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Eisenstein deformation rings

Frank Calegari

Abstract

We prove R = T theorems for certain reducible residual Galois representations. We answer
in the positive a question of Gross and Lubin on whether certain Hecke algebras T are
discrete valuation rings. In order to prove these results we determine (using the theory of
Breuil modules) when two finite flat group schemes G and H of order p over an arbitrarily
tamely ramified discrete valuation ring admit an extension not killed by p.

1. Introduction

In a previous paper [CE05], Emerton and the author studied modular deformation problems
associated to certain reducible representations. In particular, for odd primes p we considered the
totally split representation ρ given by (

1 0
0 χ

)
mod p,

where χ was the p-adic cyclotomic character. It was proved in [CE05] that deformations of ρ finite
flat at p and satisfying a certain ‘semistability’ condition at an auxiliary prime N were modular of
level Γ0(N), and the associated universal deformation ring R was isomorphic to TI, where T was
the full Hecke algebra of level Γ0(N) and I was the p-Eisenstein ideal. This enabled us to study the
Eisenstein ideal by directly studying deformations of ρ. In this paper, which can be seen as a sequel
to [CE05], we study non-split reducible representations ρ which are ramified only at p. Under certain
natural hypotheses, these representations are modular, and arise from cuspidal modular forms of
weight 2 and level Γ1(p) or Γ0(p2). We define certain deformation problems for ρ such that the
associated universal deformation ring can be identified with the appropriate Hecke algebra localized
at the Eisenstein ideal, and use this to deduce properties of the Hecke algebras in these cases.

There are several important differences in the techniques of this paper from those of [CE05].
In [CE05], the residual Eisenstein representation of level Γ0(N) is not minimal – it has Serre
conductor 1. Thus one could play off the minimal and non-minimal deformation problems using
techniques of Wiles. In this paper, ρ is minimal of the appropriate level, and the minimal defor-
mation problem is not trivially Zp, as it was in [CE05]. The techniques used to prove modularity
in this paper are quite different. One ingredient is the following trivial observation. Suppose the
following are true:

(i) R→ T is surjective;

(ii) T �= T/pn for any n;

(iii) R is a discrete valuation ring.

Received 9 September 2004, accepted in final form 25 February 2005.
2000 Mathematics Subject Classification 11F80.
Keywords: Galois representations, modular forms.

The author is supported in part by the American Institute of Mathematics.
This journal is c© Foundation Compositio Mathematica 2006.

https://doi.org/10.1112/S0010437X05001661 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X05001661


F. Calegari

Then R = T. By considering some very general properties of residual representations we estab-
lish a criterion that allows us to establish in many cases that R is a discrete valuation ring.
For universal deformation rings R for which this criterion does not apply, we construct another
universal deformation ring R′ (corresponding to certain modular forms of level 1) such that we
may apply our criterion to deduce that R′ is a discrete valuation ring. We then prove that R/p =
R′/p = T/p, and deduce from this that R = T.

In our deformation problems we consider finite flat group schemes over bases OK such that
e(K) > p− 1, and thus we are forced to utilize the theory of Breuil modules [Bre00]. In particular,
we need to consider finite flat group schemes G /OK that are not killed by p, which leads to certain
delicate computations with modules over divided power rings. As a consequence, however, we prove
an independently interesting result about certain group schemes of order p2 (see Theorem 2.7).

As in [CE05], the results of Skinner and Wiles [SW97] proving R = T theorems for reducible
representations do not apply, since our representations ρ are either locally split or are associated to
non-ordinary deformation problems.

For the case of representations ρ of level Γ1(p), we are forced to make certain divisibility
assumptions on Bernoulli numbers. Probabilistically, these assumptions should fail at most finitely
often, but we have no proof of this fact. It is clear that certain assumptions are required, however.
For example, without the assumption that the χ1−k-eigenspace of the class group of Q(ζp)
is cyclic, it is not even clear that the residual representations ρ we consider are modular.
These assumptions play no role in the Γ0(p2) case, however.

2. Results

Let p be an odd prime, let K = Q(ζp), and let K+ = Q(ζp)+ be the totally real subfield of K.
Fix once and for all an embedding Q → Qp, and let Kp and K+

p denote the respective localizations
of K and K+ inside Qp. Let 2 < k < p−1 be an even integer, and suppose that the χ1−k-eigenspace
of the class group of K is cyclic. This is a well known consequence of Vandiver’s conjecture (see for
example [Gre01]). Let χ be the cyclotomic character, and let ω ≡ χ mod p be the Teichmüller
character. Let Bn denote the classical Bernoulli numbers, defined as follows:

tet

et − 1
=

∞∑
n=0

Bnt
n

n!
.

If ϕ is a character of Gal(Q/Q) of conductor p then one may also define Leopoldt’s generalized
Bernoulli numbers Bn,ϕ by the following generating series:

p−1∑
k=0

ϕ(k)tekt

ept − 1
=
Bn,ϕt

n

n!
.

For integral n � 1 one has the following congruence [Lan78, Theorem 2.3]:

1
n
Bn,ωk−n ≡ 1

k
Bk mod p.

Let ρ be the unique non-split representation(
1 �
0 χk−1

)
mod p

that is unramified over K. It follows from [Rib76] that ρ is modular of weight 2 and level Γ1(p). Let V
be the two-dimensional vector space on which ρ acts. We consider the following deformation problem
for ρ: for a local artinian ring A with residue field Fp, let D(A) denote the set of deformations (ρ, V )
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of (ρ, V ) satisfying the following properties:

(i) the determinant of ρ is χ · ωk−2;

(ii) the representation ρ is unramified outside p;

(iii) the representation ρK+
p

on V is the generic fibre of a finite flat group scheme G /OK+
p
.

Since e(K+
p ) = 1

2(p − 1) < p − 1, the finite flat group scheme G is determined up to isomorphism
by ρ. The following result is standard.

Theorem 2.1. The functor D is (pro)-representable by a universal deformation ring R.

Definition 2.2. Fix k. Let T be the cuspidal Hecke algebra of weight 2 and level Γ1(p) generated
by T� for � �= p. Then the (p, k)-Eisenstein ideal I is the maximal ideal of T containing T�−1− �k−1

for all � �= p.

Since it will be clear from the context, we usually refer to I as the Eisenstein ideal. Note that we
define I to be maximal, contrary to the usual definition. Since we are only interested in TI, however,
there should hopefully be no confusion. We prove the following theorem.

Theorem 2.3. Suppose that either p‖B2,ωk−2 or p‖Bk. Then there is a natural isomorphism R � TI.
The ring R is monogenic over Zp, and if p‖B2,ωk−2 , then R is a discrete valuation ring.

The other residual representations we consider in this paper are wildly ramified, and arise from
level Γ0(p2). Let p be prime, and let k < p− 1 be a positive integer such that

k �= 0, 1,
p− 1

2
,
p+ 1

2
.

Let k′ < p − 1 be the unique positive integer such that k′ + k ≡ 1
2(p + 1) mod p − 1, and assume

that p �B2k and p �Bp+1−2k. Let ρ be the unique non-split representation of the form(
χk �
0 χ1−k

)
mod p

that is unramified away from p. The Bernoulli condition ensures that any non-split representa-
tion is wildly ramified at p. The existence and uniqueness of ρ is a simple exercise in class field
theory. The representation ρ is modular of weight 2 and level Γ0(p2), and if 2k > p + 1 actually
occurs as a subrepresentation of the Jacobian J0(p2) (see [GL86]). The Bernoulli number condition
also ensures that ρ is not a twist of a representation coming from Γ1(p) (necessarily of the other
residual representations we are considering), and thus ρ is ‘genuinely’ of level p2. Let K/Qp

denote a tamely ramified extension of degree p + 1. Let V be the two-dimensional vector space
on which ρ acts. We consider the following deformation problem for ρ: for a local artinian ring A
with residue field Fp, let D(A) denote the set of deformations (V, ρ) of (V , ρ) to A satisfying the
following properties:

(i) the determinant of ρ is χ;

(ii) the representation ρ is unramified outside p;

(iii) the representation ρ|K on V is the generic fibre of a finite flat group scheme G /OK .

