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Abstract
The popularity of online surveys has increased the prominence of using samplingweights to enhance claims

of representativeness. Yet, much uncertainty remains regarding how these weights should be employed in

survey experiment analysis: should they be used? If so, which estimators are preferred? We offer practical

advice, rooted in the Neyman–Rubin model, for researchers working with survey experimental data. We

examinesimple, efficientestimators, andgive formulas for theirbiasesandvariances.Weprovidesimulations

that examine these estimators as well as real examples from experiments administered online through

YouGov. We find that for examining the existence of population treatment effects using high-quality, broadly

representative samples recruitedby toponline survey firms, sample quantities,whichdonot rely onweights,

are often sufficient. We found that sample average treatment effect (SATE) estimates did not appear to differ

substantially from their weighted counterparts, and they avoided the substantial loss of statistical power

that accompanies weighting. When precise estimates of population average treatment effects (PATE) are

essential, we analytically show poststratifying on survey weights and/or covariates highly correlated with

outcomes to be a conservative choice. While we show substantial gains in simulations, we find limited

evidence of them in practice.

Keywords: survey design, survey experiments, causal inference, generalizability

1 Introduction

Population-based survey experiments have become increasingly common in political science in

recent decades (Gaines, Kuklinski, andQuirk 2007;Mutz 2011; Sniderman2011). However, practical

advice remains limited in the literature anduncertainty persists among scholars regarding the role

of weights that capture differing probabilities of eventual inclusion across units in the analysis of

survey experiments (Franco et al. 2017). Should they be used or ignored? If they are to be used,

which estimators are to be preferred? As Mutz (2011, 113–120) notes,

“there has been no systematic treatment of this topic to date, and some scholars have

used weights while others have not . . . the practice of weighting was developed as a

survey research tool—that is, for use in observational settings. The use of experimental
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methodology with representative samples is not yet sufficiently common for the analogous

issue to have been explored in the statistical literature”

We seek to fill this void with a systematic evaluation of using weights, based on sound statistical

principles rooted in the Neyman–Rubin model, to obtain practical advice for scholars seeking to

make the best possible decisions when using (or electing not to use) weights in their analysis

of survey experiments. We explore the topic through a combination of mathematical analysis,

simulation, and examination of real data.

Taken together, these explorations lead to the conclusion that, for scholars examining

population treatment effects using the high-quality, broadly representative samples recruited

and delivered by top online survey firms, sample quantities, which do not rely on weights, are

often sufficient. Sample average treatment effect (SATE) estimates tend not to differ substantially

from their weighted counterparts, and they avoid the statistical power loss that accompanies

weighting. When precise estimates of population average treatment effects (PATE) are essential,

we find that a “double-Hàjek” weighted estimator is a very straightforward and reliable option in

many cases. We also analytically show that poststratifying on survey weights and/or covariates

highly correlated with the outcome is a conservative choice for precision improvement, because

it is unlikely to do harm and could be quite beneficial in certain circumstances.

The greater prevalence of online surveys has gone hand-in-hand with the boom in survey

experiments. Firms such as YouGov (formerly Polimetrix) and Knowledge Networks (now owned

by GfK) provide researchers platforms through which to run experiments. The firms offer

representative samples generated through extensive panel recruitment efforts and sophisticated

sample matching and weighting procedures. By reducing or eliminating costs, subsidized,

grant-based and collective programs such as Time-Sharing Experiments for the Social Sciences

(TESS), the Cooperative Congressional Election Study (CCES), andCooperative Campaign Analysis

Project (CCAP) have further facilitated researchers’ access to time on high-end online surveys.

Other firms and platforms, such as Survey Sampling International, Google Consumer Surveys

(Santoso, Stein, and Stevenson 2016), and Amazon’s Mechanical Turk (Berinsky, Huber, and Lenz

2012), offer even less costly access to large anddiverse convenience samples onwhich researchers

can also conduct survey experiments. Researchers using these sometimes generate their own

weights to improve representativeness. However, because we view population inferences with

such convenience samples as rather tenuous, our primary interest is in methods for analysis of

data from sources, such as YouGov and Knowledge Networks, that actively recruit subjects and

provide the researcher with weights.

Survey experiments are a two-step process where a sample is first obtained from a parent

population, and then that sample is randomized into different treatment arms. The sample

selection and treatment assignment processes are generally independent of each other. Sampling

procedures have changed in recent years because of increasing rates of nonresponse and new

technologies. As a result, weights can vary substantially across units, with some units having only

a small probability of being in the sample. In contrast, the treatment assignmentmechanisms are

usually simpleand relativelybalanced, rendering theSATEstraightforward toestimate. Estimating

the PATE, however, is less so because these estimates need to incorporate the weights, which

introduces additional variance as well as a host of complexities.

