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A mathematical model is developed to investigate seabed heat transfer processes
under long-crested ocean waves. The unsteady convection–diffusion equation for water
temperature includes terms depending on the velocity field in the laminar boundary
layer, analogous to mass transfer near the seabed. Here we consider regular progressive
waves and standing waves reflected from a vertical structure, which complicate the
convective term in the governing equation. Rectangular and Gaussian distributions of
seabed temperature and heat flux are considered. Approximate analytical solutions are
derived for uniform and trapezoidal currents, and compared against predictions from a
numerical solver of the full equations. The effects of heat source profile, location and
strength on heat transfer dynamics in the thermal boundary layer are explained, providing
insights into seabed temperature forced convection mechanisms enhanced by free-surface
waves.

Key words: boundary layers, waves/free-surface flows

1. Introduction

Very few studies have investigated the effect of free-surface waves on heat transfer
in the oceanic environment. In oceanography it is well established that convection
and diffusion of heat in the free-surface boundary layer have important consequences
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for air–sea exchange processes. For example, Szeri (1997) investigated heat transfer
effects related to capillary waves, Szeri (2017) focused on heat exchange across a
turbulent liquid–gas interface and Witting (1971) and O’Brien (1967) considered simple
irrotational progressive oscillations and Gerstner waves. Hetsroni, Mosyak & Yarin (1997)
demonstrated experimentally that surface waves can have a significant effect on natural
convection. Recent observations have shown that ocean waves could be more important in
facilitating heat transport than originally believed (Veron, Melville & Lenain 2008).

Thermal conduction in fluids is a thoroughly researched field, with many of its
theoretical aspects described by Landau & Lifshitz (1989), Schlichting (1979) and White
(1991). The temperature distribution in a moving fluid is strongly dependent on local flow
characteristics, with a rapid variation in temperature occurring in the boundary layer close
to a solid surface where the velocity gradient is significant. Lighthill (1950) provides a
detailed discussion of heat transfer properties in a laminar boundary layer. In fluid flow
the mechanism of heat diffusion is similar to that of mass diffusion. Applications of heat
and mass transfer driven by oscillatory flows are described by Knobloch & Merryfield
(1992) and Chatwin (1975), whereas studies of the dynamics of contaminants and other
particles in the presence of ocean waves are given by Mei & Chian (1994) and Winckler,
Liu & Mei (2013).

To date, most studies have been restricted to simplified wave fields that do not replicate
the complex hydrodynamics in the ocean. In this paper we develop a mathematical theory
to analyse heat transfer through the seabed boundary layer, when forced by free-surface
flow. Our model is based on the solution of the convection–diffusion equation for the
temperature field in an incompressible liquid, when the velocity field is decoupled from the
fluid temperature. We consider heat sources located at the ocean bed, and so the velocity
components can be derived by a procedure analogous to that for seabed mass transport
(Mei, Stiassnie & Yue 2005).

Recently, Michele, Stuhlmeier & Borthwick (2021) investigated the temperature field
generated by an infinitely long heat source of constant temperature beneath unidirectional
waves. In the present work we include the effect of heat sources characterised by a more
general class of temperature distributions, e.g. a source of finite length, of Gaussian shape,
and multiple sources. We also consider the effects of prescribed heat flux seabed profiles
that permit investigation of practical configurations including seabed heat sources between
zones of insulating material as examined by Pedley (1972a). In regular waves, the mean
flow profile in the boundary layer is unidirectional and parallel to the seabed but still
has a complicated vertical dependence. To better understand the physical phenomena
involved, we derive several analytical expressions by means of Fourier integrals expressed
in terms of complex Airy, Bessel and parabolic cylinder functions (cf. Gradshteyn &
Ryzhik 2007). These solutions are based on simplified velocity profiles and allow us to
obtain good agreement compared with numerical solutions based on a Crank–Nicholson
implicit scheme (Smith 1985). We also analyse the effect of standing waves caused by
incident wave reflection from a vertical structure, such as a sea wall, which significantly
complicates the expressions for convective terms. Our results suggest that it is necessary to
extend present-day models of ocean heat transfer processes to include surface wave effects,
especially when such models are applied to practical problems in ocean engineering and
oceanography where analysis of temperature propagation is essential, such as sea-water
conditioning (Hunt, Byers & Sánchez 2019), biofouling (Melo & Bott 1997; Tiron et al.
2013; Yang et al. 2017; Vinagre et al. 2020), underwater data centres (Cutler et al.
2017), coral reefs (Ferrario et al. 2014) and satellite data calibration (Emery et al.
2001).
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The laminar seabed thermal boundary layer

Section 2 describes the governing equations for the flow field and heat transfer in a
two-dimensional idealisation of the seabed laminar boundary layer. Section 3 derives
analytical solutions for rectangular and trapezoidal approximations of the horizontal
Eulerian-mean flow (called uniform current and trapezoidal current throughout the paper),
the thermal boundary layer thickness, and resulting sea bed temperature and heat flux
distributions. Section 4 compares results from a numerical solver of the full equations
against the analytical solutions for seabed heat sources under progressive and standing
waves. The main findings are listed in § 5.

2. Governing equations

Consider a two-dimensional fluid domain Ω(x, z, t), where x is the horizontal distance
from a fixed origin, z is the distance vertically upwards from a horizontal seabed
and t is time. For simplicity, we assume a seawater of constant density ρ =
1.00 × 103 kg m−3, constant kinematic viscosity ν = 1.00 × 10−6 m2 s−1 and constant
thermometric conductivity χ = 1.4 × 10−7 m2 s−1. The seawater and seabed have an
initial temperature T = Ti. The water temperature at a large distance from the heat source
is fixed at T = Ti for all time. For convenience, we make use of relative temperature
T = T − Ti. The resulting equation for convection and diffusion of relative temperature
T is written (Schlichting 1979; Landau & Lifshitz 1989; White 1991)

∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

= χ

(
∂2T
∂x2 + ∂2T

∂z2

)
, (2.1)

where (u, w) are horizontal and vertical components of the velocity field.
The fluid properties are assumed constant and independent of temperature. This is

reasonable solely for small variations in T , and so the theory is valid provided T ∼
O(10) ◦C and the initial fluid temperature Ti is far from freezing or boiling points (White
1991).

As outlined by Michele et al. (2021), diffusion effects become significant in the
boundary layer where fluid viscosity is not negligible. In this work we consider flat heat
sources located along a horizontal seabed; therefore, (u, w) can be found by following a
similar procedure analogous to that used in the analysis of mass transport (see e.g. Mei
et al. 2005, § 10.2). The next section derives expressions for the velocity components.

2.1. Flow field in the seabed laminar boundary layer
Let us assume the non-dimensional quantities

x′ = xk, z′ = z
δ
, u′ = u

sinh(kh)

Aω
, w′ = w

sinh(kh)

Aωkδ
, t′ = ωt, P′ = P

ρgA
,

(2.2a–f )

and the small parameter denoting wave steepness

ε = Ak � 1, (2.3)

where k is the wavenumber, ω the angular frequency, A the amplitude of the long-crested
free-surface waves over constant water depth h, P is total pressure and δ = √

2ν/ω
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is the characteristic laminar boundary layer thickness. Non-dimensional continuity and
Navier–Stokes equations are consequently given by (Mei et al. 2005)

∂u′

∂x′ + ∂w′

∂z′ = 0, (2.4)

∂u′

∂t′
+ ε

sinh(kh)

(
u′ ∂u′

∂x′ + w′ ∂u′

∂z′

)
= −gk sinh (kh)

ω2
∂P′

∂x′ + 1
2

(
δ2k2 ∂2u′

∂x′2 + ∂2u′

∂z′2

)
,

(2.5)

∂w′

∂t′
+ ε

sinh(kh)

(
u′ ∂w′

∂x′ + w′ ∂w′

∂z′

)
= −g sinh (kh)

Aω2kδ

(
A
δ

∂P′

∂z′ + 1
)

+1
2

(
δ2k2 ∂2w′

∂x′2 + ∂2u′

∂z′2

)
. (2.6)

In a typical ocean, the depth h ∼ O(10) m, wave amplitude A ∼ O(1) m, wavelength
O(10) m and frequency ω ∼ O(1) rads−1, in which case k ∼ O(10−1) m−1, sinh (kh) ∼
O(1), ε ∼ O(10−1) and δ ∼ O(10−3) m. Thus, kδ ∼ O(10−4) ∼ O(ε4), and (2.5)–(2.6)
reduce to

∂u′

∂t′
+ ε

sinh(kh)

(
u′ ∂u′

∂x′ + w′ ∂u′

∂z′

)
= −gk sinh (kh)

ω2
∂P′

∂x′ + 1
2

∂2u′

∂z′2 + O(ε8), (2.7)

g sinh (kh)

(
A
δ

∂P′

∂z′ + 1
)

+ O(ε4) = 0. (2.8)

The dynamic pressure p = P − ρgz does not depend on z and has the same value as in
the inviscid field immediately above the boundary layer governed by the non-dimensional
Euler equation

∂U′

∂t′
+ ε

sinh(kh)
U′ ∂U′

∂x′ = −gk sinh (kh)

ω2
∂p′

∂x′ , (2.9)

where U′ = U sinh(kh)/(Aω) is the non-dimensional horizontal inviscid flow velocity at
the top of the seabed boundary layer, and

U = Re{U0(x)e−iωt}. (2.10)

Substitution of (2.9) into (2.7) yields

∂u′

∂t′
+ ε

sinh(kh)

(
u′ ∂u′

∂x′ + w′ ∂u′

∂z′

)
= ∂U′

∂t′
+ ε

sinh(kh)
U′ ∂U′

∂x′ + 1
2

∂2u′

∂z′2 + O(ε8), (2.11)

which in dimensional form becomes
∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

= ∂U
∂t

+ U
∂U
∂x

+ ν
∂2u
∂z2 . (2.12)

By introducing the perturbation expansion {u, w} = {u1, w1} + {u2, w2} + O(ωAε2)
(with subscripts denoting orders in ε), it is straightforward to obtain

u1 = Re{U0(1 − e−(1−i)z′)e−iωt},

w1 = Re
{
δ

dU0

dx

[
1 + i

2
(1 − e−z′(1−i)) − z′

]
e−iωt

}
.