Since e(K) = p+ 1 � p− 1, finite flat group schemes are typically not determined by their generic
fibre. It transpires, however, that for the choice of k above (in particular 2k �≡ 0, 2 mod p− 1) that
ρ does uniquely determine a finite flat group scheme G /OK . We have the following theorem.

Theorem 2.4. The functor D is (pro)-representable by a universal deformation ring R.

65

https://doi.org/10.1112/S0010437X05001661 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001661


F. Calegari

Definition 2.5. Let T be the cuspidal Hecke algebra of weight 2 and level Γ0(p2). Then the
(p, k)-Eisenstein ideal is the maximal ideal I of T containing T� − �k − �p−k for all � �= p.

We prove the following theorem.

Theorem 2.6. There is a natural isomorphism R � TI. The ring R is a discrete valuation ring.
If p ≡ 3 mod 4 and k = k′ = (3p − 1)/4, then R � Zp.

This theorem was the main motivation for this paper. It answers a question of Gross and Lubin
[GL86, p. 310], who asked whether TI was always a discrete valuation ring.

Our last result is a consequence of finite flat group scheme calculations required to prove
Theorem 2.6, although it is interesting in its own right. First recall that (after choosing a uniformizer
π ∈ OK) a finite flat group scheme G /OK of order p is specified by its Oort–Tate parameters, a pair
(r, a) with r ∈ Z satisfying 0 � r � e = e(K/Q), and a ∈ OK/m.

Theorem 2.7. Let K/Qp be a finite extension of ramification degree e, where (e, p) = 1. Consider an
exact sequence of finite flat group schemes:

0 → H ′ → H → H ′′ → 0

and suppose that H ′ and H ′′ are finite flat group schemes of order p. Then one of the following
holds:

(i) H is killed by p;

(ii) H is étale or multiplicative, and H [p] is finite flat;

(iii) there exists a non-trivial morphism H ′′ → H ′ that is not an isomorphism, and H [p] is not
a finite flat group scheme.

Moreover, given a non-trivial morphism H ′′ → H ′ there exists an extension H ∈ Ext(H ′′,H ′)
such that H �= H [p] if and only if the Oort–Tate parameters (s, b) of H ′ and (r, a) of H ′′ satisfy
either of the following inequalities: r � ps or (e− s) � p(e− r).

3. Generalities on Eisenstein representations

The main reference for this section is the paper of Belläıche and Chenevier [BC05]. In this section
we record some general remarks about residually reducible representations. Let (A,m, k) be a local
p-adically complete ring. Given a representation ρ : Gal(Q/Q) → GL2(A) such that

ρ : Gal(Q/Q) → GL2(A/m) = GL2(k)

is reducible and unramified outside p and ∞, we shall derive a sufficient criterion for A to be a
discrete valuation ring. The results of this section should not be considered original, and follow
almost directly from the arguments of [BC05]. The spirit of these arguments is also very similar to
the work of Ribet and Papier [RP81]. We shall use the notation of [BC05], however.

Let G be a quotient of Gal(Q/Q) such that ρ factors through G. We may consider ρ as a
representation of G into GL2(A). Let T : G → A denote the composite of ρ with the trace map.
Suppose that the semi-simplification (ρ)ss is given by χ1 ⊕ χ2. We shall assume that χ1 �= χ2.
Fix s ∈ G such that χ1(s) �= χ2(s). The characteristic polynomial of ρ(s) has two distinct roots
modulo m, and thus by Hensel’s Lemma has roots λ1 and λ2 with λi ≡ χi(s) mod m. Choose a basis
of the representation ρ such that ρ(s)ei = λiei. Let a, b, c, d be the matrix entries of ρ with respect
to this basis, and let B and C be the A-ideals generated by b(g) and c(g) respectively, for g ∈ G.
Let I ⊂ A be a proper ideal such that T mod I can be written as the sum of two characters ψ1, ψ2

such that ψi mod m = χi.
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Lemma 3.1. For all g, g′ ∈ G, a(g) − ψ1(g) ∈ I, b(g) − ψ2(g) ∈ I, and b(g)c(g′) ∈ I.

Proof. This is Lemme 1 of [BC05].

Lemma 3.2. There is an injection of A-modules

HomA(B/IB,A/I) → Ext1(A/I)[G](ψ2, ψ1).

Definition 3.3. The ideal of reducibility of A is the largest ideal of A such that T mod I is the
sum of two characters. There is an equality I = BC.

Lemma 3.4. Suppose that A is noetherian, that the ideal of reducibility is maximal, and that

dimk Ext1k[G](χ2, χ1) = dimk Ext1k[G](χ2, χ1) = 1.

Then the maximal ideal m of A is principal. If moreover A admits a surjective map to a ring of
characteristic zero, then A is a discrete valuation ring.

Proof. One has dimk B ⊗A k � 1. Thus by Nakayama’s Lemma, B is a cyclic A-module, and hence
principal. A similar argument applies to C, and thus m = I = BC is principal. Let m = (π).
By Krull’s Intersection Theorem each element of A is of the form uπk for some unit u ∈ A.
Since A admits a surjective map to a ring of characteristic zero, π is not nilpotent. Thus A is
a discrete valuation ring.

3.1 The general strategy
Let us now explain the general strategy of this paper. In both cases we are considering a reducible
representation ρ, and a suitable universal deformation

ρuniv : Gal(Q/Q) → GL2(R)

unramified outside p and ∞. If Q{p,∞} denotes the maximal extension of Q unramified outside p
and ∞, then ρuniv a fortiori factors through Gal(Q{p,∞}/Q). Moreover, in either case χ1/χ2 is some
non-trivial power of the cyclotomic character, and so of the form χi for some i �= 0. Our assumptions
regarding Vandiver’s conjecture (in the case of Γ1(p), and automatically in the case of Γ0(p2))
imply that Ext1Fp[G](1, χ

i) and Ext1Fp[G](1, χ
−i) are one-dimensional, where G = Gal(Q{p,∞}/Q).

The universal deformation rings are topologically finitely generated over Zp and thus noetherian.
Thus if I is the ideal of reducibility of R, then I is principal. Providing R admits a surjection
to T, we infer that R is a discrete valuation ring whenever the ideal of reducibility is maximal.
The following lemma is trivial.

Lemma 3.5. The ideal I of R is maximal if and only if there does not exist a surjection R/I →
Fp[x]/x2 or R/I → Z/p2Z.

In view of the description of R as a universal deformation ring, it therefore suffices to show
that ρ does not admit any non-trivial deformations to GL2(Fp[x]/x2) or GL2(Z/p2Z) that are upper
triangular. For the representations we consider of level Γ0(p2), it turns out that there are never
any such deformations. For level Γ1(p), however, their may exist upper triangular deformations
to Z/p2Z. This happens whenever p2|B2,ωk−2 (I do not know any example where this happens,
although it is conjectured to happen infinitely often). To deal with this possibility, we switch to
another deformation ring R′ corresponding to deformations of ρ that arise from modular forms of
weight k and level Γ0(1). The ring R′ is a discrete valuation ring whenever p2 �Bk by the same
proof as in Lemma 3.4. By our assumptions on Bernoulli number divisibility this is always the case.
Thus the failure of R to be a discrete valuation ring forces R′ to be a discrete valuation ring. In this
situation we find that R′ � T′, where T′ is the cuspidal Hecke algebra of weight k and level Γ0(1)
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localized at the Eisenstein ideal. One knows, however, that T′/p � T/p. Moreover, by purely local
considerations it follows that R′/p � R/p. From these facts (along with the observation that T is
torsion free) we may conclude that R = T.

One of the main technical difficulties of the paper is determining the upper triangular defor-
mations of ρ to Fp[x]/x2 and Z/p2Z. Note that it is not always the case that the ‘Eisenstein
ideal’ as defined by Mazur (and others) is the ideal of reducibility. Indeed, for J0(N) this is never
the case. For example, for N = 11, the Hecke algebra T � Z and the Eisenstein ideal I � (5).
However, one easily finds that the ideal of reducibility is (25). This was noted by Serre, and in the
optic of the Eisenstein ideal was pointed out by Mazur (see for example the discussion in [Maz77,
Proposition 18.9, pp. 138–139]).