In this work we assume the weights are known, and further assume that they incorporate

both sampling probabilities and nonresponse. In particular, if there is nonresponse, and the

nonresponse is correctly modeled as a function of some set of covariates, the overall weight

would then be the product of being included in the sample and of responding conditional on

that inclusion. We use weight rather than sampling weight to indicate this more general view. In

fact, for our primary type of data targeted by this work, typically the weights are calculated by the
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survey firms to represent the relative chances that a newly arrived recruit would get selected into

the survey; as volunteering is in part self-selection, the nonresponse is built into the final weight

calculations automatically. We believe the findings based on these assumptions are nevertheless

informative, but we also discuss the additional complications of weight uncertainty in the body of

this paper.

Overall, we encourage researchers choosing between these approaches to first give serious

thought to the types of inferences theywillmake. Do they simplywish to establish the presence or

absence of an effect in a given population? If so, the SATEmay suffice. Or do they hope tomeasure

the magnitude of an effect that may not already be documented? In this case, the scholar should

possibly consider her options for weighted estimators.

In Section 2, we overview general survey methodology. In Section 3, we formally consider

surveyexperiments and relate themto theSATE.We formallydefine thePATEandsomeestimators

of it in Section 4, where we also discuss weights and uncertainty in weights in more detail, and

we introduce a poststratification estimator in Section 4.3. We then investigate the performance of

these estimators through simulation studies in Section 5, and analyze trends and features of real

survey experimental data collected through YouGov in Section 6. We conclude with an extended

discussion, providing some advice and high-level pointers to applied practitioners.

2 Surveys and Survey Experiments through the Lens of Potential Outcomes

We formalize surveys and survey experiments in terms of the Neyman–Rubin model of potential

outcomes (Splawa-Neyman, Dabrowska, and Speed 1990). Assume we have a population of N

units indexed as i = 1, . . .N . We take a sample from this population using a sample selection

mechanism, andwe then randomly assign treatment in this sample using a treatment assignment

mechanism. Both mechanisms will be formally defined in subsequent sections. Each unit i in the

population has a pair of values, (yi (0), yi (1)), called its potential outcomes. Let yi (1) ∈ �be unit i ’s
outcome if it were treated, and yi (0) its outcome if it were not. For each selected unit, we observe

either yi (1) or yi (0) depending on whether we treat it or not. For any unselected unit, we observe

neither.

Wemake the usual no-interference assumption that implies that treatment assignment for any

particular unit has no impact on the potential outcomes of any other unit. This assumption is

natural in survey experiments. The treatment effectΔi for unit i is then the difference in potential

outcomes, Δi ≡ yi (1) − yi (0). These individual treatment effects are deterministic, pretreatment

quantities.

LetS be our sample of n units. Then the SATE is the mean treatment effect over the sample:

τS =
1

n

∑
i ∈S

Δi =
1

n

∑
i ∈S

yi (1) − 1

n

∑
i ∈S

yi (0). (1)

This is a parameter for the sample at hand, but is random in its own right if we view the sample as

a draw from the larger population. By comparison, a parameter of interest in the population is the

PATE defined as

τ =
1

N

N∑
i=1

Δi =
1

N

N∑
i=1

yi (1) − 1

N

N∑
i=1

yi (0).

In general τS � τ , and if the sampling scheme is not simple (e.g., some types of units are more

likely to be selected), then potentially �[τS] � τ .

We discuss some results concerning the sample selectionmechanism in the next section. After

that, we will combine the sample selection with the treatment assignment process.
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2.1 Simple surveys (no experiments)
Let Si be a dummy variable indicating selection of unit i into the sample, with Si = 1 if unit i

is in the sample, and 0 if not. Let S be (S1, . . . , SN ), the vector of selections. In a slight abuse of

notation, let S also denote the random sample. Thus, for example, i ∈ S would mean unit i was
selected into sampleS. Finally let the overall selection probability or sampling probability for unit
i be

πi ≡ P{Si = 1} = �[Si ],

which is the probability of unit i being included in the sample. Themore the πi vary, themore the

samplecouldbeunrepresentativeof thepopulation.Weassumeπi > 0 for all i ,meaningeveryunit

has some chance of being selected intoS. The πi depend, among other things, on the desired size
of sample �[n]. We assume the πi are fixed and known and incorporate nonresponse; we discuss

uncertainty in them in Section 4.2.

Consider the case where we have no treatment and we see yi ≡ yi (0) for any selected unit.

Our task is to estimate the mean of the population, μ = (1/N )
∑N

i=1 yi . Estimating the mean of

a population under a sampling framework has a long, rich history. We base our work on two

estimators from that history here.

Let π̄ = (1/N )
∑
πi be the average selection probability in the population and n =

∑
Si be the

realizedsample size for sampleS,with�[n] = N π̄. Then letwi = π̄/πi be theweight. Theseweights

wi are relative to a baseline of 1, which eases interpretability due to removing dependence on n .

A weight of 1 means the unit stands for itself, a weight of 2 means the unit “counts” as 2 units, a

weight of 0.5 means units of this type tend to be overrepresented and so this unit counts as half,

and so forth. The total weight of our sample is then

Z ≡
N∑
i=1

π̄

πi
Si =

N∑
i=1

wi Si .