⎫⎪⎬
⎪⎭ (2.13)

At second order, O(ε), we obtain a second-harmonic (2ω) component and the
Eulerian-mean flow, derived from the quadratic products in (2.12). The second-harmonic
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component contributes only a small oscillatory correction to the first-harmonic component
and can be neglected when examining heat transfer. Conversely, the following
Eulerian-mean flow associated with the zeroth-harmonic component contributes to
temperature transfer at O(1) (Mei et al. 2005),

ū2 = − 1
ω

Re
{

FU0
dU∗

0
dx

}
, w̄2 = −

∫ z

0

∂ ū2

∂x
dz, (2.14a,b)

where the bar represents a time-averaged value, ()∗ denotes the complex conjugate, and

F = 3i − 1
2

ez′(i−1) − i
2

e−z′(i+1) − 1 + i
4

e−2z′ + z′ 1 + i
2

ez′(i−1) + 3
4
(1 − i). (2.15)

Consider an incident and reflected wave field described by the velocity potential and linear
dispersion equation (Mei et al. 2005):

Φ = Re
{−iAg

ω

cosh kz
cosh kh

(eikx + Re−ikx)e−iωt
}

, ω2 = gk tanh(kh), (2.16a,b)

where g is the acceleration due to gravity and R is the reflection coefficient. Here, R = 1
represents standing waves, whereas R = 0 represents incident waves propagating in the
positive x direction. The spatial dependence of U0 is thence given by

U = Φx|z=0 = Re
{

Aω

sinh (kh)
(eikx − Re−ikx)e−iωt

}
→ U0 = Aω

sinh (kh)
(eikx − Re−ikx).

(2.17)

Substituting (2.17) into (2.13)–(2.14a,b) gives the following expressions for the horizontal
and vertical fluid velocity components in the boundary layer up to second order:

u = Aω

sinh (kh)

× Re
{
(eikx − Re−ikx)(1 − e−(1−i)z′)e−iωt + ε

iF
sinh (kh)

(1 − R2 + 2iR sin (2kx))
}

,

(2.18)

w = Aδkω
sinh (kh)

× Re
{

i(eikx + Re−ikx)

[
1 + i

2
(1 − e−z′(1−i)) − z′

]
e−iωt + ε

4R cos (2kx)
δ sinh (kh)

∫ z

0
F dz

}
.

(2.19)

The first term inside the curly brackets corresponds to the leading-order solution
with the same frequency as the free-surface waves. The second term represents the
time-independent Eulerian-mean flow. This is smaller in magnitude than the first term,
but is responsible for the slow time evolution of the thermal boundary layer thickness (as
shown in the next section). Therefore, the second term plays a major role in seabed heat
transfer.

The flow described by the analytical model developed herein should satisfy criteria
for laminar stability of the seabed boundary layer. For example, Jonsson (1966),
Blondeaux & Vittori (1994), Verzicco & Vittori (1996) and Vittori & Verzicco (1998)
found disturbed laminar regimes to occur in the range Rδ ∼ O(100)–O(500), where
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Rδ = Aωδ/[ν sinh(kh)] is defined as the Reynolds number in the boundary layer. The
foregoing authors found that intermittently turbulent oscillations appear for Rδ > O(500).
Blondeaux, Pralits & Vittori (2021) recently developed a linearised theory for stability
analysis of the seabed boundary layer beneath propagating waves and considered the
combined effects of harmonic oscillations, a second-harmonic response and a steady
Eulerian-mean flow. Blondeaux et al. (2021) found a first critical value of Rδ ∼ O(100) but
did not identify a criterion to distinguish between the disturbed laminar and intermittently
turbulent regimes as in the case of Stokes boundary layers analysed by Blondeaux & Vittori
(2021).

Jensen, Sumer & Fredsøe (1989) defined the Reynolds number as Re = aU0m/ν, where
U0m is the maximum value of the free-stream velocity and a is the amplitude of the
free-stream motion and equal to U0m/ω when the free-stream velocity varies sinusoidally
with time. Jensen et al. (1989) showed that the critical value corresponding to the onset of
turbulence is approximately Re 	 105. In our work the free-stream velocity corresponds
to the outer velocity just above the seabed boundary layer Aω/ sinh(kh); hence, the
Reynolds number introduced by Jensen et al. (1989) can be equivalently defined as
Re = A2ω/[ν sinh2(kh)] = R2

δ/2.
The preceding criteria suggest that the range of applications of our proposed laminar

flow model should satisfy Rδ < O(500). However, the effect of heated water might have a
strong stabilising effect, as also reported by White (1991) and Schlichting (1979). In water,
wall heating delays the onset of growth of Tollmien–Schlichting disturbances, and the
critical Reynolds number can increase significantly. Experimental and theoretical analyses
reported by Wazzan, Okamura & Smith (1968) and Stratizar, Reshokto & Prahl (1977)
confirm this. For the foregoing reasons, we can infer that wave fields where Rδ < 500,
when combined with temperature stratification due to heat transfer, yield reasonably stable
laminar boundary layers. A stability analysis similar to that developed by Blondeaux
et al. (2021) would be needed to confirm this statement, and is a topic worthy of future
investigation.

Taking h = 5 m, A = 0.25 m and ω = 1.5 rad s−1 we obtain Rδ = 248 and Re = 3.08 ×
104, whereas for the smaller frequency ω = 1 rad s−1, we obtain Rδ = 409 and Re =
8.4 × 104; hence, the Reynolds number diminishes with increasing ω. These values are
smaller than the thresholds Rδ = 500, Re = 105 and laminar flow is likely.

We now examine the range of applicability of the present model. Figure 1 presents
curves of wave amplitude A against wave frequency ω corresponding to the critical values
Rδ = 500 (figure 1a), Re = 105 (figure 1b), for different depths h = [2.5; 5; 7.5; 10] m.
For a fixed value of h, the conditions of laminar flow stability are satisfied by A and ω

values located to the right-hand side of the corresponding curve. At larger depths and
frequencies the laminar flow becomes more stable.

2.2. Heat transfer in the boundary layer
The thermal boundary layer thickness δT differs from the viscous boundary layer
thickness δ, and is strongly affected by the velocity component profile (derived in the
previous section). In order to investigate the behaviour of δT we define the following
non-dimensional variables:

ζ ′ = z
δT

, T ′ = T
ΔT

. (2.20a,b)
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Figure 1. Curves of surface elevation amplitude A with wave frequency ω, for different water depths
corresponding to the thresholds: (a) Rδ = 500 and (b) Re = 105. For a given value of h, the laminar flow
is stable provided A and ω are located to the right of the relevant curve.

Here the scale for z is now the thermal boundary layer thickness δT , and ΔT = Tb − Ti is
the relative heat source temperature, with Tb being the absolute heat source temperature.
Substituting the above and (2.2a–f ) into (2.1), we obtain the following governing equation
in non-dimensional form:

∂T ′

∂t′
+ ε

[
u′

sinh (kh)

∂T ′

∂x′ + w′δ
δT sinh(kh)

∂T ′

∂ζ ′

]
= δ2

2Pr

[
1
δ2

T

∂2T ′

∂ζ ′2 + k2 ∂2T ′

∂x′2

]
. (2.21)

Here Pr = ν/χ ∼ 7 is the Prandtl number defined as the ratio of momentum diffusivity
to thermal diffusivity for seawater. By assuming δT � δ, and sinh(kh) � O(1), then from
(2.21) we find that ∂T ′/∂t′ is much larger than the other terms, i.e. ∂T ′/∂t′ ∼ 0. This
means that the temperature at leading order is a function of spatial coordinates and a slow
time scale only, and that the slow evolution of thermal boundary layer thickness is solely
affected by the time-independent Eulerian-mean flow components (ū2, w̄2). Therefore, by
assuming T ′ to be a slowly varying function of time and then averaging with respect
to the fast time scale (Jordan & Smith 2011), we obtain the governing equation of fluid
temperature (in dimensional variables) as

∂T
∂t

+ ū2
∂T
∂x

+ w̄2
∂T
∂z

= χ
∂2T
∂z2 , (2.22)

where the term χ∂2T/∂x2 ∼ O(δ2k2/(2Pr)) ∼ O(ε9) is assumed negligible with respect
to the other quantities. Equation (2.22) describes the temperature field within the boundary
layer and governs the slow evolution of δT .