As a computational observation, it is typically the case that R = TI = Zp. This is not always
true, however. For example, when p = 547 and k = 486, and ρ is the residual representation of
level Γ1(547), then using William Stein’s Modular Forms Database one finds that

TI/p � Fp[x]/x2.

Similarly, although I know of no examples, there is no reason why p2 cannot divide B2,ωk−2.
Note, however, that if both conditions occur simultaneously, then R cannot be a discrete valua-
tion ring. This follows from the fact that the ideal of reducibility I = (a) is principal, and the only
discrete valuation ring R that admits a surjection R/a→ Z/pn for some n � 2 is Zp.

4. Deformations of level Γ1(p) and Γ0(p2)

4.1 Eisenstein deformations at level Γ1(p)
Let 2 � k < p − 1. The residual representations considered in this section were studied by
Ribet [Rib76], who proved that, whenever p|Bk for even k, the χ1−k-eigenspace of the class group of
K = Q(ζp) is non-trivial (the converse of this statement is a more classical theorem of Herbrand).
Moreover, given such a p and k, there exists a non-split representation(

1 �
0 χk−1

)
mod p

that is unramified over K. The arguments of Ribet may be summarized as follows. Since B2 = 1/6,
k �= 2 and thus χk−1 �= χ. Inside some variety J isogenous to J1(p)/J0(p) one may find a non-split
representation ρ of the shape above. Now J acquires everywhere good reduction over the totally
real subfield K+ of K. The results of Raynaud [Ray74] imply that group schemes over a base of
ramification e < p − 1 are determined by their generic fibre. Thus the representation ρ over K+

p is
seen to arise from a finite flat group scheme over OK+

p
that is an extension of a local group scheme

by an étale group scheme. The connected–étale sequence therefore splits this extension of group
schemes, and thus ρ is locally split at p over K. This implies that ρ is the representation considered
above. Let V be the two-dimensional representation corresponding to ρ. For a local artinian ring A
with residue field Fp, let D(A) denote the set of deformations (V, ρ) of (V , ρ) to A satisfying the
following properties:

(i) the determinant of ρ is χ · ωk−2;
(ii) the representation ρ is unramified outside p;
(iii) the representation ρ|K+

p
on V arises from a finite flat group scheme over OK+

p
.

Theorem 4.1. The functor D is (pro)-representable by a universal deformation ring R.

Proof. This result can now be considered relatively standard (see for example [CDT99] and
[BCDT01]). Let us make a few remarks, however. First note that EndGal(Q/Q)(V ) = Fp, and thus
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the ‘unadorned’ universal deformation ring exists. Let us make precise what is meant by saying
that ρK+

p
arises from a finite flat group scheme over OK+

p
. Essentially it stipulates the existence

of a group scheme G /OK+
p

such that the induced representation of Gal(Qp/K
+
p ) on the generic

fibre gives rise to ρ|K+
p
. Since ρ is defined over Qp, this implies that the generic fibre of G also

descends to Q. Thus we automatically obtain a pair (G , φ), where G is a finite flat group scheme
over K+, and φ is an action of Gal(K+/Q) on the generic fibre of G (which extends to an action
on G ). One calls such a pair (G , φ) a group scheme with generic fibre descent data. Note that since
e < p− 1, the group schemes G are uniquely determined by the deformations ρ.

Lemma 4.2. There is no non-trivial element of D(Fp[x]/x2) such that ρ is upper triangular.
The ring R is generated as a Zp-algebra by traces.

Proof. Suppose that ρ : Gal(Q/Q) → GL2(Fp[x]/x2) is upper triangular, and let G /OK+
p

be the
associated finite flat group scheme. Let ψ be the character corresponding to the upper left-hand
corner of the representation. Then the Galois representation ψ|K+

p
gives rise to a subrepresentation

of the generic fibre of G , and thus to a finite flat subgroup scheme H of G . The generic fibre of
H has a filtration by constant Galois modules. Since e = 1

2 (p − 1) < p − 1, H is therefore an
extension of constant group schemes. Thus H is an extension of étale group schemes, and therefore
H is étale. Thus ψ considered as a character of Gal(Q/Q) is unramified at p and thus unramified
everywhere. By simple class field theory it follows that ψ is trivial. In particular, ρ must have the
shape: (

1 �
0 χk−1

)
∈ GL2(Fp[x]/x2).

As in Ribet [Rib76], the connected–étale sequence implies that G splits over OK+
p
, and thus that ρ is

unramified over K+. If ρ defines a non-trivial representation to GL2(Fp[x]/x2), we see that its kernel
must cut out a (Z/pZ)2 unramified extension of Q(ζp). Since this contradicts our assumptions on ρ,
the result follows. To show that R is generated by traces, it suffices to show that any non-trivial
deformation of ρ to GL2(Fp[x]/x2) is generated by traces. This follows in a standard way from the
fact that (by Nakayama’s Lemma) R is generated as a Zp-algebra by the generators of mR/(m2

R, p).
Let ρ be a deformation of ρ to GL2(Fp[x]/x2) that cannot be written as an upper triangular
representation. Write the matrix entries of ρ as functions a, b, xc and d of Gal(Q/Q). Then if
σ ∈ Gal(Q/Q(ζp)), then Det(ρ(σ))−Trace(ρ(σ)) = xb(σ)c(σ). Since c is non-trivial (by assumption),
the Cebotarev density theorem implies there exists a σ such that b(σ)c(σ) �= 0. Since Det(ρ(σ)) = 1,
it follows that the traces of ρ generate Fp[x]/x2.

Definition 4.3. Let T be the cuspidal Hecke algebra of weight 2 and level Γ1(p). Then the
(p, k)-Eisenstein ideal I is the maximal ideal of T containing T� − 1 − �k−1 for all � �= p.

Lemma 4.4. There exists a surjective map R→ TI.

Proof. If T̃I denotes the normalization of TI, then we may write T̃I =
∏d

i=1 Oi, where each Oi

is a discrete valuation ring finite over Zp. The rings Oi are in bijection with normalized newforms
f of level Γ1(p) such that if ρf is an integral p-adic Galois representation associated to f , then
(ρf )ss = (ρ)ss. Arguing as in Ribet [Rib76], for each form f , there exists a lattice such that the
reduction ρf is a non-split extension of χk−1 by 1. Since f has level Γ1(p) this implies that ρf

splits over Kp and thus is unramified after restriction to K. By assumption (on the cyclicity of
the χ1−k-eigenspace of the class group) this uniquely determines ρf , and thus ρf = ρ. It follows
that ρf is a deformation of ρ, and thus there exists a map R → Oi. In particular, we obtain a
map R → ∏d

i=1 Oi = T̃I. Since R is generated by traces, the image R is also generated by traces.
The image of Trace(ρuniv(Frob�)) for � �= p is T� ∈ T. Since Frobenius elements are dense in
Gal(Q/Q), the image of R is exactly TI.
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Lemma 4.5. If p2 �B2,ωk−2 then there are no deformations of ρ in D(Z/p2Z) that are upper
triangular.

Proof. As in Lemma 4.2, the character ψ corresponding to the upper left-hand corner must be
trivial, and thus ρ is of the form (

1 �
0 χωk−2

)
∈ GL2(Z/p2Z),

where ρ|Qp(ζp2 ) is totally split. Thus this defines a degree p2 unramified extension of Q(ζp2), which
implies the divisibility of Bernoulli numbers.

Corollary 4.6. Suppose that p2 �B2,ωk−2 . Then R is a discrete valuation ring and R = T.

Proof. By Lemmas 4.2 and 4.5, we conclude that the ideal of reducibility I of R is maximal.
Since R → T, p is not nilpotent in R, and thus R is a discrete valuation ring. That R � T is then
obvious, since T is non-trivial and has characteristic zero.

