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ON ALGEBRAS GENERATED BY 
COMPOSITION OPERATORS 

J. A. CIMA AND W. R. WOGEN 

1. Introduction and definitions. Let A be the open unit disk in the 
complex plane and letJ^f be the group of automorphisms of A onto A, define by 

J^ = \<j) : A-> A\<t>(z) = a^ - 1 1 ^ - where \a\ = 1, |X| < 1 
V 1 — AS 

The Banach spaces Hp = HP(A), 1 S P < °o, are the Hardy spaces of func­
tions analytic in A with their integral p means bounded, 

p ( ^ / l / ( ^ ) R ) =M<œ. sup 

The Banach space i?°°(A) = Hœ consists of the bounded analytic functions 
on A. If X is a Banach space and âë (X) is the space of all bounded linear 
operators on X, then a vector x G X is said to be a cyclic vector for an algebra 

j / C 88 (X) if the closure of the set 

\T(x) :T es/} 

is all of X. We recall that if X is a Banach space and s/ is a weakly closed 
algebra of operators on X t r i e n t is called reflexive if T £ 3$ (X) and T leaves 
invariant the common invariant subspaces of s/ implies T Ç s/. 

The principal result of this paper is concerned with the set 

consisting of composition operators on the Hardy spaces Hp, 1 ^ p < oo . 
Le ts / (L) denote the weakly closed subalgebra of 31 (Hv) generated by L. We 
show that every non-constant vec tor / G Hp is a cyclic vector iors/(L). We 
also show that this result is sharp in the sense that the theorem fails if S? is 
replaced by any abelian subgroup of S£. It is a straightforward consequence 
of this result, using a technique of S. Fisher [1], that the linear span of ££ is 
uniformly dense in the disk algebra (the Banach space of functions continuous 
on A, and analytic in A). 

A second result shows that if s/(L) is the weakly closed algebra of Se (H1) 
generated by the set L then SI? (L) is reflexive. 
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2. The principal result. It is well-known (cf. [5]) that a function / is in 
Hp (1 ^ p < oo ) if there exists a harmonic function u, u(z) ^ 0, such that 

1/(2)1* i U (z) 

for all z £ A. It is then clear that for each <t> G Jzf the composition operator on 
JH», 

is linear and into iîp . An easy computation (see [6, p. 7]) yields the estimate 

l ! c * l l < \ i - 14,(0)1/ • 
THEOREM 1. Letf G i P , 1 ^ p < co, with f non-constant. Then 

f&) = ! Q ( / ) : 0 € i f l 

/zas dewse s^an in Hp. 

The proof of Theorem 1 will require two lemmas. 

LEMMA 1. If f G IP, 1 ^ £ < oo awd 0(z) = (z - X)/(l - Xz), /&ew 

i?(c*U))-* = Ê ^ ( i - MV/'C-xKKr' 
^Aere 4̂ ;- > 0, j = 1, 2, 3, . . . , w. 

LEMMA 2. If/ 6 i P , 1 ^ p < oo and f is non-constant, then given n > 0 £/zere 
is a <t> £ ^ so that 

Dn{fo<j>)\2^ ^ 0 . 

Proof of Theorem 1. Assume the validity of Lemma's 1 and 2. We consider 
first 1 < p < oo. By the Hahn-Banach Theorem it suffices to show that if 
xf/ G (Hp)* and iKC*/) = 0 for all <t> G i f then ^ = 0. Hence, assume there is 
ag £ HQ (1/p + 1/q = 1), such that 

Zir J \z\=i Z 

for every 0 G i f . Suppose the Fourier expansions of g and / are given by 

g(2)~f: ^ 
CO 

/(*) ~ D anzn, \z\ = 1. 

Choose 0 G i f to be a rotation, <£(s) = az, |a| = 1. We have assumed 

Z7T */ | 2 | = l 2 
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for all \a\ = 1. On the other hand the Hausdorff-Young inequalities imply that 

7>—- \ g(z)f(az)-^= £ ) anbna
n 

ZTVI J U | = i z n=0 

and the series converges absolutely. Let z = reiB, r < 1 and note that 

i p * 

Zirl J o 

oo 

= X aj>nz
n 

is in Hœ. By Abel's theorem 

Vim p(reie) = 0 

a.e. on \z\ = 1. Hence anbn = 0 for n = 0, 1, 2, 3, . . . . I t follows that bn — 0 
for all w such that an ^ 0. We apply Lemma 2. Given n, there is a 0 £ j£f 
with Dn(C<pf )|2==0 ^ 0. Thus we have 

oo 

with ^4n F^ 0. Replacing/ by Q,/ in the above argument we see that bn = 0, 
n = 0, 1, 2, . . . . Thus g = 0 (and so \(/ is the zero functional). 

Now for p = 1 and ^ £ (i^1)* we know there is a g £ L°° such that 

* ( / ) =7r f /(')£(Ô<& 

all f £ H1. A similar proof shows that if g(*) ~ Z i _ œ &ne
in' then fcw = 0 

for n = 0, 1, 2, 3, . . . . Hence g(7) G #o°° and so 

* ( / ) = l/(0)g(Ô)} = 0 

for all / G iJ1. 
We proceed now to the proofs of Lemma's 1 and 2. 