Note that the effect of fast oscillatory components (2.13) does not appear in the
governing equation (2.22) because of the scales (2.2a–f ) and fast time averaging. Smaller
spatial scales allow the convective and diffusion terms to be leading-order terms, and
both ∂T ′/∂t′ ∼ 0 at O(1) and (2.22) would no longer be valid. We further point out that
significant benefits accrue from using (2.22) which is considerably simpler than (2.1).
The absence of time-dependent components (u1, w1) and horizontal temperature diffusion
enables us to reduce significantly the difficulty of the problem and obtain the analytical
solutions reported in § 3.

In the present work we will consider the effects of (1) a prescribed seabed temperature
(Dirichlet boundary condition) and (2) a prescribed seabed heat flux (Neumann

956 A11-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

21
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.21


S. Michele, A.G.L. Borthwick and T.S. van den Bremer

boundary condition). The case with a Dirichlet boundary condition (1) can be stated
as follows. At time t = 0, the temperature of a finite length of seabed Sb increases
instantaneously to Tb(x) > Ti and remains constant thereafter. Otherwise, the temperature
of the seabed is fixed at Ti for all time. We obtain

∂T
∂t

+ ū2
∂T
∂x

+ w̄2
∂T
∂z

= χ
∂2T
∂z2 , Ω(x, z, t), (2.23)

T = ΔT , x ∈ Sb, t > 0, (2.24)

T = 0, x ∈ (−∞, +∞) \ Sb, t > 0, (2.25)

T = 0,
√

x2 + z2 → ∞, t > 0, (2.26)

T = 0, Ω(x, z, 0). (2.27)

This configuration is equivalent to a heat source with prescribed temperature and a
seabed of much larger thermal conductivity than water, therefore, the temperature remains
uniform at the solid boundary and equal to Ti.

Similarly, the case with a Neumann boundary condition (2) can be stated as follows.
At time t = 0, the heat flux through a finite length section of seabed Sb increases
instantaneously to F(x) > 0 and remains constant thereafter. The heat flux through the
remainder of the insulated seabed is zero at all times. From Fourier’s law we obtain

∂T
∂t

+ ū2
∂T
∂x

+ w̄2
∂T
∂z

= χ
∂2T
∂z2 , Ω(x, z, t), (2.28)

∂T
∂z

= −F
κ

, x ∈ Sb, t > 0, (2.29)

∂T
∂z

= 0, x ∈ (−∞, +∞) \ Sb, t > 0, (2.30)

T = 0,
√

x2 + z2 → ∞, t > 0, (2.31)

T = 0, Ω(x, z, 0), (2.32)

where κ = χρcp is thermal conductivity and cp is specific heat at constant pressure.
Practically speaking, the foregoing problem represents a heat source surrounded by seabed
made of insulating material. A similar problem is analysed by Pedley (1972a).

Solutions of (2.23)–(2.27) and (2.28)–(2.32) can easily be found by applying the
Crank–Nicholson implicit numerical scheme (see also Smith 1985; Mei et al. 2021).
However, analytical solutions are not straightforward to obtain because the convective
terms (ū2, w̄2) have complicated spatial dependence; therefore, solution of the foregoing
governing equation is not an easy task and approximations are necessary. The following
section investigates the effect of simplified velocity profiles on the thermal boundary layer
over flat heat sources characterised by different temperature and heat flux distributions.

3. Approximate solutions for the mean flow and thermal boundary layer

In this section we determine approximate closed-form solutions to both problems (1)
and (2) for propagating waves (R = 0). Even in the simple case of R = 0, the horizontal
component ū2 has complicated vertical dependence, and so we utilise approximate velocity
profiles to obtain an explicit solution. We first consider uniform horizontal flow of constant
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Figure 2. Eulerian-mean horizontal velocity component ū2 (2.14a,b), uniform horizontal current ū (3.1) and
trapezoidal current ūtrap (3.2) profiles for h = 5 m, A = 0.25 m and ω = 1 rad s−1.

velocity ū that is set equal to the Eulerian-mean flow at large distance from the seabed,

ū = lim
z→∞ ū2 = ε

3Aω

4 sinh2(kh)
. (3.1)

The second velocity profile ūtrap resembles (2.14a,b) and is a trapezoidal approximation
of the horizontal Eulerian-mean velocity (Schlichting 1979)

ūtrap =

⎧⎪⎪⎨
⎪⎪⎩

zū(1) = εz
Aω

2δ sinh2(kh)
, 0 < z <

3δ

2
,

ū(2) = ε
3Aω

4 sinh2(kh)
, z >

3δ

2
,

(3.2)

where superscripts (1) and (2) refer to the intervals 0 < z < 3δ/2 and z > 3δ/2,
respectively. Note ū(1) does not have dimensions of velocity.

Figure 2 compares the approximate horizontal velocity profiles ū (3.1) and ūtrap (3.2) to
the complete expression ū2 (2.14a,b) for typical parameter values, namely ω = 1 rad s−1,
A = 0.25 m and h = 5 m. The ūtrap and ū2 profiles are qualitatively similar except for a
small overshoot at z ∼ 3δ/2, which is not captured by the trapezoidal profile.

Table 1 summarises all the cases considered in this section. For each case, we find
an analytical solution of practical interest. (Note that Michele et al. (2021) limited their
study to a single configuration and found a steady-state solution solely for linearly varying
flow velocity profiles.) The uniform flow case is solved for unsteady conditions, whereas
the trapezoidal flow case is solved solely for steady conditions. As will be shown in § 4,
the latter turns out to be a very good approximation in regular progressive waves where
R = 0. The section also considers the effects of different seabed distributions of Gaussian
temperature and heat fluxes. (Please note that none of the solutions obtained for the cases
in table 1 have been reported by Michele et al. (2021) and Pedley (1972a,b, 1975).)

The analytical expressions derived in this section are used later to verify convergence
of the numerical Crank–Nicholson scheme based on the complete velocity components
(2.14a,b).
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Case Seabed boundary condition Velocity profile Solution

1 Rectangular temperature distribution ū Unsteady
2 Rectangular heat flux distribution ū Unsteady
3 Rectangular temperature distribution ūtrap Steady
4 Rectangular heat flux distribution ūtrap Steady
5 Gaussian temperature distribution ū Steady
6 Gaussian heat flux distribution ū Steady
7 Gaussian temperature distribution ūtrap Steady
8 Gaussian heat flux distribution ūtrap Steady

Table 1. Cases analysed for progressive regular waves (R = 0).

3.1. Heat transfer in uniform flow above the seabed
Let us consider the (vertically) uniform horizontal current ū (3.1) flowing above a flat
heated surface of length L. This configuration is a simplified version of the unsteady heat
transfer problem in the presence of constant streaming forced by propagating waves (R =
0, w̄2 = 0).

3.1.1. Case 1 – rectangular distribution of seabed temperature
Assuming a heat source of fixed temperature ΔT and length L, the unsteady boundary
value problem becomes

∂T
∂t

+ ū
∂T
∂x

= χ
∂2T
∂z2 , Ω(x, z, t), (3.3)

T = ΔT (H[x] − H[x − L]) , z = 0, (3.4)

T = 0,
√

x2 + z2 → ∞, (3.5)

T = 0, Ω(x, z, 0), (3.6)

where H is the Heaviside step function. (It should be noted that Pedley (1972a,b, 1975)
obtained an analytical solution to a similar problem.) By utilising a moving coordinate
system such that ξ = x − ūt, with the Fourier sine transform and its inverse (Mei 1997)
the solution is

T = ΔT

{
Erfc

[
z

√
ū

4χx

]
− H [x − L] Erfc

[
z

√
ū

4χ(x − L)

]

+ H [x − ūt]

(
Erf

[
z

√
ū

4χx

]
− Erf

[
z√
4χ t

])

+H [x − ūt − L]

(
Erf

[
z√
4χ t

]
− Erf

[
z

√
ū

4χ(x − L)

])}
, (3.7)

where Erf and Erfc represent the error function and the complementary error function,
respectively (Abramowitz & Stegun 1972). The physical meaning of each term in (3.7)
is as follows: the first and third terms represent the unsteady temperature field above the
heat source in the region 0 < x < L, the second and fourth terms represent the unsteady
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The laminar seabed thermal boundary layer

component elsewhere, namely in the region x > L. Of interest is the steady solution at very
large time T(x, z, t → ∞), which is given by

T = ΔT

{
Erfc

[
z

√
ū

4χx

]
− H [x − L] Erfc

[
z

√
ū

4χ(x − L)

]}
. (3.8)

By analogy to laminar viscous boundary layer theory, the thermal boundary layer
thickness δT is defined as the thickness for which the water temperature is 1 % of the
heat source temperature ΔT , and can be estimated from (3.8) giving

Erfc

[
δT

√
ū

4χx

]
= 0.01 → δT ∼ 3.64 ×

√
χx
ū

. (3.9)

From the horizontal velocity component (3.1), we obtain

δT ≈ 4.2 ×
√

χ sinh2(kh)x
Aωε

. (3.10)

In the ocean typically h = O(10) m, A ∼ O(1) m, ω = O(1) rad s−1, Lk ∼ O(1) m and
x ∼ L, and we obtain δT ∼ O(10−2) m. In other words, δT 
 δ. An explicit expression for
δT in shallow water kh � 1 can also be determined as

δT

δ
∼ kh

√
x

Aε
. (3.11)

In deep water kh 
 1, and

δT

δ
∼ ekh

√
x

Aε
, (3.12)

indicating that the thermal boundary layer thickness is much larger in deep water than in
shallow water.