Thus to complete the proof of Theorem 2.3 we are now left to consider the case that p2|B2,ωk−2 .
We may therefore assume that p‖Bk. Note that, for any p, the naive probability that there exists a
2 � k < p−1 such that p2‖B2,ωk−2 is approximately 1/p. The further condition that p2‖Bk decreases
this probability to 1/p2. Thus one might suppose that the divisibilities p2|Bk and p2|B2,ωk−2 occur
at most finitely often for all p. I do not know of any examples in which either condition is satisfied.

Let us now assume that p‖Bk. Instead of proving the modularity of R directly, we shall switch
to another deformation problem. We note, firstly, that the representation ρ is modular of level 1 and
weight k. Certainly there exists a non-split representation ρ′ of that level with (ρ′)ss = (ρ)ss. On the
other hand, ρ′ is crystalline (in the sense of Fontaine and Laffaille [FL82]) with Hodge–Tate weights
[0, k−1], which must necessarily be split locally over Kp. By our assumptions such a representation
is unique, so it must equal ρ. We define the following deformation problem D′.

(i) The determinant of ρ is χk−1.

(ii) The representation ρ is unramified outside p.

(iii) The representation ρ is ordinary at p, i.e. there exists an exact sequence

0 → V ′ → V → V ′′ → 0,

where V ′ and V ′′ are free A-modules of rank 1, and Gal(Qp/Qp) acts on V ′′ via an unramified
character.

Theorem 4.7. The functor D′ is representable by a universal deformation ring R′. Moreover, if A
is an artinian ring killed by p, then D(A) ⊆ D′(A), and thus there is a surjection R′/p→ R/p.

Proof. The existence of R′ is standard. One could also try to define D′ to be deformations that
are crystalline with Hodge–Tate weights [0, k − 1] and presumably this would define an equivalent
functor. Let (ρ, V ) be a deformation in D(A). Consider the connected–étale sequence attached to
the finite flat group scheme associated to ρ. On generic fibres, it induces an exact sequence

0 → V ′ → V → V ′′ → 0.

Since V ′′ and V ′ are one-dimensional it follows from Nakayama’s Lemma that V ′′ and V ′ are cyclic.
By a counting argument it follows that V ′ and V ′′ are free. Since e = 1

2 (p − 1) < p, this splitting
descends to Qp, and it follows that V is ordinary. The existence of a surjection R′/p→ R/p follows
by Yoneda’s Lemma.

70

https://doi.org/10.1112/S0010437X05001661 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001661


Eisenstein deformation rings

Note that this argument also implies that deformations ρ ∈ D(A) are in general ordinary. If ρmod

is the representation

ρmod : Gal(Q/Q) → GL2(TI),

it follows that Tp is given by the action of Frobenius on the unramified quotient. Thus Tp ∈ TI.

Lemma 4.8. If p‖Bk then R′ is a discrete valuation ring.

Proof. Let I ′ be the ideal of reducibility of R′. The case of upper triangular deformations to
GL2(Fp[x]/x2) is essentially the same argument as for R, except that now the splitting of Galois
modules over Kp comes from the ordinary hypothesis rather than the connected–étale sequence.
Consider a reducible deformation ρ ∈ D′(Z/p2Z). Let ψ be the character corresponding to the
upper left-hand corner of the representation. Then ψ|Qp is an extension of a trivial representa-
tion by a trivial representation. If ψ is ramified at p then ρ can certainly not be ordinary, so ψ is
unramified at p and thus trivial. Hence ρ is of the form(

1 �
0 χk−1

)
∈ GL2(Z/p2Z).

Moreover the ordinary hypothesis implies that the representation must split locally over Kp.
The kernel of ρ defines a degree p2 unramified χ1−k extension of Q(ζp2), and in particular implies
that p2|Bk. This contradicts our assumption. Thus I is maximal in R′, and thus R′ is a discrete
valuation ring.

Let T′ be the cuspidal Hecke algebra of level 1 and weight k, and let I be the Eisenstein
ideal. Since k < p − 1, the cuspidal Eisenstein deformations are ordinary and in the usual way
we obtain a surjection R′ → T′

I, which must be an isomorphism. Note that this is expected since
ordinary representations of weight k > 2 are automatically crystalline. There is a standard identifica-
tion T′

I/p � TI/p which follows from the identification S2(Γ1(p), ωk−2,Z/pZ) = Sk(Γ0(1),Z/pZ).
Thus R′/p = T′

I/p = TI/p = Fp[x]/xe for some e (recall that R′ is a discrete valuation ring,
so monogenic over Zp). Since R′/p surjects onto R/p by Theorem 4.7 and R/p surjects onto TI/p,
it follows that R/p = Fp[x]/xe also. Thus there exists the following diagram.

Zp[[x]] �� �� R �� ��

����

R/p � Fp[x]/xe

TI �� �� TI/p � Fp[x]/xe

Since TI is a monogenic and torsion free, it must be isomorphic to Zp[[x]]/f for some polynomial
f(x) ≡ xe mod p of degree � e−1. Thus R � Z[[x]]/I with I = Jf . Since R/p � Fp[x]/xe, it follows
that the image of the ideal J in Fp[x]/xe contains 1. Thus J contains 1, and R � TI. This completes
the proof of Theorem 2.3.

It was observed by Stein [CS05] that, although p can divide the discriminant of the Hecke
algebra of weight 2 and level Γ0(p) (for example when p = 389), it never appears to divide the
index. Equivalently, if Tm is a localization of the Hecke algebra T of weight 2 and level Γ0(p), then
Tm is a discrete valuation ring. Computations of Stein also suggest this conjecture may be true
at level Γ1(p). Although we do not prove this conjecture in the Eisenstein case, there are some
interesting connections that arise. If E is an elliptic curve of conductor p then the associated Hecke
algebra is an integral domain if and only if p does not divide the modular degree. As Stein notes, a
result of Flach implies that the modular degree annihilates a certain Selmer group [Fla92], which can
in turn be considered a form of generalized class group. Thus the conjecture that Tm is an integral
domain translates into the conjecture that p does not divide the order of a certain ‘class group’,
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and so resembles the statement of Vandiver’s conjecture. For Eisenstein representations of level
Γ1(p), we see that the same question is intimately related to the actual Vandiver’s conjecture.

4.2 Eisenstein deformations at level Γ0(p2)
Let p be prime, and let k < p− 1 be a positive integer such that

k �= 0, 1,
p− 1

2
,
p+ 1

2
.

Let k′ < p− 1 be the positive integer such that k+ k′ = 1
2(p+ 1) mod p− 1, and assume that p �B2k

and p �Bp+1−2k. Under these conditions, there is a unique representation ρ of the form(
χk �
0 χ1−k

)
mod p

that is wildly ramified at p and unramified outside p. It follows from [GL86] that ρ is modular of
weight 2 and level Γ0(p2). Let K/Qp denote a tamely ramified extension of degree p + 1. We shall
study deformations of ρ that arise from finite flat group schemes over K. Since e(K) = p+1 > p−1,
however, a Galois module that arises from a finite flat group scheme does not necessarily determine
a unique finite flat group scheme. We prove, however, the following result (see Lemma 5.18).

Theorem 4.9. Let k be as above, and let V be the representation corresponding to ρ. Then there
exists a unique finite flat group scheme G /OK with generic fibre descent data to Qp isomorphic
to V .

To prove this theorem, we need to study the category of finite flat group schemes over K.
An explicit theory of finite flat group schemes over discrete valuation rings of arbitrary ramification
was constructed by Breuil [Bre00].

For a local artinian ring A with residue field Fp, let D(A) denote the set of deformations (V, ρ)
of (V , ρ) to A satisfying the following properties:

(i) the determinant of ρ is χ;
(ii) the representation ρ is unramified outside p;
(iii) the representation ρ|K on V is the generic fibre of a finite flat group scheme G /OK .

Note that finite flat group schemes over OK do not form an abelian category. However, through-
out this paper we implicitly use the following lemma.

