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A SINGULAR PERTURBATION PROBLEM AND A 
NEUTRAL DIFFERENTIAL-DIFFERENCE EQUATION 

BY 

EDWARD MOORE 

1. Introduction. Vasil'eva, [2], demonstrates a close connection between the 
explicit formulae for solutions to the linear difference equation with constant 
coefficients 

(1.1) z(t) = Az(t-r) 

where z is an n-vector, A an nXn constant matrix, T > 0 , and a corresponding 
differential equation with constant coefficients 

(1.2) rz = Bz. 

(1.2) is obtained from (1.1) by replacing the difference z(t—r) by the first two terms 
of its Taylor Series expansion, combined with a suitable rearrangement of the 
terms. 

We consider the vector differential-difference equation 

(1.3) x(t-r) = G(t,x(t),x(t)). 

On replacing x(t—r) by the first two terms of its Taylor Series expansion, and 
suitably rearranging, we obtain 

(1.4) Tx(t) = H(t9y(t),y(t))-

A comparison is made of the solutions between (1.3) and (1.4). 

2. The vector differential-difference equation. The basic result is given in the 
following theorem: 

THEOREM. Suppose y{t)9 x(t) are n-vectors. Let X0=X^~"T )+/0 ;» J> 0> 0<t<b 
with y(t)=<f>(t)for —r<t<0 where <f>(t) e Cs,f(y, j>, t) is differentiable andkx and 
k2 are positive constants such that 

\\f(xl9 yl9 t)-f(x29 y29 Oil < fci l|xx—xa||+fca I b i - y J , 0 < t < b. 

Let rx(t)=f(x9 x9 t)9 with x(t)=c/)(t)for —r<t<0 and 

won = iwo-xoii-
77 
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If(i)\\"(t)\\<axfor-T<t<b, 

(ii) fc2 < 1 

f 1 h ) 
(iii) max{ , < 1, 

12(1 -k2) 2(l-/c2)J 
then there exists a constant a2 such that We^WKa^r2 for 0<t<b. If (i) is replaced 

by \\x(t)^<az\r, then 

KO II < a*", M 0<t<b. 

We consider the vector differential-difference equation 

(2.1) m = Kt-r)+f(y, y,t), 0<t< b, 

with 

y(t) = (f>{i) for - r < t < 0, 

<f)(t) G C3;f(y,y, t) is continuous and differentiate, and k1 and k2 are constants 
such that 

ll/(*i> yi> t)-f(*2, 3>2> Oil < fci ll*i-x2 | |+fc2 lb i -y 2 | | . 

We want to compare (2.1) with the equation 

(2.2) Tx(i) = / (x , x, i), 0<t < b, 

where x(t)=c/)(t) for — r < / < 0 . 
Now 

(2.3) X(Î-T) = X ( 0 - T X ( 0 + — 3 c ( ^ - 0 r ) , 

where O<0<1 . Substituting from (2.2) into (2.3), 

T
2 . 

(2.4) x(t) = x(t-T)+f(x, x9 t)—x(t-0r). 

Hence, if x(t) solves (2.2), then it satisfies (2.1) approximately, the error E(t) 
being 

T 2 . . . 
(2.4A) E(t) = -x(t-dr). 

Define the error e between the solutions x and y by e=x— y, so subtracting (2.1) 
from (2.4) 

(2.5) è(t) = ê(t-r)+f(x9 x, t)-f(y, y, t)+E(t). 

Integrating the above equation, 

(2.6) e(t)-e(0) = e{t-r)-e{-r) + \{f(x, x, s)-f(y, y, s)} ds+ \ E(s) ds 
Jo Jo 
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But e(0)=e(—T)=0 because of the conditions imposed on y and x in (2.1) and 
(2.2) respectively, and so (2.6) implies 

(2.7) \\e(t)\\ < n^-TNI+fcx P |Ks) | | ds+k2 f W ) | | ds + (\E(S)\\ ds 
Jo Jo Jo 

Also, (2.5) implies 
IKOII ^ l l ^ - ^ l l + f c x \\e(t)\\+k2 ||ê(0|| + ||£(OI|. 