As an example, we consider steady-state temperature fields (3.8) obtained for water
depth h = 5 m, wave amplitude A = 0.25 m, heat source temperature ΔT = 10 ◦C, heat
source length L = 5 m and two values of wave frequency ω = 1 rad s−1 and 1.5 rad s−1.
The resulting flow speed is ū = [0.0098; 0.0061] m s−1. Note that these parameters satisfy
the criteria for laminar flow stability depicted in figure 1.

Figure 3 displays the steady-state temperature fields for ω = 1 rad s−1 and
ω = 1.5 rad s−1. It can be seen that δT ∼ O(10−2) m at x = L = 5 m, as predicted by
(3.10). Specifically, the growth of δT is very rapid (in x) and slows down as x increases.
Note that as ω increases, the velocity above the plate decreases and the thermal boundary
layer expands vertically.

Figure 3 also shows that the temperature decays for large x; therefore, the thermal
boundary layer is also characterised by a horizontal width. This is of crucial significance
when multiple heat sources are considered because they can interact with each other when
the distance between them is sufficiently short. In order to characterize the temperature
field for the seawater, we examine the location of the maximum of (3.8) for each x, which
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Figure 3. Case 1, near-bed steady-state temperature fields for a uniform current profile ū and a prescribed
seabed heat source where ΔT = 10 ◦C, L = 5 m, h = 5 m and A = 0.25 m. Wave frequency: (a) ω = 1 rad s−1

and (b) ω = 1.5 rad s−1. Note that δT ∼ O(10−2) m and increases with wave frequency as predicted by (3.10).

is obtained from

∂T
∂z

= 0 → zmax =

⎧⎪⎨
⎪⎩
√

4χx(x − L)

Lū
log

( √
x√

x − L

)
, x > L,

0, x ∈ [0, L].

(3.13)

The maximum temperature coincides with the heat source (zmax = 0) for x � L and its
vertical elevation above the seabed increases monotonically with horizontal distance x for
x > L. By substituting (3.13) into (3.8) we obtain the following expression for maximum
water temperature as a function of x:

Tmax =

⎧⎪⎪⎨
⎪⎪⎩

ΔT

⎧⎨
⎩Erfc

⎡
⎣
√

x − L
L

log
( √

x√
x − L

)⎤⎦ − Erfc

⎡
⎣
√

x
L

log
( √

x√
x − L

)⎤⎦
⎫⎬
⎭ , x > L,

ΔT , x ∈ [0, L].
(3.14)

Surprisingly, Tmax does not depend on fluid velocity ū and thermal conductivity χ , but
only on heat source length L and horizontal position x. Figure 4 shows the behaviour
of the ratio Tmax/ΔT as a function of distance from the right edge (x − L) for different
heat source lengths L. The longer the heat source, the slower the temperature decay. For
example, when L = 5 m, the maximum temperature is 10 % of ΔT after 10 m, as also
shown in figure 3.

The unsteady seabed heat flux is evaluated from Fourier’s law as follows:

q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κΔT

√
ū

xπχ

[
1 +

(√
x
ūt

− 1
)

H [x − ūt]
]

, x ∈ [0, L],

κΔT

√
ū

xπχ

[
1 −

√
x

x − L
+
(√

x
ūt

− 1
)

H [x − ūt]

+
(√

x
x − L

−
√

x
ūt

)
H [x − ūt − L]

]
, x > L,

0, x < 0.

(3.15a)

(3.15b)

(3.15c)
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Figure 4. Ratio Tmax/ΔT as a function of distance (x − L) from the edge of the heat source for different
values of heat source length L.

Expression (3.15a) is always positive and represents the heat flux exchanged between the
heat source and the overlying seawater, whereas (3.15b) represents the negative heat flux
in x > L, beyond the heat source. Note that q tends to infinity as x−1/2 and −(x − L)−1/2

for x → 0+ and x → L + 0+, respectively, because of the discontinuous gradients in
temperature at the edges of the heat source. Integrating (3.15a) and (3.15b), the total
unsteady heat fluxes through the region Sb and for x > L are

QSb =
∫ L

0
q dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κΔT
ūt + L√

πχ t
, t < L/ū, x ∈ [0, L],

κΔT

√
4Lū
χπ

, t > L/ū, x ∈ [0, L],
(3.16)

Qx>L =
∫ ∞

L
q dx =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κΔT
ūt − 2

√
ūt(L + ūt)√
πχ t

, t < L/ū, x > L,

κΔT
L + 2ūt − 2

√
ūt(

√
L + √

L + ūt)√
πχ t

, t > L/ū, x > L.

(3.17)

At steady state, the above expressions reduce to

lim
t→∞ QSb = κΔT

√
4Lū
χπ

, x ∈ [0, L],

lim
t→∞ Qx>L = −κΔT

√
4Lū
χπ

, x > L,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.18)

with both attaining a maximum when ū is maximised, demonstrating that the
wave-induced flow aids heat exchange. In addition, QSb and Qx>L have the same magnitude
but opposite sign, and so the total amount of heat in the fluid domain remains constant at
steady state (in accordance with the first law of thermodynamics).
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3.1.2. Case 2 – rectangular distribution of seabed heat flux distribution
The heat flux is assumed equal to F through Sb, and zero elsewhere. The boundary value
problem has Neumann boundary conditions at the seabed, and is given by

∂T
∂t

+ ū
∂T
∂x

= χ
∂2T
∂z2 , Ω(x, z, t), (3.19)

∂T
∂z

= −F
κ

(H[x] − H[x − L]) , z = 0, (3.20)

T = 0,
√

x2 + z2 → ∞, (3.21)

T = 0, Ω(x, z, 0). (3.22)

A solution is found using the moving coordinate ξ = x − ūt, the Fourier cosine transform
along z and its inverse (Mei 1997), giving

T = F
κ
√

π

{
2
√

xχ
ū

exp
(

− uz2

4xχ

)
− z

√
π Erfc

[
z

√
ū

4χx

]

− H [x − L]

(
2

√
(x − L)χ

ū
exp

(
− uz2

4χ(x − L)

)
− z

√
π Erfc

[
z

√
ū

4χ(x − L)

])

+ H [x − ūt]
(

2
√

tχ exp
(

− z2

4tχ

)
− 2

√
xχ
ū

exp
(

− uz2

4χx

)

−z
√

π Erfc

[
z

√
ū

4χx

]
− z

√
π Erfc

[
z√
4χ t

])

− H [x − ūt − L]

(
2
√

tχ exp
(

− z2

4tχ

)
− 2

√
(x − L)χ

ū
exp

(
− uz2

4χ(x − L)

)

+z
√

π Erfc

[
z

√
ū

4χ(x − L)

]
+ z

√
π Erfc

[
z√
4χ t

])}
. (3.23)

The steady-state solution T(x, z, t → ∞) becomes

T = F
κ
√

π

{
2
√

xχ
ū

exp
(

− uz2

4xχ

)
− z

√
π Erfc

[
z

√
ū

4χx

]

− H [x − L]

(
2

√
(x − L)χ

ū
exp

(
− uz2

4χ(x − L)

)
− z

√
π Erfc

[
z

√
ū

4χ(x − L)

])}
.

(3.24)

Turning to the temperature profile at the seabed, from (3.24) we obtain

T(x, 0, ∞) = 2F
κ

√
χ

πū

{√
x − H [x − L]

√
x − L

}
, (3.25)

which has a maximum at x = L, namely

T(L, 0, ∞) = 2F
κ

√
χL
πū

. (3.26)
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Figure 5. Case 2: near-bed steady-state temperature fields for a uniform current ū profile and prescribed seabed
heat flux F = 103 W m−2 where L = 5 m, h = 5 m and A = 0.25 m. Wave frequency: (a) ω = 1 rad s−1 and
(b) ω = 1.5 rad s−1. Above the heat source, the boundary layer thickness is similar to that of case 1 in figure 3,
whereas for x > L, the temperature decay in the vertical is slower.

The foregoing gives an estimate of the temperature at the seabed for a fixed heat flux.
Given the Eulerian-mean velocity ū ∼ O(10−2) m s−1 and the thermal conductivity

of seawater κ ∼ 0.61 W (m ◦C)−1, we obtain T ∼ 10−2F
√

L ◦C. The temperature field
is determined by assuming F = 103 W m−2 and using the same parameters as in the
previous section. Figure 5 depicts the steady-state temperature field for ω = 1 rad s−1 and
ω = 1.5 rad s−1. The temperature contours above the heat source are similar to those in
figure 3. To the right of the heat source (x > L), the temperature decays more slowly than
in case 1. This is due to the absence of heat flux directed towards the seabed for x > L.

3.2. Heat transfer in trapezoidal flow over the seabed
A better approximation at steady state is achieved by assuming a trapezoidal profile ūtrap
(3.2). We now apply this velocity profile to the generalized temperature and heat flux
seabed profiles.