Lemma 4.10. Let

0 → H ′ → H → H ′′ → 0
be a short exact sequence of finite Galois modules such that H is the generic fibre of a finite flat
group scheme H /OK . Then there exist (unique) finite flat group schemes H ′ and H ′′/OK which
fit into a short exact sequence

0 → H ′ → H → H ′′ → 0,
and such that taking generic fibres in this sequence yields the exact sequence of Galois modules
above.

This lemma is proved in [Con99, § 1.1]. The group scheme H ′ will be the scheme theoretic
closure of H ′ inside H . Note however that, even if the map H → H ′′ is ‘multiplication by p’, this
does not identify H ′ with H [p]. Indeed, it might be the case that H [p] is not even a finite flat
group scheme. However, in view of Lemma 4.10 one certainly has the following theorem.

Theorem 4.11. The representation D is representable by a universal deformation ring R.
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Proof. This follows in the standard way.

Lemma 4.12. There is no non-trivial element of D(Fp[x]/x2) such that ρ is upper triangular.
The ring R is generated by traces, and moreover there exists a surjective map R→ TI.

Proof. Our proof is along the same lines as Lemma 4.2. Suppose that ρ : Gal(Q/Q) → GL2

(Fp[x]/x2) is upper triangular, and let G /OK be the associated finite flat group scheme. Let ψ be
the character corresponding to the upper left-hand corner of the representation. Then the Galois
representation ψ|K gives rise to a subrepresentation of the generic fibre of G , and thus to a finite
flat subgroup scheme H of G . The generic fibre of the group scheme H has a filtration by two
copies of the Galois module Fp(ωk). Since Fp(ωk) extends to a unique group scheme H ′ over OK

by Corollary 5.17, the scheme H is an element of Ext1(H ′,H ′). Moreover, H admits generic fibre
descent data to Qp. It follows from Corollary 5.20 that all such extensions split over the maximal
unramified extension Kur. In particular, we see that the character ψ : Gal(Q/Q) → Fp[x]/x2 must
be the kth power of the cyclotomic character. Thus ρ must have the shape:(

χk �
0 χ1−k

)
∈ GL2(Fp[x]/x2).

The kernel of ρ therefore defines a (Z/pZ)2 extension of Q(ζp) on which Gal(Q(ζp)/Q) acts
via χ2k−1. Yet since the χ2k−1-eigenspace of the class group of Q(ζp) is trivial (by assumption),
the maximal χ2k−1 extension of Q(ζp) has order p. Thus we have a contradiction, and no non-
trivial upper triangular deformation of ρ to GL2(Fp[x]/x2) exists. That R is generated by traces
follows as in Lemma 4.2, and that there exists a surjective map R → TI follows similarly as in
Lemma 4.4. It suffices to prove that the representations ρf do actually come from (inverse limits
of) finite flat group schemes over K. This follows from [GL86, Corollary 12.5], since the associated
abelian varieties acquire good reduction over the extension (there denoted by) M of ramification
degree e|p + 1.

Lemma 4.13. There is no non-trivial element of D(Z/p2Z) such that ρ is upper triangular.

Proof. Consider such a representation ρ. As in Lemma 4.12, consider the character ψ|K , and the
(uniquely) associated finite flat group scheme H /OK . By considering the filtration on the generic
fibre of H , we once more infer that H ∈ Ext1(H ′,H ′). Since the generic fibre of H is not killed
by p, it follows that H itself is not killed by p. But by Corollary 5.2, there are no extensions at all
of H ′ by H ′ not killed by p! Thus we are done.

We conclude from Lemmas 4.12 and 4.13 that the ideal of reducibility I is maximal, and thus
that R is a discrete valuation ring, and R � TI. To complete the proof of Theorem 2.6, we must
prove that TI � Zp when p ≡ 3 mod4 and k = (3p− 1)/4. Since R is a Zp-algebra of characteristic
zero, it suffices to prove that R does not admit a surjective map to Fp[x]/x2, or equivalently that
D(Fp[x]/x2) is empty. We have already seen that D(Fp[x]/x2) does not contain any upper triangular
elements. Suppose that it contains an irreducible representation ρ. Let 
 be the twist of ρ by χ−k.
Then 
 is the representation (

1 �

0 ω(p−1)/2

)
.

Thus the kernel of 
 is a degree p extension of F = Q(
√−p), the quadratic subfield of Q(ζp).

Let L = F.Q(ζp) be the kernel of 
, and H the kernel of 
. There is an exact sequence

0 → Gal(H/L) → Gal(H/Q) → Gal(L/Q) → 0.

We claim this sequence is a semidirect product. The element of order 2 in Gal(L/Q) lifts uniquely.
Since Gal(L/Q) ⊂ GL2(Fp[x]/x2), we see that the 2-Sylow subgroup acts an involution. Any lift-
ing of the order p element of Gal(H/Q) (which will have order p) therefore provides a splitting.
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By assumption 
|L is not upper triangular. It follows that Gal(H/L) has order p3, and moreover H
must have a subfield E such that Gal(E/F ) has order p2 and Gal(F/Q) acts on Gal(E/F ) as −1.
Yet this is a contradiction, since F admits at most (in fact exactly) one extension of degree p of
this form. Thus 
 and ρ must be upper triangular, a contradiction.

In general we have not ruled out the possibility that TI is always Zp, but one suspects that this
is a feature of the limited range of computation available.

5. Breuil modules

Throughout this section we shall freely refer to the results and notation of [Bre00]. A reference for
Breuil modules killed by p as k[u]/uep-modules is [BCDT01], and we also use some theorems of
Savitt [Sav04] to determine certain extensions killed by p of finite flat group schemes that admit
generic fibre descent data to Qp. Our general approach will be to prove some statements about
extensions of a finite flat group scheme over an arbitrary tamely ramified discrete valuation ring.
The techniques and technology are essentially due to Breuil [Bre00], following results of Fontaine.
Let K/Qp be a tamely ramified extension (of arbitrary degree).

Theorem 5.1. Let G be a finite flat group scheme of order p2 over OK . Then G sits inside an exact
sequence

0 → Gs,b → G → Gr,a → 0

of Oort–Tate group schemes. If G is not killed by p then there exists a non-trivial morphism of
group schemes Gr,a → Gs,b. Moreover, if G is not killed by p then G [p] is finite flat if and only if G
is étale or multiplicative, or equivalently if and only if G is isomorphic to Z/p2Z or µp2 over OKur.
For any pairs (r, a) and (s, b) for which there does exist a non-trivial map Gr,a → Gs,b that is not
an isomorphism, there exists a corresponding extension G not killed by p if and only if r � ps or
(e− s) � p(e− r).

This is a combination of Lemma 4.10, Corollary 5.14 and Lemma 5.15. As an application, we
have the following corollary.

Corollary 5.2. Let K be a tamely ramified extension of degree e = p + 1. Let G be a finite
flat group scheme of order p2 such that the generic fibre is an extension of Fp(ωk) by Fp(ωk).
Suppose moreover that k �≡ 0, 1, (p − 1)/2, (p + 1)/2 mod p − 1. Then G is killed by p. In
particular, the generic fibre is killed by p.

Proof. From the classification of group schemes of order p (see for example [BCDT01, Example 5.2],
Theorem 5.16 and Corollary 5.17) we find that, for k outside the exceptional listed set, the Galois
representation Fp(ωk) arises from a unique finite flat group scheme of order p. It follows from
Theorem 5.1 that either G = G [p] or G is étale or multiplicative. Since Fp(ωk) is not étale or
multiplicative, the result follows.

5.1 Definitions

We rely extensively on [Bre00]. Let p be an odd prime, and let e be an integer coprime to p.
Let F ⊂ Fp, W = W (F), K0 = W ⊗Qp. Let K be a totally tamely ramified extension of K0. Let π
be a uniformizer of OK with minimal polynomial E(u) = ue + p. Let vn = v(pn!). Let S be the
p-adic completion of

W [u,Xn], where Xn =
uepn

pvn
for n � 1.
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Let Fil1S be the W -submodule of S topologically generated by Yn = E(u)p
n
/pvn for all n. There is

an isomorphism
S/Fil1S � OK , u 
→ π.