Proof of Lemma 1. First note that if 4>{z) = (z — X)/(l — \z) then 

(1) D<j>(z)- ( 1 — _ s ) t + 1 -

if & > 0 and thus 

(2) z?**0OI_o = *! (l - | \ | * )$)*- i 

and also 

(3) / * ( * ( * ) ) | _ o = / * ( - X ) . 
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We will show that Dn{C<$>j ) has the following form: 

(4) Dn(Qf)= £ dkf
ko<t>, 

where dk is a sum of terms of the form 

(5) afàw)1! (0<2>)Z2... («<">) \ 

with a > 0 and 

n 

(6) X) Hi = n> 
i=l 

(7) £/, = *. 
i = l 

Clearly Z ) ( Q / ) ^ ( / ' o * ) (*') and Z> 2 (Q/) = ( / " o * ) (<*>')2 + C / ' o 0 ) 
(<£") are of the desired form. We proceed by induction. 

Suppose that Dn\C^j ) has the desired form. Since 

Z y + K / o * ) =D(Dn(fo<t>)) 

it suffices to consider the form of 

D [ ( f ) o ^ ) ( f ) ) ^ . . . ( f ) ) 4 

where the U satisfy (6) and (7). The derivative is 

(/(*+!) O 0 ) ( ^ ) , 1 + 1 (0 (2 ))?2 . . . (*<n))'» + 

( / ( t ) o * ) ( f ) ) " . . . « * w ) ' - - 1 ( r i ) ) . 

For the first term, 

l(/i + 1) + 2/2 + . . . + nln = 1 + è «1 = » + 1 

and (Zi + 1) + Z2 + . . . + /» = 1 + E"i-i ^ = H l s o that (6) and (7) 
hold. For the j th term (2 ^ j ^ n) 

h + • • • + U ~ l ) ( ^ - i ~ 1) +j(h + 1) + . . . + < = » + 1 

and 

Zl + . . . + (Z,_i - 1) + (Z, + 1) + . . . + ln = k 

so that (6) and (7) again hold. Thus DW+1(C*/) has the desired form. 
Now from (2), 

a(0 1 ) , 1 - - - (*") , " l^o = aJt(l - |\|2)*(X)S, 

where 

ak = afl 0'0">0 
1=1 
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and 

n 

s = X) U - l)h = n - k. 

dk\z=o is a sum of such terms, so it has the form 6^(1 — |X|2)*(X)n~*. Thus from 
(4) 

2 > ( / o *) |_o = È h(l - |X|*)*(Xr*/*(-X). 
A ; = l 

Proof of Lemma 2. Consider <t>{z) = (z — X)/(l — Xz). The lemma is true 
for w = 1. In fact 

P ( / o 0 ) | 2 = o = / , ( - X ) ( l - |X|') ^ 0 

for some X, since / is not constant. Suppose that the lemma holds for n. We 
may assume that Dnf |2==0 ^ 0. (If Dnf |z=0 = 0, we can replace / by / o 0i, 
where <£i G oêf is chosen so that Dn(f o 0i) |2 = o ^ 0. Here we need the fact 
that .if is a semigroup.) 

Suppose that the lemma fails for n + 1. Then 

0 = Dn+\fo «,)|2_o = Ê 0,(1 - | A | 2 ) ' ( X y + 1 - r ( - A ) 

+ 6B+1(i-ix|2r+1/B+1(-x). 
Hence, 

fn+1(-\) = - Ê ^ ( i - |x|2)J-(w+1)(xr+1-yj'(-x) 

identically for all X, |X| < 1. In particular fn+1(0) = 0, so 

/^ ( -x) -r+1(o) § ^ ( 1 " i^i2)'"^^)^1"^1^) 
X = X 

Bn{i- ixjVfflrc-x) 
X 

Let X —-> 0. The left side approaches —fn+2(0). The first term on the right side 
approaches zero. However, 

l i m i ^ l - |X„|V£/"(-X) 

fails to exist. This contradiction completes the proof of the lemma. 

Let Sf be the linear span of the functions in <=Sf. 

LEMMA 3. The uniform closure of Sf contains the constant functions. 

https://doi.org/10.4153/CJM-1974-117-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-117-2


COMPOSITION OPERATORS 1239 

Proof of Lemma 3. If Ô > 0, then on A - \z \ \z - eie\ < b), 

te 
v z — re ie 
lim =&- = —e 
r_>i 1 — re z 

and the convergence is uniform. Now let n be a positive integer and for 
k = 0, 1, 2, . . . , n — 1 define <t>r,k,n(z) = <t>r,k{z) as follows: 

*r.*(2) = - « \Y _ re-ak, J > a* = ~~^~-

We claim that the means 

1 n 

are uniformly close to one on Â if n is sufficiently large and if r is sufficiently 
close to one. For if e > 0 is given choose N so that for n ^ N, 2/n < e/2. Then 
choose 5 > 0 so small that the sets 

Bk = {z\\z - ea*| £ 5 } 

are disjoint for & = 0, l , . . . , n — 1. We can now choose r so large (r < 1) that 

|0r. t(z) - 1| < e/2 

for z G Â — J5A. For s G À — U*=i -S* we have 

I n 1 

If s G Bj for some j , then 

I n 1 
Z) - *rf*(2) - 1 

As a corollary to Theorem 1 we obtain the following result about S^ as a 
subset of the disk algebra (the algebra of functions continuous on Â and 
analytic in A). 