3.2.1. Case 3 – prescribed temperature distribution at the seabed
By adopting the approximate vertical profile ūtrap given by (3.2) and a general seabed
temperature distribution T0(x), the steady boundary value problem can be written as

ūtrap
∂T
∂x

− χ
∂2T
∂z2 = 0, Ω(x, z), (3.27)

T = T0(x), x ∈ Sb, (3.28)

T = 0,
√

x2 + z2 → ∞, (3.29)

which is more complicated than the boundary value problem solved by Michele et al.
(2021) because of the stepped distribution of the heat source and the trapezoidal velocity
profile. Furthermore, it is not possible to identify similarity solutions; instead, it is
necessary to pursue a different approach.
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Given that the water domain has infinite extent along x, we define the Fourier transform
T̃ and its inverse as (Mei 1997)

T̃ =
∫ ∞

−∞
T(x, z)e−iαx dx, T = 1

2π

∫ ∞

−∞
T̃(α, z)eiαx dα. (3.30a,b)

The above expressions define the transformed problem for T ,

χ
d2T̃
dz2 = iαūtrapT̃, Ω(α, z), (3.31)

T̃ = T̃0, z = 0, (3.32)

T̃ = 0, z → ∞. (3.33)

Noting that ūtrap has a discontinuous derivative, we decompose the problem in the vertical
direction and enforce continuity of temperature and heat flux at the common boundary
z = 3δ/2, giving

χ
d2T̃(1)

dz2 = iαzū(1)T̃(1), 0 < z <
3δ

2
, (3.34)

χ
d2T̃(2)

dz2 = iαū(2)T̃(2), z >
3δ

2
, (3.35)

T̃(1) = T̃0, z = 0, (3.36)

T̃(1) = T̃(2), z = 3δ

2
, (3.37)

dT̃(1)

dz
= dT̃(2)

dz
, z = 3δ

2
, (3.38)

T̃(2) = 0, z → ∞. (3.39)

Using (3.30a,b), the required solutions in integral form are

T(1) =
32/3Γ

(
2
3

)
π

Re
∫ ∞

0
T̃0

⎧⎨
⎩c1Ai

⎡
⎣z

(
iū(1)α

χ

)1/3
⎤
⎦+ c2Bi

⎡
⎣z

(
iū(1)α

χ

)1/3
⎤
⎦
⎫⎬
⎭ eiαx dα,

(3.40)

T(2) =
32/3Γ

(
2
3

)
π

Re
∫ ∞

0
T̃0c3 exp

⎛
⎝−(−1)1/4z

√
ū(2)α

χ
+ iαx

⎞
⎠ dα, (3.41)

where Ai and Bi are Airy functions of the first and second kind (Abramowitz & Stegun
1972), Γ is the Gamma function, and the complex constants c1, c2 and c3 are listed in
Appendix A. The lower limit of the integrals corresponds to 0 because of symmetry.
Moreover, the integrands do not contain any singularities. The corresponding solution is
readily found numerically as previously undertaken for transient dispersive waves (see e.g.
Mei et al. 2005; Michele et al. 2022).
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Figure 6. Case 3, near-bed steady-state temperature fields forced by a trapezoidal current profile and
prescribed heat source where ΔT = 10 ◦C, L = 5 m, h = 5 m and A = 0.25 m. Wave frequency: (a) ω =
1 rad s−1 and (b) ω = 1.5 rad s−1. The temperature fields are similar to those of case 1 in figure 3 except
in the region close to Sb.

Applying Fourier’s law to (3.40), the heat flux at the seabed is given by

q = κ
31/3ΔTΓ

(
2
3

)
πχ1/3Γ

(
1
3

) Re
∫ ∞

0
T̃0

(
iū(1)α

)1/3 (
c1 −

√
3c2

)
eiαx dα, (3.42)

and the total heat flux in the heat source region Sb is

Q =
∫ L

−L
q dx = κ

31/3ΔTΓ
(

2
3

)
πχ1/3Γ

(
1
3

) Re
∫ ∞

0
T̃2

0

(
iū(1)α

)1/3 (
c1 −

√
3c2

)
dα. (3.43)

For simplicity, we now assume a heat source Sb = [0, L] as in § 3.1.1 and compare the
results against those in figure 3 for the same parameters. Figure 6 shows the temperature
field that is similar to that in case 1 (see figure 3) except in the region very close to the
heat source. This is due to differences between the velocities in the region z < 3δ/2. In
case 3 the temperature field bends towards the right more slowly than in case 1, which has
consequences for the heat flux, as we show later.

Next, we compare the heat flux in a trapezoidal flow (3.42) to that in a uniform
flow (3.15a)–(3.15b). Figure 7 shows the results for h = 5 m, A = 0.25 m and ω =
[1; 1.5] rad s−1. The overall behaviour is very similar except near to the right of the
heat source edges (x = 0 and x = L = 5 m). The differences become larger at diminishing
frequency as ū(2) increases. At such locations, the uniform flow model overestimates
the heat flux because of the larger convective effects at the seabed, whereas the linear
approximation (3.2) magnifies vertical diffusion above Sb see § 4.

3.2.2. Case 4 – prescribed heat flux distribution at seabed
In this case the steady boundary value problem is given by

ū
∂T
∂x

− χ
∂2T
∂z2 = 0, Ω(x, z), (3.44)
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Figure 7. Comparison between heat flux for a trapezoidal current profile (3.42) and a uniform current profile
(3.15a)–(3.15b) where h = 5 m and A = 0.25 m. Wave frequency: (a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1.

∂T
∂z

= −F0(x)
κ

, x ∈ Sb, (3.45)

∂T
∂z

= 0, x ∈ (−∞, +∞) \ Sb, (3.46)

T = 0,
√

x2 + z2 → ∞, (3.47)

where F0(x) represents the prescribed heat flux distribution. The solution in integral form
is

T(1) = −
31/3Γ

(
1
3

)
κπ

Re
∫ ∞

0
F̃0

⎧⎨
⎩c4Ai

⎡
⎣z

(
iū(1)α

χ

)1/3
⎤
⎦ + c5Bi

⎡
⎣z

(
iū(1)α

χ

)1/3
⎤
⎦
⎫⎬
⎭ eiαx dα,

(3.48)

T(2) = −
31/3Γ

(
1
3

)
κπ

Re
∫ ∞

0
F̃0c6 exp

⎛
⎝−(−1)1/4z

√
ū(2)α

χ
+ iαx

⎞
⎠ dα. (3.49)

The foregoing expressions are similar to (3.40)–(3.41) but have different constants c4, c5
and c6 (see Appendix B). The expression for temperature at z = 0 simplifies to

T(1) = −
3−1/3Γ

(
1
3

)
κπΓ

(
2
3

) Re
∫ ∞

0
F̃0

(
c4 + c5

√
3
)

eiαx dα. (3.50)

We now consider the same parameter values and geometry as in § 3.1.2. Note that
the integrand in (3.50) approaches infinity as α → 0 but the integral is convergent. Its
numerical value is obtained by first examining the behaviour for small α (Bender & Orszag
1991),

F̃0

(
c4 + c5

√
3
)

eiαx ∼
L(−1)3/431/3√χΓ

(
2
3

)
√

αū(2)Γ
(

1
3

) , α → 0+. (3.51)
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Figure 8. Case 4, near-bed steady-state temperature fields forced by a trapezoidal current profile for a
prescribed seabed heat flux F = 103 W m−2 where L = 5 m, h = 5 m and A = 0.25 m. Wave frequency:
(a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1. The temperature fields are similar to those in case 2 (figure 5)
except in the region close to Sb.

The integral (3.50) can be now evaluated as

T(1) ∼ −
3−1/3Γ

(
1
3

)
κπΓ

(
2
3

) Re

⎧⎨
⎩

L(−1)3/431/3√χΓ
(

2
3

)
√

ū(2)Γ
(

1
3

) ∫ �α

0

1√
α

dα

+
∫ ∞

�α

F̃0

{
c4 + c5

√
3
}

eiαx dα

⎫⎬
⎭

= −
3−1/3Γ

(
1
3

)
κπΓ

(
2
3

) Re

⎧⎨
⎩

2L(−1)3/431/3√�αχΓ
(

2
3

)
√

ū(2)Γ
(

1
3

)

+
∫ ∞

�α

F̃0

{
c4 + c5

√
3
}

eiαx dα

⎫⎬
⎭ , (3.52)

where �α is the step size used in the numerical discretization, the first term represents
the singularity and the second integral is evaluated numerically. Figure 8 shows the
temperature field given by (3.48)–(3.49). Comparing this to figure 5, we note similar
behaviour except for higher temperatures close to the heat source. The stronger the
convective effect the higher the temperature is above Sb. This is also evident in figure 9,
which shows the seabed temperature variation for vertically uniform (3.50) and vertically
trapezoidal (3.25) boundary layer flows.

3.3. Gaussian temperature and heat flux distributions
We now investigate the effect of Gaussian distributions of source temperature and heat
flux. For simplicity, we consider steady, uniform flow.
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Figure 9. Comparison between the temperature distributions at the seabed for a vertically uniform current
(3.25) and a vertically trapezoidal current (3.50) where F = 103 W m−2, h = 5 m and A = 0.25 m. Wave
frequency: (a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1.