Let φ be the unique additive map S → S, semilinear with respect to the absolute Frobenius on W ,
continuous for the p-adic topology, compatible with the divided powers, and satisfying φ(u) = up.
Let

φ1 =
φ

p

∣∣∣∣
Fil1S

,

and let Sn = S/pn.

Definition 5.3. The category of Breuil modules (denoted by ′(Mod/S)) consists of triples
(M,Fil1M, φ1) such that:

(i) M is an S-module;
(ii) Fil1M is an S-submodule of M containing Fil1S ·M;
(iii) φ1 is a φ-semilinear map Fil1M → M such that for all s ∈ Fil1S and x ∈ M, φ1(sx) =

φ1(s)ϕ(x), where ϕ(x) = φ1(E(u)x)/φ1(E(u)).

A map between Breuil modules is a map M → M′ such that the induced map on Fil1M has image
in Fil1M′, and commutes with φ1. The category (Mod/S1) is the category of Breuil modules with
M a free S1 = S/p-module of finite rank such that φ1(M) generates M as an S-module.

Note that in our case, E(u) = ue + p and φ1(E(u)) = 1 + uep/p = 1 + X1 (which is a unit
in S). If M is killed by pn it is still important that one take s ∈ Fil1S in this last condition rather
than s ∈ Fil1S · S/pn. This is because φ1(s) mod p does not depend only on s mod p. For example,
‘φ1(ue)’ = X1 �= φ1(ue + p) mod p.

We use the notation ϕ instead of φ used in [Bre00] to avoid any confusion with the map φ defined
on S.

Theorem 5.4. Let (Mod/S) be the subcategory of ′(Mod/S) generated from extensions by
(Mod/S1). Then (Mod/S) is anti-equivalent to the category of finite flat group schemes over OK .

Note that S1 � F[u,Xn]/(uep,Xp
n). Moreover, Fil1S1 = Fil1S · S1 = (ue,Xn)S1, so

S1/Fil1S1 � OK/p � F[u]/ue.

5.2 Rank 1 Breuil modules
Let A(r, a) be the Breuil module corresponding to the following data:

A(r, a) = S1e, Fil1A(r, a) = (ur,Xn)e, φ1(ure) = ae.

Lemma 5.5. Any rank 1 Breuil module killed by p is isomorphic to A(r, a) for some r � e and
a ∈ F. Moreover, there exists a non-trivial map A(s, b) → A(r, a) if and only if s ≡ r mod p − 1
and a/b ∈ F×(p−1), and an isomorphism if and only if s = r and a/b ∈ F×(p−1).

Proof. This is essentially [BCDT01, Example 5.2] and [Bre00, Proposition 2.1.2.2], except for the
claim that φ(ure1) can be chosen to equal ae1 rather than axe1 for some unit x ∈ S1 satisfying
x ≡ 1 mod (Xn). Changing variables by e′ = ye, it suffices to solve the equation

y

φ(y)
= x.

Since x ≡ 1 mod (Xn), φ(n)(x) = 1 for sufficiently large n. Thus one can choose

y =
∞∏

n=0

φ(n)(x).
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Group schemes of order p are also classified by their Oort–Tate parameters [OT70]. The following
lemma records that these parameters are (essentially) (r, a).

Lemma 5.6. The Breuil module A(r, a) corresponds to the Oort–Tate group scheme Gr,a over OK

where the affine algebra of Gk,a is equal to

OK [X]/(X + πe−kã),

where ã is a lift of a to W (F).

Proof. See for example [Bre00, Proposition 3.1.2].

5.3 An example
Recall that the category (Mod FI/S) is the subcategory of (Mod/S) consisting of Breuil modules
such that M �⊕Sni . The category (Mod FI/S) corresponds to finite flat group schemes G such
that G [pi] is finite flat for all i. We now construct an explicit example of a Breuil module in
(Mod/S) that does not lie in (Mod FI/S). This example is in [Bre00], but we feel that it serves as a
useful example of the modules that will be considered in the next section. Let e = p−1. Recall that
A(e, 1) and A(0, 1) are the rank 1 Breuil modules given by the following data:

A(e, 1) = S1e1, Fil1A(e, 1) = Fil1S · e1 = (ue,Xi)e1, φ(uee1) = e1,

A(0, 1) = S1e2, Fil1A(0, 1) = S1e2, φ1(e2) = e2.

In addition, let B(0, 1) be the Breuil module given by

B(0, 1) = S2e2, Fil1B(0, 1) = S1e2, φ1(e2) = e2.

We use the notation e2 for a generator of A(0, 1) to highlight the fact that A(0, 1) is a quotient
of B(0, 1) where the quotient map (multiplication by p) sends e2 to e2. The Breuil module A(e, 1)
corresponds to the finite flat constant group scheme Z/pZ, whilst the module A(0, 1) corresponds
to µp (see Lemma 5.6 for an identification of rank 1 Breuil modules with Oort–Tate group schemes).
Define ψ : A(0, 1) → A(e, 1) by ψ(e2) = upe1 = ue+1e1. We check that

φ1(ψ(e2)) = φ1(upe1) = φ1(u · uee1) = φ(u)e1 = upe1 = ψ(e2) = ψ(φ1(e2)).

The Breuil module B(0, 1) is an extension of A(0, 1) by A(0, 1) (corresponding to µp2), and there is
a natural map ι : A(0, 1) → B(0, 1) given by e2 → e2. Consider the map

ι+ ψ : A(0, 1) → B(0, 1) ⊕A(e, 1), e2 
→ pe2 − upe1,

and let L be the cokernel. Abstractly it is the quotient of S2⊕S1 by the element (p,−up). There is an
injective map A(e, 1) → L given by e1 
→ e1, which extends to a map of Breuil modules. The quotient
of L by A(e, 1) is the quotient of S2⊕S1 by e1 and pe2−upe1. Since together these elements generate
the module ((pe2, 0), (0, e1)), the quotient is B(0, 1)/p � A(0, 1). Thus we have an exact sequence
of Breuil modules:

0 → A(e, 1) → L → A(0, 1) → 0.
This extension of Breuil modules corresponds to an exact sequence of group schemes (note the
anti-equivalence):

0 → µp → G → Z/pZ → 0.

5.4 Extension classes
Suppose that H1 and H2 are finite flat group schemes over OK of order p. Let G be an extension
of H1 by H2, and let M be the associated Breuil module.

Lemma 5.7. M is generated by (at most) two elements as an S-module. M is a quotient of S2⊕S1.
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Proof. Let Ai be the Breuil module associated to Hi. There is an exact sequence

0 → A1 → M → A2 → 0.

Call the quotient map ψ. Suppose that A1 and A2 are generated by e1 and e2. Then M is generated
by e1 and e2 := ψ−1e2. Moreover, pe1 = 0, and pe2 ∈ S1e1 so p2e2 = 0.

We conclude that
M = (e1S1 ⊕ e2S2)/I

for some S-submodule I.

Lemma 5.8. I is generated by pe2 − ηe1 for some η ∈ S1.

Proof. The element pe2 lies in the kernel of M → A2. Thus pe2 lies in the image of A1, and thus
pe2 = ηe1 for some η ∈ S1. Suppose that βe2 = αe1. If β = pγ, then

γ(pe2 − ηe1) = βe2 − γηe1 = (βe2 − αe1) + (α− γη)e1

and so (α− γη)e1 = 0 in M. Yet A1 injects into M, so γη = α, and

(βe2 − αe1) = γ(pe2 − ηe1).

Thus we may assume that p �β. As an abstract abelian group, S2 � (Z/p2Z)∞, and thus the image
of β is non-zero in S1. The map from M → A2 sends e1 to 0. Thus the image e2 of e2 is killed by β,
which is a contradiction, since M is surjective and A2 is free.

Thus we have an isomorphism of S-modules

M = (S1 ⊕ e2S2)/(pe2 − ηe1).