COROLLARY. Sf is uniformly dense in the disk algebra. 

Proof. We imitate the proof of S. Fisher [1]. L e t / be in the disk algebra and 
set/,(z) = f(tz) for 0 < t < 1, z G A. y is a dense subset of Hv by Theorem 1. 
Hence, there is a sequence {\[/n} in Sf tending to / in Hv and consequently 
\\[/n] tends to / uniformly on compacta. If e > 0 is given we can find a \j/ G Sf 
and a 0 < t < 1 such that 

We show ypt G 5^. From the definitions of yp and \[/t it is sufficient to show that 

^E n < 

< y [«ftr.fcQg) - 1| • 2 < ^ 
Jc^i 
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4>t G y , where 4>{z) = (z - X ) / ( l - Xz). But if X = rei$, then 

± / \ tz~X tQ- -r2) j z - \ t \ r ( l - t2) te 

T h e first te rm is in 5^ and the la t ter in S^ by Lemma 3. 

3 . C o m p o s i t i o n operators . W e restrict ourselves in this section to the 
Hilbert space H2. Recall from Section 1 t h a t L = {Q, : <j> Ç jSf7} is a subset of 
B(H2) and t h a t J ^ ( L ) is the weakly closed algebra generated by L. Theorem 1 
has some consequences concerning invar iant subspaces and the reflexiveness 
of j / ( L ) . 

COROLLARY. The only subspaces of H2 (more generally Hp, 1 ^ p < co ) 
which are invariant under every C$ in L are {0}, C and H2. 

T H E O R E M 2.S/(L) is reflexive. 

Proof. Let us recall first a theorem of Radjavi-Rosenthal [4]. T h e y have 
shown t h a t if s/ is a weakly closed algebra with a total ly ordered invar iant 
subspace latt ice and containing a maximal abelian self-adjoint algebra, then 
s/ is reflexive. Our corollary shows t h a t the latt ice of s/ (L) is total ly ordered. 
Consider then Q , where \p(z) = az, \a\ = 1 and a is irrational mod 2w. I t is 
easy to see t h a t C# is a un i ta ry operator with cyclic vector with (simple) pure 
point spectrum. (Any f(z) = ]£ Cnz

n in H2 with Cn ^ 0 for n = 0, 1, 2, . . . 
is a cyclic vector, and for each n, an is a simple eigenvalue with eigenvector zn.) 
Also CV* = CT where T(Z) — âz. T h u s s/(C^.C^) C s/{L), and s/(C^, CV*) 
is maximal abelian since C^ is normal and cyclic (cf., e.g., [7, §5, Theorem 5]) . 
T h e Radjavi-Rosenthal theorem now applies to complete the proof. 

Le t Ho2 denote the functions in H2 vanishing a t z = 0, and let P denote the 
orthogonal projection of H2 onto H0

2 = H2 0 C. 

COROLLARY. Bs/(L)\HQt = &(H0
2). 

Proof. Since s/(L) is reflexive, it follows t h a t stf'(L)* = {T* : T G <*/(£)} 
is reflexive. Fur ther , the invar iant subspaces of s/(L)* are {0}, H0

2, and H2. 
T h u s it is easy to see thsits/(L)*\Ho2 = Se (Ho2) so t h a t 

^(ffo2) = (^(L)*UoO* = P ^ ( L ) k » . 

Finally, we note t h a t Theorem 1 fails if «if is replaced by an abelian subgroup 
«if ' of «if. In fact if 0 G -èf', Nordgren [3] has shown t h a t Q has noncons tan t 
eigenfunctions. Suppose M\ is an eigenspace for Q, a n d / G ikf\,/ nonconstant . 
If \j/ commutes with <j> then Q commutes with Q, and it follows t h a t M\ is in­
var ian t under C$. T h u s f{S£') CI ikf\. Some examples of abelian subgroups are 

(i) {^(2)=f^1 - K ^ < l } = {* €if|*(l) = !,*(-!)= - 1 | . 
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More generally given /zlf /12 with |/xi| = \p2\ = 1, Mi 7* M2 

{0 G cSf |4>Oi) = Mi, 0O2) = M2Î 

is an abelian subgroup. Also 

(ii) {0 G i f |*0O = az, \a\ = 1} = {0 G -Sf |*(0) = 0} 

is abelian. More generally, given n, \n\ < 1, 

\<t>e^\<t>M = M} 

is abelian. 
We pose the following question: For which closed (nonabelian) subgroups 

of ££ does Theorem 1 hold? 
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