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A SINGULAR PERTURBATION PROBLEM AND A
NEUTRAL DIFFERENTIAL-DIFFERENCE EQUATION

BY
EDWARD MOORE

1. Introduction. Vasil’eva, [2], demonstrates a close connection between the
explicit formulae for solutions to the linear difference equation with constant
coefficients

(1.1) 2(t) = Az(t—7)

where z is an n-vector, 4 an nXn constant matrix, >0, and a corresponding
differential equation with constant coefficients

(1.2) 7% = Bz.

(1.2) is obtained from (1.1) by replacing the difference z(r—7) by the first two terms
of its Taylor Series expansion, combined with a suitable rearrangement of the
terms.

We consider the vector differential-difference equation

(1.3) #(t—7) = G(t, x(1), (1))

On replacing %(t—7) by the first two terms of its Taylor Series expansion, and
suitably rearranging, we obtain

(1.4) i(t) = H(t, y(1), y(1)).
A comparison is made of the solutions between (1.3) and (1.4).

2. The vector differential-difference equation. The basic result is given in the
following theorem:

THEOREM. Suppose y(t), x(t) are n-vectors. Let y(O)=p(t—7)+ f(y, y, 1), 0<t<b

with y(t)=¢(t) for —r<t<0 where ¢(t) € C3, f(y, y, t) is differentiable and k, and
ko are positive constants such that

(%15 Y1, O=F (Xa, yoo DIl < kg [X3—%all+ks [y1—pall, 0Lt LD
Let wX(t)=f(x, X, t), with x(t)=¢(t) for —7<t<0 and

le® = IIx()—y®l.
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If O™ OILay for —r<t<b,
(ii) k, <1

(i) { ! ky }<1
! 21—k 20—kl S

then there exists a constant a, such that |e(t)|| <ap7® for 0<t<b. If (i) is replaced
by |x ()| <as/7, then
le®l < agr, for 0<t<Db.

We consider the vector differential-difference equation

2.1 ¥ = y(t—7)+f(y, 5,0, 0Lt<Lb,
with
y(@t) = ¢(t) for —7 <t <0,
é(t) e C3; f(y, y, t) is continuous and differentiable, and k&, and k, are constants
such that
IfCers Y1, D= (X2, Yo, DIl < kg 1 x1—=%2] + ks [|y1—yell.

We want to compare (2.1) with the equation

(2.2) () = f(x,x,1), 0<t<b,
where x(t)=¢(¢) for —7<t<L0.

Now

2
(2.3) %(t—7) = %(f)—7X(f) +;—"5e(z—07),
where 0<0<1. Substituting from (2.2) into (2.3),
2
(2.4) *(1) = X(t—1)+f(x, %, 1) —7:2—'x"(t—61-).
Hence, if x(f) solves (2.2), then it satisfies (2.1) approximately, the error E(t)
being
2

(2.4A) E(f) = % X(t—07).

Define the error e between the solutions x and y by e=x—y, so subtracting (2.1)
from (2.4)
(2.5) &) = (t—n)+f(x, X, )—f(y, », H+E().

Integrating the above equation,

(2.6) e(t)—e(0) = e(t—r)—e(—~r)+J; {f(x, %, 9)—f(y, y,9)} ds+J;E(s) ds
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But e(0)=e(—7)=0 because of the conditions imposed on y and x in (2.1) and
(2.2) respectively, and so (2.6) implies
T t t
@7 le®dl < lle(t—f)ll+k1f0 lle(s)1l ds+k2f0 @)l dS+f0 IE(s)I ds
Also, (2.5) implies
el < llet—n)+ky lle() | +ks €@+ IE@DI.

Assume 1>k,, so

lell < lle(t—f)ll + le(Oll+

1— k2 1— k2
Substitute for |le(t)], from (2.7), into the above inequahty, then

IE@].

(2.9) leml _<_ Ilé(t—'r)ll+ k2 1 kz lle(z—7)l
2 . kl ¢
1 sz lle(s)]l ds+ k2 fo ()l dS+1_k2 fo IE(s)I ds,
where we define E,,= max [|E(t)|.
0<¢<
From (2.4A) =

2
nx(t—er)n <% max ¥l
Ift € [—7, 0], then 3&(t)=¢»(t), so E,,=<c,72if qS(t) is bounded by ¢;. If ¢ € [0, b],
then E, <c;72 if (1)< ¢y, and E,, <cq7 if x(8) L ¢/ 7.

We want to show that the error e(f) between the solutions x(¢) and y(z) is, under
certain conditions, ‘“‘small” and tends to zero as = tends to zero. The resultant
inequality (2.7) for e(t) involves é(¢) and the inequality (2.9) for é(¢) involves e(z).
However [e(®)| < |le(®)||+|é()]], so this leads us to define the vector

— e
z(t) = l:é(t):l
Izl = Hlle®l+ 1O}
We thus have from (2.7) and (2.9),

with a norm such that

(2.10) [zl < {2+ } le(t—=n)l+ let—n)

2(1—k)

+ f {( 1+2(1"2k2)) ||e(5)”+(1k2 2(f kz)) Ile(s)ll}

1 k,
+2(1_k2) Em+£{%+2(1_k2)} [E(s)| ds

< A+C |2(i—7)|+B 0‘||z(s)|| s,

2(1 ks)
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where

= i B [ g kz)} G ds,

Al—ky) 2(1—ky) 2 2

CEmax{ L R ky +%}
2(1—ky)  2(1—k,)

Equation (2.10) is valid for #>7; thus there is a unique integer n>1, such that
nr<t<(n+1)7, and so (2.10) holds for ¢ € [nr, (n+1)7].