Recall that the category (Mod FI/S) consists of Breuil modules such that M � ⊕
Sni .

The category (Mod FI/S) corresponds to finite flat group schemes G such that G [pi] is finite
flat for all i. We conclude that G = G [p] if and only if η = 0, and that if G [p] �= G , then G [p] is
finite flat if and only if η is a unit in S.

Let us now choose A1 = A(r, a) and A2 = A(s, b), where r and s are integers � e. There is an
induced exact sequence

0 → (ur,Xn)A(r, a) → Fil1M → (us,Xn)A(s, b) → 0.

Recall that Fil1S2 is generated by Yn = E(u)p
n
/pvn for all n, where vn = v(pn!).

Lemma 5.9. Suppose that p > 2. Let X0 = ue, and let Xn = uepn
/pvn . Then

Yn ≡ Xn + p
n−1∏
i=0

Xp−1
i mod p2S.

In the module M, Xne2 ∈ Fil1M for all n � 1.

Proof. The congruence follows by induction from the identity

(a+ bp)p

p
=
ap

p
+ ap−1bp mod p2

and the fact that Yn+1 = Y p
n /p. Since e(p − 1) � e � r, and since ure1 ∈ Fil1M, it follows that

pXp−1
0 e2 = ue(p−1)ηe1 ∈ M.

Thus as Yne2 is automatically in Fil1M, the inclusion Xne2 ∈ Fil1M follows from the congruence
by induction.
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Lemma 5.10. If M is an extension of A(s, b) by A(r, a) then

M = S1 ⊕ S2/(pe2 − ηe1).

Moreover,

Fil1M = (ure1, u
se2 + xe1,Xne1,Xne2), i � 1,

and φ1 is defined as follows:

φ1(ure1) = ae1, φ1(use2 + xe1) = be2.

Proof. We clearly have that Fil1M∩A(r, a) = (ur,Xn)e1, and use2 +xe1 ∈ Fil1M for some x ∈ S.
Consider a general element γ of Fil1S. Since Xne2 ∈ Fil1M, we may assume after subtracting some
element of (Xn)e2 that γ = αuse2 + βe1. Then

αuse2 + βe1 − α(use2 + xe1) = (β − αx)e1 ∈ Fil1M.

Thus (β − αx)e1 = Fil1A(r, a), and γ is in the span of use2 + xe1, (Xn)e2, and Fil1A(r, a). Hence

Fil1M = (ure1, u
se2 + xe1,Xne1,Xne2), i � 1.

Moreover,

φ1(ure1) = ae1, φ1(use2 + xe1) = be2 + ze1.

Replacing e2 by e2 + ye1 for suitable y we may assume (having changed x and η appropriately)
that z = 0. This proves the lemma.

We also note that φ1(Fil1M) as defined above generates M as an S-module. However, we have
not shown that φ1 is well defined, and so we have not yet constructed a Breuil module. In fact, the
obstructions to defining φ1 will severely limit the possible extension classes.

Fix once and for all an element y = η − ue−sx.
Let us compute ϕ(e2) and ϕ(e1). Recalling that y = η − ue−sx we find that

(ue + p)e2 = uee2 + ηe1 = ue−s(use2 + xe1) − ue−sxe1 + ηe1 = ue−s(use2 + xe1) + ye1.

It follows that ye1 ∈ Fil1A(r, a). We find that

φ1(E(u)e2) = bup(e−s)e2 + φ1(ye1),

and so

ϕ(e2) =
φ1(E(u)e2)
φ1(E(u))

=
bup(e−s)e2 + φ1(ye1)

1 +X1
.

A similar computation shows that

ϕ(e1) =
φ1(E(u)e1)
φ1(E(u))

=
φ1(ue−rure1)

1 + uep/p
=
aup(e−r)e1

1 +X1
.

When M = L, we see that Fil1L is generated by e2 and ure1. Moreover, φ1(e2) = e2 and
φ1(ure1) = e1. Thus y = η = up, and x = 0. Moreover, s = 0 and b = 1 and so

ϕ(e2) =
upee2 + upe1

1 +X1
=
pX1e2 + upe1

1 +X1
=
X1ηe1 + upe1

1 +X1
=

(1 +X1)upe1

1 +X1
= upe1.

Returning now to the general situation, we shall derive some relations between η, x and y by
computing φ1(usYne2 + xYne1) in two different ways. On the one hand we have that

φ1(usYne2) = φ(us)φ1(Yn)ϕ(e2) = upsYn+1
bup(e−s)e2 + φ1(ye1)

1 +X1
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and

φ1(xYne1) = φ(x)φ1(Yn)ϕ(e1) = φ(x)Yn+1
aup(e−r)e1

1 +X1
.

On the other hand, usYne2 + xYne1 = Yn(use2 + xe1), and so

φ1(Yn(use2 + xe1)) = φ(Yn)be2.

Now φ(Yn) = Y p
n = pYn+1, and pe2 = ηe1. Thus we find that

Yn+1bηe1 = Yn+1

(
bupee2 + upsφ1(ye1) + aφ(x)up(e−r)e1

1 +X1

)
.

We make two simplifications. First, uepe2 = X1pe2 = X1ηe1. Thus both sides are multiples of e1,
and we may replace Yn+1 byXn+1. Second, the annihilator of Xn in S1 is Xp−1

n . Thus the annihilator
of (Xn)mn=k is

∏m
n=kX

p−1
n and the annihilator of (Xn)∞n=k is trivial. Thus if Xn+1α = Xn+1β for

all sufficiently large n, α = β. Applying this to our formula, and multiplying through by (1 +X1)
we find that

bη(1 +X1)e1 = X1bηe1 + upsφ1(ye1) + aφ(x)up(e−r)e1

or

bηe1 = upsφ1(ye1) + aφ(x)up(e−r)e1.

Thus we have proven the following theorem.

Theorem 5.11. If M is well defined as a Breuil module then

bηe1 = upsφ1(ye1) + aφ(x)up(e−r)e1.

Moreover η is divisible by (up)min{s,e−r}.

Suppose that M = L. Then x = 0, e = p − 1, and y = η = up. Thus the theorem is consistent
with the identity up = η = φ1(ηe1).

Lemma 5.12. There is an inclusion η ∈ F[u]/uep.

Proof. We divide our proof into two cases. First we consider the case where (r, s) �= (e, 0).
Since φ(Xn) = Xp

n = 0, it is clear that φ(x) ∈ F[u]/uep. Moreover, φ1(XiXje1) = φ(Xi)φ1(Xje1) =
Xp

nφ(Xje1) = 0 for the same reason. Thus the only terms that contribute to coefficients of η that
do not lie in F[u]/uep are of the form umXn. Let m be the infimum (minimum) over all n � 1 such
that the coefficient of umXn in y is non-zero. The corresponding coefficient of η is up(e−r+s+m)Xn+1,
and thus if m � r − s we are done. Suppose otherwise. Then the minimum m over all n � 1 such
that the coefficient of umXn in η is non-zero is p(e + s − r +m). The minimum m over all n � 1
such that the coefficient of umXn in ue−sx is non-zero is trivially at least e− s. Since y = η−ue−sx
we conclude that

m � min{p(e+ s− r +m), e− s}.
Since m < r − s � e− s, it must be the first inequality that is satisfied. Equivalently,

(1 − p)m � p(e+ s− r).

Since e � r, the right-hand side is non-negative unless r = e and s = 0. On the other hand, the
left-hand side is negative unless m � 0. Thus either we are done or (r, s) = (e, 0) and m = 0. Let us
now assume we are in that case. There is an identity y = η − uex. Since ye1 ∈ Fil1A(e, a) and
ue ∈ Fil1S1, it follows that η ∈ Fil1S1. Now φ1(ye1) = φ1(ηe1) − aφ(x) and so

bηe1 = φ1(ye1) + aφ(x) = φ1(ηe1).
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As above, since φ1(XiXje1) = φ(Xi)φ(Xje1) = 0, the only terms contributing to η that do not lie
in F[u]/uep are coefficients of y of the form umXn with n � 1. Let n be the smallest integer such
that umXn is a non-zero coefficient of η. Then since

φ1(uiXj) = uipφ1(Yj+1)ϕ(e1) =
Xj+1u

ip

1 +X1
,

we see (since j + 1 > m) that φ1(η) does not have any coefficients of the form unXm,
a contradiction. Thus η ∈ F[u]/uep.