3.3.1. Cases 5 and 7 – Gaussian temperature distribution at the seabed
The boundary value problem to be solved is

ū
∂T
∂x

= χ
∂2T
∂z2 , Ω(x, z), (3.53)

T = ΔTe−x2β, z = 0, (3.54)

T = 0,
√

x2 + z2 → ∞, (3.55)

where β > 0 defines the ‘width’ of the Gaussian distribution and ΔT its maximum
temperature, which occurs at x = 0. The following solution for the temperature field is
obtained by applying a Fourier transform (3.30a,b):

T = ΔT√
πβ

Re
∫ ∞

0
exp

(
−α2

4β
− z

√
iαū
χ

+ iαx

)
dα. (3.56)

The heat flux at the seabed z = 0 becomes

q = κΔT

√
ū

πβχ

∫ ∞

0

√
αe−α2/4β cos

(π

4
+ xα

)
dα. (3.57)

The integral is solved in terms of the parabolic cylinder function D. Using expression
3.955 in Gradshteyn & Ryzhik (2007), we obtain

q = κΔT

√
ū
χ

(2β)1/4e−βx2/2D1/2(−
√

2βx). (3.58)

Consider the same parameter values as before: h = 5 m, A = 0.25 m, ΔT = 10 ◦C, and two
values of wave frequency ω = 1 rad s−1 and 1.5 rad s−1, and set β = 1 m−2. Figures 10
and 11 show the resulting temperature field (3.56) and seabed heat flux distribution (3.58).
As the wave frequency increases, the temperature propagates upwards (i.e. to larger
values of z) and, consequently, the heat flux is smaller in magnitude. It is interesting to
examine the behaviour of the maximum and minimum values of heat flux (3.58) depicted
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Figure 10. Case 5: near-bed steady-state temperature fields (3.56) for uniform current ū and Gaussian
temperature distribution at the seabed, with β = 1 m−2, ΔT = 10 ◦C, h = 5 m and A = 0.25 m. Wave
frequency: (a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1.
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Figure 11. Steady heat flux q (3.58) with horizontal distance along the bed x for uniform current ū and
Gaussian bed temperature distribution, β = 1 m−2, ΔT = 10 ◦C, h = 5 m, A = 0.25 m, and wave frequencies
ω = [1; 1.5] rad s−1. Dashed lines indicate the locations of xmin and xmax from (3.59a,b).

in figure 11. First, their location is independent of wave frequency ω and current magnitude
ū but depends solely on the source width measure β (as shown later). Second, the location
x = 0 where the heat source temperature ΔT is at a maximum does not correspond to
the location of the maximum of q. The locations of the maximum and minimum heat
source temperature, xmax and xmin, are estimated from (3.58) by performing a Taylor-series
expansion about x = 0 up to third order, O(x3), and equating to zero its first derivative.
Solving the resulting quadratic,

x(max,min) = −
3Γ

(
1
4

)
∓
√

9Γ 2
(
− 1

4

)
+ 40Γ 2

(
1
4

)
10Γ

(
1
4

)√
β

→ xmax ∼ −0.345√
β

, xmin ∼ 1.156√
β

.

(3.59a,b)
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These closely match the numerically exact locations in figure 11. Outside the heat source
region x 
 0 the temperature decreases with decreasing z and the heat flux q becomes
negative.

3.3.2. Cases 6 and 8 – Gaussian heat flux distribution along the seabed
In this case the steady boundary value problem reads

ū
∂T
∂x

= χ
∂2T
∂z2 , Ω(x, z), (3.60)

∂T
∂z

= −F
κ

e−x2β, x ∈ Sb, (3.61)

T = 0,
√

x2 + z2 → ∞. (3.62)

Following the procedure in § 3.3.1, we obtain

T = F
κ

√
χ

βūπ
Re

∫ ∞

0

1√
iα

exp

(
−α2

4β
− z

√
iαū
χ

+ iαx

)
dα. (3.63)

This integral is solved explicitly for temperature at the seabed, z = 0, giving (Gradshteyn
& Ryzhik 2007)

T = F
κ

√
χ

βūπ

∫ ∞

0

1√
α

e−α2/4β sin
(π

4
+ xα

)
dα

= F
κ

√
χπ

ū
e−βx2/2

2
√|x|

[
|x|I−1/4

(
βx2

2

)
+ xI1/4

(
βx2

2

)]
, (3.64)

where I is the modified Bessel function of the first kind. We again assign the parameters
h = 5 m, A = 0.25 m, F = 103 W m−2, β = 1 m−2, and two values of wave frequency
ω = 1 rad s−1 and ω = 1.5 rad s−1. Figures 12 and 13 show the temperature field in the
x–z plane (3.63) and the seabed temperature variation in the x direction (3.64). Figure 12
is similar to figure 5 in that the temperature gradient is almost tangential to the seabed at
large x, and the greater the wave frequency the greater is T . In case 6 the minimum of T
tends to 0 at a large distance from the seabed, whereas the maximum temperature occurs
at the seabed z = 0 for x > 0. Performing a Taylor-series expansion of (3.64) about x = 0
up to third order O(x3) and equating the first derivative to zero, we obtain

xmax = −
Γ
(

5
4

)
−
√

Γ 2
(

3
4

)
+ Γ 2

(
5
4

)
Γ
(

3
4

)√
β

→ xmax ∼ 0.504√
β

, (3.65)

which closely agrees with the maxima of the solutions shown in figure 13. Even for
the prescribed heat flux, xmax does not depend on the horizontal water particle velocity
component but instead depends on β.

For heat sources of very small width (i.e. when β → ∞), and noting the behaviour of
the modified Bessel functions for large arguments In(x) ∼ ex/(2πx), we obtain, after some
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Figure 12. Case 6: near-bed steady-state temperature fields (3.63) for uniform current ū and Gaussian heat
flux distribution at the seabed, with β = 1 m−2, F = 103 W m−2, h = 5 m and A = 0.25 m. Wave frequency:
(a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1.
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Figure 13. Case 6: steady temperature variation along the seabed (3.64) for uniform current ū and Gaussian
bed heat flux distribution, with β = 1 m−2, F = 103 W m−2, h = 5 m, A = 0.25 m, and two wave frequencies
ω = [1; 1.5] rad s−1. Dashed line depicts the location of xmax (3.65).

straightforward algebra, the approximation

T(x, 0) ∼
⎧⎨
⎩
F
κ

√
χ

4ūβx
, x > 0,

0, x < 0,

(3.66)

which is singular at x = 0 and decays for large x, large β and large velocity ū (i.e. at lower
wave frequency).

4. Results and discussion

In this section we verify the full numerical model, and then apply it to practical
configurations of engineering interest.
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Figure 14. Total heat flux Q as a function of time t for two different heat source lengths L = [2.5; 5] m and two
wave frequencies: (a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1. Solid lines depict the unsteady analytical solution
(3.16), dashed lines depict the unsteady numerical solution and dotted lines depict the analytical solution for
t → ∞ (3.18).

4.1. Numerical scheme validation
The Crank–Nicholson numerical model is verified against the analytical unsteady solution
(3.16) for uniform current ū (3.1). We consider different heat source lengths Sb ∈ [0; L],
where L = [2.5; 5] m, two frequency values ω = [1; 1.5] rad s−1 and a fixed heat source
temperature ΔT = 10 ◦C.

Figure 14 shows the time evolution of the total heat flux Q for ω = 1 rad s−1 and
ω = 1.5 rad s−1. Unsteady numerical predictions, the unsteady analytical solution (3.16)
and the steady-state analytical solution (3.18) are plotted. Excellent agreement is achieved
between the numerical prediction and (3.16). Convergence of the numerical results is
achieved for grid dimensions �x = 1.0 × 10−2 m, �z = 0.5 × 10−3 m and �t = 1.0 s.

At small time the heat flux becomes infinitely large because the convective term has
minor influence for small t and z, and the solution in this limit is equivalent to the case
of pure diffusion (Mei 1997). Figure 14 also shows that at large t the total heat flux in the
presence of waves remains positive and does not reduce to zero. This is due to the presence
of the wave-induced velocity that ensures ∂T/∂z < 0 above Sb. The surface waves force
convection in the laminar boundary layer through the water particle velocity field.

Figure 14 shows that Q decreases with time and that it approaches steady state at
different rates depending on ω and L, as is also clear from (3.16). The time required to reach
steady state across the entirety of Sb, t = L/ū, has the following values: t = [253; 507] s
for ω = 1 rad s−1 and L = [2.5; 5] m; and t = [409; 819] s for ω = 1.5 rad s−1 and
L = [2.5; 5] m. These values match the behaviour depicted in figure 14.

4.2. Effects of propagating waves on seabed heat transfer
We next compare predictions by the numerical model including the complete convective
terms (2.14a,b) against approximate solutions derived in § 3. For simplicity, we consider
the steady-state solution for regular progressive waves R = 0.