Assume 1>&2, so 

\\è(t)\\ < - \ \\ê(t-T)\\+-^- K O H + T ^ T H£(0II-
1 / C 2 J- »C2 1 »C2 

Substitute for Heft)II» from (2.7), into the above inequality; then 

(2.9) 11*011 ^ 7"V II^-T)II+-^T- £«+rV l |e( '_T)li 

J. ""— / v 2 J- ~~~~ »C2 A ,-— rC2 

+ r V f'll^ll ^ + 7 ^ 7 fW)ll ds+-^- P||£(s)|| ds, 
1 —/c2Jo 1 — /c2 Jo 1 — /c2 Jo 

where we define Em— max ||.E(0l|. 
o<*<& 

From (2.4A) 

Em < ̂  I I* (* -0T) | | < ^ max ||3c(0||. 
2 2-r<*<& 

If r G [ -T , 0], then x(t)=4>(t), so £ m = <c 2 r 2 if $(*) is bounded by cx. If / e [0, 6], 
then Em<c5r

2 if x(t)<c^, and ^ ^ C g r if x(t)<c6/T. 
We want to show that the error e(t) between the solutions x(t) and y(t) is, under 

certain conditions, "small" and tends to zero as r tends to zero. The resultant 
inequality (2.7) for e(t) involves é(t) and the inequality (2.9) for ê(t) involves e(t). 
However ||e(0ll<lk(0ll +11 (̂011 > S0 this lea(is u s to define the vector 

with a norm such that 
l|z(0ll=Mlk(0ll + ll^(0ll}. 

We thus have from (2.7) and (2.9), 

(2.10) |z(„l <: { 4 + ^ K . - ) l + ^ M'-'M 

• f i f a 4 * ^ IWs,ll+(Jl'+2ïïi) H * 
+ " Em+ \U+ — ) \\E(s)\\ ds 

2(1 - k 2 ) m Jo I2 2(1-k2)l 

^ 4 + Cl|zft-T)B+B|'||z(s)|lds, 
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where 

A = Em+ f U+—^— ) \\E(s)\\ ds, 
2(l-fca)

 w Jo I2 2(1 —fc2)i
 W " 

B = max -— , —L-2—, - 1 , - , 
l2(l —fc2) 2(1-fca) 2 2 j 

C = max , l—+| 
12(1-fca) 2(1 - k 2 ) 

Equation (2.10) is valid for t>r; thus there is a unique integer n>l, such that 
« T < ? < ( « + 1 ) T , and so (2.10) holds for t e [nr, (n+l)r]. 

We now use the method of induction to show, with suitable conditions on x(t) 
and for t e [nr, (n+l)r], that ||z(f)|| < T C * where C* is used as the generic symbol 
for a constant, (independent of n and T) , i.e. C* may vary from equation to 
equation. 

We firstly consider the situation when n=0, i.e. t e [0, T] . Then, in (2.5), ê(t)= 
f(x, x, t)—f(y, y, t)+E(t) since ê(t—r)=0 for 0<t<r; so 

\\ë(t)\\ < k± \\e(t)\\+k2 \\ê(t)\\+Em; and for 1 < k2, 

(2,11) IWOII^T^KOII+TV^ 
1 —k2 1 —/c2 

In (2.7), fo rO<J<r , 

(2.12) IKOII < rEm+kx J W ) l l ds + k2 Ç\\é(s)\\ ds. 
J o Jo 

From (2.11) and (2.12), 

mll < l i ^ £ *L_ f | |e(s)Ms+ML f||ê(s)Ms. 
1 —/c2 1 — /c2 Jo 1 —/c2Jo 

As before, we define 

MO" 
z(0 = 

also, ||z(/)||=e{l|e(0ll + ll*(0ll}. 
Hence, for 0<t<T, 

40. 

z(01l<(i±iii±^M£TO+|Mrllz(S)MS) 
Jo 2(1-fc2) 

where 

M = maxl fcj, fe2, - — - , - — - I . 
\ 1— k9. 1 — kJ 

Let 
L _ l+ rÇ l + fc! —fc3) 

2(1 -fc2) ! 
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then by GronwalPs Inequality, 

| |z(OII<£wLexp(Mr). 

Since Em<Czr, under appropriate conditions as given previously, then 

11*0)11 £ T C * for *6[0,T]. 

We now assume the induction hypothesis, viz. that \\z(t)\\<rC*, is true for 
some integer («—1), that is for te [(«—l)r, nr]. We want to prove that, for 
te[nT,(n+l)T]9\\z(t)\\<rC*. 