Write

x =
ep−1∑
k=0

αku
k mod (Xn), y =

ep−1∑
k=0

βku
k mod (Xn).

Then (noting by Lemma 5.12 that η ∈ F[u]/uep) the equality η = y + ue−sx becomes
ep−1∑
k=0

γku
k = η =

ep−1∑
k=0

uk(βk + γk+s−e).

Since ye1 ∈ Fil1A(r, a), we must have βk = 0 for k < r. Applying the equality of Theorem 5.11 we
find that

bη =
ep−1∑
k=0

aupk(φ(βk+r−s) + φ(αk+r−e)) = a

ep−1∑
k=0

upkφ(βk+r−s + αk+r−e),

where φ is Frobenius on F. The two expressions for η lead to the following relations:

(i) γk = βk + αk+s−e;
(ii) γk = 0 if p �k;
(iii) bγpk = aφ(βk+r−s + αk+r−e).

In particular we see that bγpk = aφ(γk+r−s).

Lemma 5.13. If M is a Breuil module, then η = 0 unless (r − s) = k(p − 1) for some k � 0 and
a/b ∈ F×(p−1). If r = s, then η = 0 unless s = 0 or r = e. If η is non-zero, then up to an element of
F×, η = ukp. Finally, there is an inequality k � min{s, e− r}.
Proof. First note that γpk is non-zero if and only if γk+(r−s) is non-zero, since Frobenius is injective
in F. Let k be the smallest integer such that γpk �= 0. Then k � 0 and k is the smallest integer
such that γk+(r−s) �= 0. It follows that k + (r − s) = pk, and so (r − s) = k(p − 1). The equality
bγpk = aφ(γpk) �= 0 implies that a/b = φ(c)/c ∈ F×(p−1). One finds (by considering the second
smallest k such that γpk �= 0) that no other coefficients of η are non-zero, and thus η is a multiple
of upk. If r = s then Theorem 5.11 implies that η is divisible by u (unless s = 0 or r = e), but the k
satisfying (r−s) = k(p−1) is k = 0, thus η = 0. The final inequality follows from Theorem 5.11.

Corollary 5.14. Suppose that G is an extension

0 → Gs,b → G → Gr,a → 0

of Oort–Tate group schemes that is not killed by p. Then there is a non-trivial morphism Gr,a → Gs,b.

Proof. Suppose there existed such an exact sequence. Then there must exist an exact sequence of
Breuil modules

0 → A(r, a) → M → A(s, b) → 0.
If G is not killed by p, then M is not killed by p, and thus η �= 0. By Lemma 5.13 then the
restrictions on (r, s) and (a, b) are exactly the requirements that there exist a map A(s, b) → A(r, a)
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(see [BCDT01, Lemma 5.2.1]). Moreover, this map cannot be an isomorphism unless r = s, which
(from Lemma 5.13) implies that r = s = 0 or r = s = e. In this case Gr,a and Gs,b are either both
multiplicative or both étale, which implies that G is either multiplicative or étale.

If r and s are both 0 or both e there exist extensions not killed by p: one can take µp2 and Z/p2Z
respectively.

Lemma 5.15. Suppose that r and s are integers � e such that (r−s) = k(p−1) and k � min{s, e−r}.
Let a and b be elements of F such that (b/a) = (c)p−1. Then there exists a non-trivial extension of
the form

0 → Gs,b → G → Gr,a → 0.

Proof. Suppose that k � s. Then one may explicitly let M = S1 ⊕ S2/(pe2 − cupke1).
Since kp = r + k − s � r, it follows that ukpe1 is a multiple of ure1. Let

Fil1M = (ure1, u
se2,Xne1,Xne2),

and finally define φ1 as follows:

φ1(ure1) = ae1, φ1(use2) = be2.

If k � e− r then we still define M = S1 ⊕ S2/(pe2 − cupke1). Now that k � e− r we define Fil1M
as

Fil1M = (ure1, u
se2 + cuk−e+re1,Xne1,Xne2),

where
φ1(ure1) = ae1, φ1(use2 + cuk−e+re1) = be2.

Note that ue−s(use2 + cuk−e+re1) = uee2 + cupke1 = (ue + p)e2. One verifies in both cases that M
defines a Breuil module.

5.5 Finite flat group schemes killed by p

If one restricts to finite flat group schemes killed by p, the theory of Breuil modules can be sig-
nificantly simplified. In particular, instead of working with S1-modules, it suffices to work with
S1/(Xn) = k[u]/uep modules, and replace M by M⊗S1 k[u]/u

ep.
What Breuil modules A(r, a) admit generic descent data to Qp? The answer for a general tamely

ramified extension is provided in [Sav04]. We restrict the statement to the case of interest, namely
when K/Qp is a tamely ramified Galois extension of Qp with e = p + 1. We have the following
theorem.

Theorem 5.16. The Breuil module A(r, a) admits generic fibre descent data to Qp if and only
if 2 divides r and a ∈ F×

p . Let ξa be the unramified character of Gal(Qp/Qp) given by ξ(σ) =
σa1/(p−1)/a1/(p−1). Then the associated Galois representation on the (descended) generic fibre is
given by ξaFp(ωk), where r ≡ 2 − 2k mod (p− 1).

Proof. This follows from the calculations in [Sav04], in particular Definition 5.1, Proposition 5.3,
and Theorem 6.3. Note that in our setting and Savitt’s notation we have U = −1, V = −1, and
x′ = x/(e, p − 1) = 2.

Corollary 5.17. If k �= 0, 1, (p − 1)/2, (p + 1)/2, then there is a unique finite flat group scheme
of order p with generic fibre given by Fp(ωk).

Proof. Any such finite flat group scheme obviously has generic fibre descent data. We see that such
a representation forces a to be 1, and r �≡ 0, 2 mod (p− 1). Yet since r is even and less than p+ 1,
this determines r exactly.
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Lemma 5.18. Let ρ be as in § 4.2. Then ρ uniquely determines a finite flat group scheme G /OK .

Proof. Since Fp(ωk) and Fp(ω1−k) correspond to unique finite flat group schemes, the lemma follows
from a standard application of the 5-Lemma (see [BCDT01], in particular the proof of Lemma 4.1.2).

Now we turn to extensions of Breuil modules killed by p. An easy computation [BCDT01, Sav04]
shows that the extensions of A(r, a) by itself are classified by an element h ∈ umax(0,2r−e)k[u]/ur+1.
In general, these will correspond to finite flat group schemes whose generic fibre does not descend
to Qp. However, we have the following theorem.

Theorem 5.19. The space of extensions Ext1(A(r, a),A(r, a)) killed by p has dimension 1 over Fp.

Proof. It follows from [Sav04, Theorem 7.5] that h can be taken to have degree less than r. Moreover
(since k1 = k2 in the notation of [Sav04]) the only possible non-zero term is ur (which is zero) or
the constant term which lies in Fp.

Corollary 5.20. Suppose that K is tamely ramified of degree p + 1, that k �= 0, 1, (p − 1)/2,
(p + 1)/2. Let H /OK be a finite flat group scheme over OK with generic fibre Fp(ωk). Then the
only extensions of H by itself which admit generic fibre descent data to Qp become unramified
over some finite unramified extension of K.

Proof. The space of extensions is one-dimensional by Theorem 5.19. Thus it suffices to observe that
the Galois module Fp(ωk) (over Qp) admits an extension by itself that splits over the degree p
unramified extension of Qp. Thus if F denotes this unramified extension, then by faithfully flat
descent from OF.K to OK we obtain a non-trivial (in fact, p− 1 non-trivial) extensions of H by H
in the category of finite flat group schemes with generic fibre descent data, which splits over some
unramified extension of K, and thus we are done.
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