YB = bie2i + 2b2eZ2 + . . . + (k - l)bk-iekk-! and 
BY = b2e2i + 2bzeZ2 + . . . + (k - l)bkek}:^. Hence [B, Y] = 0 yields 
bi = b2 = . . . = bk so t h a t B is a scalar matr ix. 

2. Proof of t h e t h e o r e m . In this section we use the lemmas of § 1 to 
prove our theorem. Since we shall use the classical result (s = 1) in our prcof, 
we assume t h a t 5 is a t least 2. 

We may clearly assume t h a t A G Fn is in Jo rdan normal form: 

A = diag(Ci, • . . , Ct) = d i ag ( J i , . . . , JQ) 

where each Ct (i = 1, . . . , i) is an nt by nt matr ix corresponding to an 
e lementary divisor (x — \i)Pi of A and each Jk is an mk by mk matr ix with a 
single characterist ic root iik and idk 9^ Hi for k 9e I (k, I = 1, . . . , q). 

T a k e X = d i ag ( l , . . . , n) and use Lemma 2 to obtain AA
2X = 0 and hence 

AX
SB = 0. By Lemma 1, since X is semi-simple, AXB = 0 and B mus t 

be diagonal by Lemma 3. We write B = diag(J5i, . . . , Bt), X = d iag(Xi , . . . , 
Xt) conformally with A = d iag(Ci , . . . , Ct). Wi th Y = d iag( (Ci — Xi) 
X i , . . . , (Ct - \t)Xt), we have AA

2Y = 0 by Lemma 2 and also AA
2(X + F) 

= 0. Since X + F is semi-simple, AX+YB = AYB = 0. By Lemma 3, 
Bt = cjni with d in F (i = 1, . . . , / ) . Now let C^ and C.+i have the same 
characterist ic root X and let U be an (nt + n*+i)-rowed square matr ix whose 
only non-zero element is 1 in the last row and first column. If Z = diag(0, U, 0) 
in conformity with A = diag(Ci, . . . , Ct), then ZA = AZ = XZ so t h a t 
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AAZ = 0. Since X + Z is semi-simple, we obtain AX+ZB = AZB = 0 from 
which d = Ci+i follows. Thus if B = diag(50i, . . . , BGq) in conformity with 
A = diag(7i, . . . , Jq), then B0k = dkImk with dk in F (k = 1, . . . , q). Now 
if [W, A] = 0 it is well known that W = diag(Wi, . . . , Wq) in conformity 
with A = diag(/i, . . . , Jq). A direct proof of this statement goes as follows. 
Partition W into blocks Wki in conformity with A = diag(Ji, . . . , Jq). If 
Y = Wkl with k*l, then [W, A] = 0 gives (pi + C)Y = YD with C and 
D nil-potent and p non-zero in F. Thus Y(RD — Rc) = pY where RD, Lc 

denote right and left multiplications by C, D, respectively. Since C and D 
are nil-potent, so is RD — LCy and it follows that plY = 0, Y = 0. Now we 
see that [W, A] = 0 ior W in Fn implies that [W, B] = 0 and we complete 
the proof of our theorem by an appeal to the classical case. 
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