We now use the method of induction to show, with suitable conditions on ¥(¢)
and for ¢ € [n7, (n+1)7], that ||z(z)]| <7C* where C* is used as the generic symbol
for a constant, (independent of » and 7), i.e. C* may vary from equation to
equation.

We firstly consider the situation when n=0, i.e. ¢ € [0, 7]. Then, in (2.5), é(t)=
f(x, %, t)—f(y, y, t)+E(t) since é(t—7)=0 for 0<t<7; so

el < Ky Ile(t)||+kz Ilé(t)|]+Em; and for 1 < k,,

BEma{

@1 IO < 725 eI+ E
In (2.7), for Ogtgr,
@12) le(] < rEm+k1fo e s [ 11 ds.
From (2.11) and (2.12),
et < S 4 Pre asr 22 [ aconas

As before, we define

_ Teto.
() = [é(t)],
also, [2()={le(®)] + 13-

Hence, for 0<t< 7,
A 4+7(14+ky—k,))

t
N <L Em+l—Mf z(s)|| ds,
lz()l < 21—k 5 oIl Ol
where
P kk
M=max<k1,k2, k ,—12—).
1—ky, 1—k,
Let

1+7(1+k,—ks)
2(1—k»)

L

b
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then by Gronwall’s Inequality,
20l < E,.L exp(Mr).
Since E,,<Cyr, under appropriate conditions as given previously, then
Izl < 7C* for te]0,7].

We now assume the induction hypothesis, viz. that ||z(¢)]| <7C*, is true for
some integer (n—1), that is for ¢ € [(n—1)7, n7]. We want to prove that, for
t € [nr, (n+1)7], |z()| L 7C*.

We note, in passing, that E,<rC* and so, therefore, is 4. (2.10) may be
written as

120 < A-+C(rC)+B f I2(s)1 ds,

t
<L 7C*+B| |z(s)| ds.

0

On using Gronwall’s Inequality,
lz(D)]| < 7C*eBt < 7C*eB? < 7C*,
Hence, by the principle of induction,
Iz < =C*,
and so
le®ll = Ix(O) =yl < 7C* for 0Lt < b.

The theorem is now proved.

3. Boundedness of derivative. Condition (i) of the theorem on page 2 immediately
poses the problem as to when X(¢) is bounded. This leads to a consideration of the
conditions under which the solution of the singular perturbation problem (2.2)
converges to the solution of the equation obtained from (2.2) by putting 7=0;
this equation is called the degenerate equation.

Following Wasow [3], we summarise the results pertaining to the autonomous
differential system

X=u
3.1 Tu = g(x, u).
x0) =« y0) =4

where x is a scalar and u a two-dimensional vector. The mathematical analysis of
the problem is analogous for the non-autonomous problem and also for the
situation where x and u are vectors of any dimension.

We assume that g is continuous in an open region  of the (x, #) space and that
there is a function ¢(x) continuous in {;<x<{, such that the points (x, ¢(x)),
(,<xL¢,, are in Q and

g(x, #(x)) = 0.
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é(x) is called the root of the equation g(x, #)=0. A further assumption is that
there exists a positive #, independent of x, such that

lu—¢()| <m, u#¢(x) in <x<E

imply that g(x, u)#0, in {; <x< ;. Such a root ¢(x) is called isolated in {; <x <.
The boundary layer equation belonging to (2.15) is defined as

(3.2) Z—'; = g(x, u)

where x is a parameter.

Our next assumption is that the singular point u=¢(x) of (3.2) is asymptotically
stable for all x in {; <x<{,. Such a root is called a stable root. Finally, we assume
that (3.1) and the degenerate equation

X=u
(3.3) u = ¢(x)
x(0) =«

have a unique solution in an internal 0<#<b.
We define a point (a, f) € Q, {;<a<L,, to lie in the domain of influence of the
stable root #=¢(x) if the solution of the problem

Z—; =glwu), y0)=4p
exists and remains in € for all 7>0, and if it tends to ¢(«), as T—+ 0.

We now state Tihonov’s convergence theorem:

THEOREM. Let the above assumptions be satisfied and let (o, B) be a point in the
domain of influence of the root u=d¢(x). Then the solution x(t), u(t) of (3.1) is related
to the solution x,(t), uy(t)=a(xo(t)) of (3.3) by the fact that as 70, x(t)—x,(t),
u(t)—>ug(t)=d(xo(t)) for 0<t<LT,.

Here T, is any number such that u=(x,(t)) is anisolated stable root of g(xy(t), u)=
0 for {t:0<t<Ty}. The convergence is uniform in {t:0<t<To}, for x(t), and in
any interval I={t:0<t;<t< Ty} for u(t).

Tihonov’s theorem admits the following interpretation. If («, §) lies on the
curve C:g(x, u)=0, or is within a “tube” of width 0(7) centred on C, and if the
other assumptions of the theorem are satisfied, then the trajectory described in
the x—u space by the solution of (3.1) is a slowly traced path which takes place
near the curve g(x, #)=0, or g(x, X)=0. Since the equation g(x, X)=0 contains
no 7, then %(¢) will be bounded for some finite time interval I, and for some
sufficiently small 7.

This interpretation and conclusion carries over immediately to the non-autono-
mous case and in particular to (2.2).
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The above reasoning suggests that the solution to f(x,, X,, )=0 would supply
an approximation to the solution, y(¢), of (2.1). However, if |X(#)| is bounded by
some constant a;, and if |y(f)—x,(¢)l|<asr then by the theorem on page 2,
Ix()—y()l| <ay73, so that the agreement between x(t) and y(t) is possibly better
than the agreement between x(#) and x,(t).
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