4.2.1. Rectangular temperature distribution at the seabed
The full numerical solution is compared with the approximate analytical temperature field
for a uniform current (3.8) and a trapezoidal current (3.40)–(3.41). Figure 15 shows the
total heat flux Q exchanged between the heat source and the water for L = [2.5; 5] m,
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Figure 15. Total heat flux Q as a function of wave frequency ω ∈ [1; 3] rad s−1 for ΔT = 10 ◦C, h = 5 m,
A = 0.25 m and two heat source lengths: (a) L = 2.5 m and (b) L = 5 m. Three total heat fluxes are displayed.
Here Qnumerical is the full numerical solution, Quniform is from (3.18) for uniform flow and Qtrapezoidal is from
(3.43) for a trapezoidal current profile.

ΔT = 10 ◦C, h = 5 m, A = 0.25 m, over a range of frequencies ω ∈ [1; 3] rad s−1 that
satisfy laminar flow stability criteria (see figure 1). Each curve represents the total heat
flux. Here, Qnumerical is the full numerical solution, Quniform corresponds to (3.18) for
a uniform current and Qtrapezoidal corresponds to (3.43) for a trapezoidal current. The
approximate solution for a trapezoidal velocity profile provides a close match to the
full numerical solution except that the numerically predicted heat flux is very slightly
larger because the trapezoidal profile does not account for the small overshoot shown in
figure 2, which induces slightly less diffusion. The uniform flow approximation proves
very effective at large wave frequencies because of the diminishing magnitude of the
wave-induced velocity at large ω. Convective effects become less dominant, and the shear
flow profile for 0 < z < 3δ/2 (3.2) has only a minor effect on the heat flux in the region
close Sb. Note also that in the range of frequencies of interest, Q increases with decreasing
ω.

4.2.2. Gaussian temperature distribution at the seabed
This section compares full numerical predictions with approximate solutions for a
Gaussian temperature distribution along the seabed, with uniform and trapezoidal current
profiles, where h = 5 m, A = 0.25 m, ΔT = 10 ◦C and β = 1 m−2.

Figure 16 shows the heat flux q distribution along the seabed for two wave frequency
values ω = [1; 1.5] rad s−1. As in the previous section, the analytical approximation of
the heat flux for the trapezoidal current (3.42) almost coincides with the full numerical
prediction at both wave frequencies considered. The results for the uniform current
approximation (3.58) are only acceptable at large frequencies even though the overall
behaviour of the heat flux q is well captured.

Finally, we note that the maximum heat flux does not occur at the same location as the
maximum temperature ΔT , and the minimum of q is located in the zone x > 0. These
locations do not depend on wave frequency but solely on β as suggested by (3.59a,b).

4.2.3. Rectangular distribution of seabed heat flux
We next consider the behaviour of the steady temperature field for a prescribed rectangular
distribution of seabed heat flux. As in § 3.1.2, the heat source of length L emits a constant
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Figure 16. Seabed heat flux q as a function of horizontal coordinate x for a Gaussian distribution of
temperature at the seabed, with β = 1 m−2, ΔT = 10 ◦C, h = 5 m and A = 0.25 m. Wave frequency:
(a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1. Three heat flux profiles are plotted: qnumerical is the full numerical
solution, quniform is from (3.58) for uniform flow and qtrapezoidal is from (3.42) for a trapezoidal current profile.
Dashed lines indicate the locations of maximum and minimum seabed flux predicted by (3.59a,b).
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Figure 17. Seabed temperature as a function of horizontal distance x for a prescribed rectangular distribution
of heat flux at the seabed, with L = 5 m, F = 103 W m−2, h = 5 m and A = 0.25 m. Wave frequency:
(a) ω = 1 rad s−1 and (b) ω = 1.5 rad s−1. Three temperature profiles are plotted: Tnumerical is the full
numerical solution, Tuniform is from (3.25) for uniform flow and Ttrapezoidal is from (3.50) for a trapezoidal
current profile.

heat flux F ; elsewhere, the seabed comprises of perfectly insulating material (with zero
heat flux). Comparison is made between the full numerical solution based on the complete
velocity field, and approximate analytical solutions for the uniform current (3.25) and
trapezoidal current (3.50) profiles. The parameters are: L = 5 m, F = 103 W m2, h = 5 m,
A = 0.25 m and two wave frequencies ω = [1; 1.5] rad s−1.

Figure 17 shows the variation in seabed temperature with distance along the seabed.
At the higher wave frequency, the convective term is smaller and the temperature is
larger, and the analytical solution for the uniform current approaches the full numerical
solution as diffusion becomes more dominant. For both wave frequencies, the trapezoidal
current results for Ttrapezoidal are remarkably similar to those of the full numerical solution
Tnumerical.
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Figure 18. Seabed temperature as a function of horizontal distance x for a prescribed Gaussian distribution
of seabed heat flux, with β = 1 m−2, F = 103 W m−2, h = 5 m and A = 0.25 m. Wave frequency: (a) ω =
1 rad s−1 and (b) ω = 1.5 rad s−1. Three temperature profiles are plotted: Tnumerical is the full numerical
solution, Tuniform is from (3.25) for uniform flow and Ttrapezoidal is from (3.50) for a trapezoidal current profile.
The dashed line indicates the location of the maximum predicted by (3.65).

4.2.4. Gaussian distribution of seabed heat flux
This section examines the variation in seabed temperature with horizontal distance along
the seabed for a prescribed Gaussian distribution of seabed heat as defined by (3.61). The
parameters are: β = 1m−2, F = 103 W m−2, h = 5 m and A = 0.25 m. As before, we
compare results from the full numerical solution, and the uniform and trapezoidal current
approximations, for two wave frequencies ω = [1; 1.5] rad s−1. The solution for uniform
flow is given by (3.64) in terms of the modified Bessel function of the first kind. By
evaluating the Fourier transform in (3.61) and substituting the result into (3.50), the seabed
temperature for a trapezoidal velocity current may be expressed as

T = −
3−1/3Γ

(
1
3

)
F

κΓ
(

2
3

)
√

1
πβ

Re
∫ ∞

0
e−α2/4β

(
c4 + c5

√
3
)

eiαx dα. (4.1)

The above integrand is singular and behaves as 1/
√

α in the limit α → 0. Its numerical
value is found following the procedure in § 3.2.2.

Figure 18 depicts the variation in seabed temperature with horizontal distance for each
wave frequency. We draw the same conclusions as in the previous section. The greater the
frequency, the greater the seabed temperature; and the solution for the trapezoidal profile
is always very close to the full numerical prediction. The location of the maximum does
not alter with wave in accordance with (3.65).

4.3. Effect of standing waves on seabed heat transfer
Figure 19 depicts velocity components (ū2, w̄2) (2.14a,b) in the presence of standing waves
in front of a vertical reflecting wall, i.e. R = 1. Unlike the previous cases concerning
progressive waves where R = 0, the temperature field and heat flux in standing waves also
depend on the heat source location. We define the non-dimensional heat source length as
L′ = Lk, and x′

0 as the non-dimensional horizontal distance from the centre of Sb, such
that x′

0/k. For standing waves, R = 1 and the water particle velocity components (2.14a,b)
exhibit π/k horizontal periodicity. The analysis therefore focuses within the range
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Figure 19. Schematic of seabed boundary layer velocity field in standing waves (R = 1).

Case Seabed boundary condition

9 Rectangular temperature distribution
10 Gaussian temperature distribution
11 Rectangular heat flux distribution
12 Gaussian heat flux distribution

Table 2. Standing wave cases (R = 1).

x′ ∈ [0, π], covering half a wavelength. However, the horizontal velocity component
changes sign at x′ = nπ/2, n = 0, 1, . . . , and so two different heat sources symmetrically
located with respect to these velocity-switch points would promote a symmetric
temperature field with the same total heat flux Q. Hence, a complete picture is obtained for
x′

0 ∈ [0;π/2]. As before (§ 4.2), we analyse the effects of rectangular and Gaussian heat
source distributions. Table 2 lists the standing wave cases.

4.3.1. Case 9 – rectangular distribution of seabed temperature
We define the non-dimensional heat flux as Q′ = Qδ/(κΔTL) and consider heat source
locations Sb ∈ [−L, L] + x′

0/k. Let h = 5 m, A = 0.25 m and ΔT = 10 ◦C. Figure 20
shows the variation in Q′ with non-dimensional source length L′ for five different heat
source centre locations x′

0 and two wave frequencies, ω = 1 rad s−1 (figure 20a) and
ω = 2 rad s−1 (figure 20b). For L′ > π (i.e. L > λ/2, where λ is the wavelength), the
effect of heat source location is negligible, and Q′ is almost constant (i.e. Q increases
linearly with L). Maxima and minima appear with periodicity L′ ∼ π/2 due to the repeated
inversions of the horizontal velocity components. For a heat source of small dimensions,
the maximum heat flux occurs at x′

0 = π/4, where the horizontal velocity component close
to the seabed has a maximum. Conversely, the total heat flux has minima at x′

0 = [0;π/2],
where ū2 is zero. This implies that for small heat sources located in front of a vertical
wall, it is best to place them at x′

0 = π/4 + n × π/2, n = 0, 1, . . . to maximise heat flux.
The curves in figures 20(a) and 20(b) exhibit similar trends except for the magnitude of
Q′; as the incident wave frequency increases, the velocity components and consequent
heat transport tend to decay, as the effect of such shorter waves is felt less in the seabed
boundary layer.