We note, in passing, that Em<rC* and so, therefore, is A. (2.10) may be 
written as 

Bz(OD^+C(TC*)+Bp||z(s)| |<fo, 
Jo 

<iTC*+B\t\\z(s)\\ds. 

On using Gronwall's Inequality, 

IKOII < T C V * < rC*eBb ^ TC*. 

Hence, by the principle of induction, 

IKOII < rc\ 
and so 

IK0II = I W 0 - K 0 I I < T C * for 0^t<b. 

The theorem is now proved. 

3. Boundedness of derivative. Condition (i) of the theorem on page 2 immediately 
poses the problem as to when x(t) is bounded. This leads to a consideration of the 
conditions under which the solution of the singular perturbation problem (2.2) 
converges to the solution of the equation obtained from (2.2) by putting r = 0 ; 
this equation is called the degenerate equation. 

Following Wasow [3], we summarise the results pertaining to the autonomous 
differential system 

x = u 

(3.1) TÙ = g(x, w). 

x(0) = a, X0) = p 

where x is a scalar and u a two-dimensional vector. The mathematical analysis of 
the problem is analogous for the non-autonomous problem and also for the 
situation where x and u are vectors of any dimension. 

We assume that g is continuous in an open region Q, of the (x, u) space and that 
there is a function cf>(x) continuous in £x<;*;<£2 such that the points (x, (f>(x)), 

£i<*<£2> a r e i n & a n d 
g(x, flx)) = 0. 
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cf)(x) is called the root of the equation g(x, u)=0. A further assumption is that 
there exists a positive tj9 independent of x, such that 

\\u—<Kx)\\ <n> u ^ <K*) i n £1 < x ^ £2 

imply thatg(x, 11)7*0, in £i<x<£2. Such a root cf>(x) is called isolated in £i<*<£2. 
The boundary layer equation belonging to (2.15) is defined as 

(3.2) ^ = g(x, u) 
aT 

where x is a parameter. 
Our next assumption is that the singular point u=(f>(x) of (3.2) is asymptotically 

stable for all x in £i<x<£2. Such a root is called a stable root. Finally, we assume 
that (3.1) and the degenerate equation 

x = u 

(3.3) u = </<*) 

x(0) = a 

have a unique solution in an internal 0<t<b. 
We define a point (oc, /?) e O, £I<OC<£2, to lie in the domain of influence of the 

stable root u=</)(x) if the solution of the problem 

7 = = g(a,i0, j(0) = /5 

exists and remains in Q for all r > 0 , and if it tends to <£(a), as T->+ 00. 
We now state Tihonov's convergence theorem: 

THEOREM. Let the above assumptions be satisfied and let (a, ft) be a point in the 
domain of influence of the root u=<f>(x). Then the solution x(t), u(t) of (3.1) is related 
to the solution x0(t), u0(t)=cf>(x0(t)) of (3.3) by the fact that as T->0, x(t)->x0(t), 
u(t)->u0(t)=cf>(x0(t))for 0<t<T0. 

Here T0 is any number such that u=^{xQ{t)) is an isolated stable root ofg(x0(t), u)= 
0 for {t:0<t<T0}. The convergence is uniform in {t:0<t<T0}9 for x(t)9 and in 
any interval /={^:0<f1</<7T

0} for u(t). 

Tihonov's theorem admits the following interpretation. If (a, /3) lies on the 
curve C:g(x, u)=0, or is within a "tube" of width 0(r) centred on C, and if the 
other assumptions of the theorem are satisfied, then the trajectory described in 
the x—u space by the solution of (3.1) is a slowly traced path which takes place 
near the curve g(x, u)=0, or g(x, x)=0. Since the equation g(x, x)=0 contains 
no r, then x(t) will be bounded for some finite time interval / , and for some 
sufficiently small r. 

This interpretation and conclusion carries over immediately to the non-autono­
mous case and in particular to (2.2). 
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The above reasoning suggests that the solution to/(x0, x0, t)=0 would supply 
an approximation to the solution, y(t), of (2.1). However, if p(OII *s bounded by 
some constant al9 and if ||j(0—^o(OII<^3T then by the theorem on page 2, 
ll*(0—jKOII <a2r2> so that the agreement between x(t) and y(t) is possibly better 
than the agreement between x(t) and x0(t). 
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