We now compare the behaviour of Q in standing and propagating waves. Let η be the
ratio between the heat flux Q′ shown in figure 20 with R = 1 to Q′ for the same heat source
when the overlying velocity field experiences zero reflection, R = 0. Figure 21 shows the
variation in η with L′ for the two frequencies ω = [1; 2] rad s−1. The curves are very
similar in that η increases with source length, exceeding unity at small L′. This implies
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Figure 20. Case 9: variation in non-dimensional heat flux Q′ with non-dimensional heat source length L′ for
standing waves and rectangular seabed temperature distribution, for h = 5 m, A = 0.25 m, ΔT = 10 ◦C, and
five values of the heat source centre location x′

0. Wave frequency: (a) ω = 1 rad s−1 and (b) ω = 2 rad s−1.
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Figure 21. Variation in heat flux ratio η = Q(R = 1)/Q(R = 0) (between standing and progressive waves
for a rectangular seabed temperature distribution) with non-dimensional heat source length L′ for h = 5 m,
A = 0.25 m, and five values of the heat source centre location x′

0. Wave frequency: (a) ω = 1 rad s−1 and
(b) ω = 2 rad s−1.

that a heat source placed in front of a reflecting structure exchanges more heat than in the
open sea, provided the heat source length is larger than approximately L′ > π/4.

4.3.2. Case 10 – Gaussian distribution of seabed temperature
The Gaussian heat source has infinite extent along x and an amplitude specified by the
standard deviation. An equivalent width to that of the rectangular distribution is defined as
LG ∼ 3

√
1/(2β). In other words, LG is three times the standard deviation. At x = LG, the

seabed temperature is merely 0.1 % of the maximum ΔT . Consider h = 5 m, A = 0.25 m
and ΔT = 10 ◦C. Figure 22 presents the non-dimensional heat flux Q′ = Qδ

√
2β/(3κΔT)

as a function of non-dimensional length L′
G = LGk at five locations defined by x′

0. In
this case the total heat flux Q has been evaluated by integrating q over x ∈ [−LG; LG].
As the width of the Gaussian increases, the effect of the heat source location disappears
as also shown previously (cf. figure 20). The maximum value of Q′ occurs at small L′

G.
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Figure 22. Case 10, variation in total non-dimensional heat flux Q′ with non-dimensional heat source length
L′

G for standing waves and Gaussian seabed temperature distributions, with h = 5 m, A = 0.25 m, ΔT = 10 ◦C
and five values of the heat source centre location x′

0. Wave frequency: (a) ω = 1 rad s−1 and (b) ω = 2 rad s−1.
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Figure 23. Variation in heat flux ratio η = Q(R = 1)/Q(R = 0) (between standing and progressive waves
for Gaussian seabed temperature distribution) with non-dimensional heat source length L′ for h = 5 m, A =
0.25 m, ΔT = 10 ◦C, and five values of the heat source centre location x′

0. Wave frequency: (a) ω = 1 rad s−1

and (b) ω = 2 rad s−1.

Hence, small heat sources located in front of a vertical wall exchange more heat when
placed at x′

0 = π/4 + n × π/2, n = 0, 1, . . .. Periodic humps do not occur with L′
G owing

to the continuous distribution of seabed temperature for all x and lack of horizontal
diffusion in the governing equation. Consequently, the heat flux varies smoothly through
the switch points x′ = nπ/2, and abrupt variations of heat flux cannot occur.

We again use the heat flux ratio η = Q(R = 1)/Q(R = 0) to compare the behaviour
of Q between standing and propagating waves. Figure 23 shows the variation in η with
non-dimensional L′

G for ω = [1; 2] rad s−1. Again, some curves exceed unity at small L′
G;

then η increases and appears to saturate with increasing heat source length.

4.3.3. Case 11 – rectangular distribution of seabed heat flux
We now consider the temperature field under standing waves driven by a prescribed
rectangular distribution of seabed heat flux (as in § 3.1.2) for h = 5 m, A = 0.25 m and
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Figure 24. Case 11, temperature field in standing waves with prescribed rectangular distribution of seabed
heat flux for L = 5 m, h = 5 m, A = 0.25 m and F = 103 W m−2, at locations (a) x′

0 = 0, (b) x′
0 = π/4 and

(c) x′
0 = π/2.
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Figure 25. Case 12, temperature field in standing waves with prescribed Gaussian distribution of seabed heat
flux for β = 0.18 m−2, h = 5 m, A = 0.25 m and F = 103 W m−2, at locations (a) x′

0 = 0, (b) x′
0 = π/4 and

(c) x′
0 = π/2.

F = 103 W m−2. We define �x′ = x′ − x′
0 as a non-dimensional coordinate with the

origin located at the centre of the heat source. Figure 24 shows the temperature field as
a function of �x′ for a heat source of fixed length L = 5 m at three different locations
defined by x′

0 = [0;π/4;π/2]. Note that x′
0 = 0 corresponds to a heat source located

beneath the standing wave anti-node with maximum positive vertical wave-induced
velocity, x′

0 = π/4 corresponding to the maximum horizontal velocity, and x′
0 = π/2

corresponds to a heat source beneath the second anti-node of the standing wave where
there is maximum vertical velocity directed towards the seabed. Figure 24(a) shows that
the temperature is only very large in the region beneath the wave anti-node because
of strong vertical convection and convergence of heat flux. Figure 24(b) shows that the
heat flux is directed towards the anti-node characterised by positive vertical velocity; the
temperature does not propagate beyond this point because of the absence of horizontal
diffusion in the (leading-order) governing equations. Figure 24(c) displays a symmetrical
temperature field where the temperature propagates towards standing wave anti-nodes
located to the left and right of the heat source.

4.3.4. Case 12 – Gaussian seabed heat flux distribution
Finally, consider a Gaussian distribution of seabed heat flux distribution (as in § 3.3.2).
For comparison with figure 24, we choose h = 5 m, A = 0.25 m, F = 103 W m−2 and
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equivalent length LG = 5 m, such that β = 9/(2 × 52) = 0.18 m−2. Figure 25 depicts
the temperature field when the heat source centre is located at x′

0 = [0;π/4;π/2]. The
temperature field is very similar to that in figure 24 except in the region very close to the
seabed. In case 12 the temperature invariably propagates towards wave anti-nodes having
positive vertical velocity. The maximum temperature is smaller for the Gaussian than the
equivalent rectangular heat flux distribution. This is because the heat flux only attains F
at x = x′

0 and is smaller elsewhere.

5. Conclusions

This paper has described a mathematical model of seabed heat transfer processes forced
by progressive waves representative of the open sea, and standing waves representative of
wave reflection in front of a vertical sea wall. Our analysis showed that the convection term
in the governing convection–diffusion equation for water temperature depends on the wave
reflection coefficient R. The full unsteady version of the equation was solved numerically
using a Crank–Nicholson scheme and successfully verified against approximate analytical
solutions expressed in terms of Fourier integrals, Airy functions, Bessel functions and
parabolic cylinder functions. This paper has extended the approach by Michele et al. (2021)
to analyse the effect on the seabed thermal boundary layer of seabed heat sources of finite
length, characterised by Gaussian temperature and heat flux distributions, both in standing
and progressive waves. Moreover, an improved analytical steady-state solution was derived
for progressive waves by considering a trapezoidal velocity profile in the boundary layer,
for which very almost perfect agreement was achieved with full numerical predictions. The
model showed that heat flux behaviour in standing waves depends on source location only
for a small source length, and the heat flux is maximised when the heat source centre is
located where the horizontal wave-induced velocity in the boundary layer is at a maximum.
Our analysis also demonstrated that large heat sources tend to exchange more heat when
reflected waves are present. This is because the spatially averaged value of the velocity
in the boundary layer is greater in the case of standing waves and this acts to increase
convection of heat. Note that the models discussed in this paper can easily be extended
to partial wave reflection problems by superposition of incident and partially reflected
components.

The present mathematical model is limited to two-dimensional seabed thermal boundary
layers driven by simple heat source distributions in the absence of turbulence. Extension
to more complicated domains and velocity fields, and the inclusion of fluid properties
depending on temperature could provide a fruitful means by which to explore further topics
of considerable practical interest in engineering and oceanography, such as seabed heat
exchanges at coral reefs.
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Appendix A. Constants for the approximated solution in § 3.2.1

We have
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ū(2)α

χ
Bi

⎡
⎣3

2
δ

(
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iū(1)α

χ

)1/3

Bi′
⎡
⎣3

2
δ

(
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iū(1)α

χ

)1/3
⎤
⎦
⎫⎬
⎭

−1

,

(A1)
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+
√

3

(
iū(1)α
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⎡
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2
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(
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,

(A3)

where Ai′ and Bi′ denote the Airy function derivatives.

Appendix B. Constants for the approximated solution in § 3.2.2

We have
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⎧⎨
⎩(−1)

1
4

√
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iū(1)α

χ

)1/3

Ai′
⎡
⎣3

2
δ

(
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ū(2)α

χ
Bi

⎡
⎣3

2
δ

(
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⎧⎨
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ū(2)α

χ
Ai

⎡
⎣3

2
δ

(
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c6 = − exp

⎛
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ū(2)α

χ
Bi

⎡
⎣3

2
δ

(
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