Z is random, but �[Z ] = �[n].

The Horvitz–Thompson estimator (Horvitz and Thompson 1952), an inverse probability

weighting estimator, is then

ŷHT =
1

�[n]

N∑
i=1

π̄

πi
Si yi =

1

�[Z ]

N∑
i=1

wi Si yi .

Although unbiased, the Horvitz–Thompson estimator is well known to be highly variable. This

variability comes from the weights; if you randomly get too many rare units in the sample, the

inverse of their weights will inflate ŷHT , even if all yi are the same. We are not controlling for the

realized size of the sample. This is reparable by normalizing by the realized weight of the sample

rather than the expected.

This gives the Hàjek estimator, which is the usual weighted average of the selected units, and

which likely reflects the approach used by most scholars:

ŷH =
1

Z

N∑
i=1

wi Si yi .

The Hàjek estimator is not unbiased, but it often has smaller MSE than Horvitz–Thompson

(Hàjek 1958; Särndal, Swensson, andWretman2003). The bias, however,will tend to benegligible,

as shown by the following lemma:
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LEMMA 2.1 (A variation on Result 6.34 of Cochran (1977)). Under a Poisson selection scheme, i.e.

units sampled independently with individual probability πi , the bias of the Hàjek estimator is

O (1/�[n]). In particular, the bias can be approximated as

�[ŷH ] − μ =̇ − 1

�[n]
�� 1N

N∑
i=1

(yi − μ) π̄
πi
�� = − 1

�[n]
Cov[yi ,wi ].

See Appendix C for proof. The above shows that, for a fixed population, the bias decreases

rapidly as sample size increases. If we sample with equal probability or if the outcomes are

constant, the bias is 0. However, if the covariance between the weights and yi is large, the bias

could potentially be large also. In particular, the covariance will be large if rare units (those with

small πi ) systematically tend to be outliers with large yi − μ because, as weights are nonnegative
inverses of the πi , their distribution can feature a long right tail that drives the covariance.

3 Survey Experiments and SATE

Survey experiments are surveys with an additional treatment assigned at random to all selected

units. Independent of Si let Ti be a treatment assignment, with Ti = 1 if unit i is treated, 0

otherwise. Themost natural such assignmentmechanism for our context is Bernoulli assignment,

where each responding unit i is treated independently with probability p for some p . Another

common mechanism is the classic complete randomization, when a np-sized simple random

sample of the n units is treated. Regardless, we assume randomization is a separate process from

selection. In particular, we assume that randomization does not depend on the weights.

If our interest is in theSATE, thenanatural estimator isNeyman’sdifference-in-meansestimator

of

τ̂SATE =
1

n1

n∑
i=1

Ti yi − 1

n − n1
n∑
i=1

(1 −Ti )yi , (2)

with n1 the (possibly random) number of treated units (see Splawa-Neyman, Dabrowska, and

Speed 1990).

This estimator is essentially unbiased for the SATE (�[τ̂SATE�S] = τS), but unfortunately, the
SATE is not generally the same as the PATE and �[τS] � τ in general. The bias, for fixed n , is

bias(τ̂SATE) = �[τ̂SATE] − τ = 1

N

N∑
i=1

(
πi
π̄
− 1
)
Δi

= Cov
(
πi
π̄
,Δi

)
. (3)

See Appendix C for derivation. As units with higher πi will be more likely to be selected into S,
the estimator will be biased toward the treatment effect of these units. Equation (3) shows an

important fact: if the treatment impacts are not correlated with the weights, then there will be no

bias. In particular, if the selection probabilities are all the same, or there is no treatment effect

heterogeneity, then the bias of τ̂SATE for estimating the PATE will be 0.

The variance of τ̂SATE, conditional on the sampleS, is well known, but we include it here as we
use it extensively.

THEOREM 3.1. Let sample S be randomly assigned to treatment and control with �[Ti ] = p for

all i with either a complete randomization or Bernoulli assignment mechanism. The unadjusted
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simple-difference estimator τ̂SATE is unbiased
1 for the SATE, i.e. �[τ̂SATE�S] = τS . Its variance is

Var[τ̂SATE�S] = 1

n
[(β1 + 1)σ2

S (1) + (β0 + 1)σ2
S (0) + 2γS ] (4)

=
1

n
[β1σ

2
S (1) + β0σ

2
S (0) − σ2

S (Δ)], (5)

where σ2
S (z ) and σ2

S (Δ) are the variances of the individual potential outcomes and treatment

effects for the sample, and β� = �[n/n� ] are the expectations (across randomizations) of the

inverses of the proportion of units in the two treatment arms.

If n1 is fixed, such as with a completely randomized experiment, then β1 = 1/p , β0 = 1/(1 − p)
and the above simplifies to Neyman’s result of

Var[τ̂SATE�S] = 1

n

[
1

p
σ2
S (1) +

1

1 − p σ
2
S (0) − σ2

S (Δ)

]
.

For Bernoulli assignment, the β� are complicated because of the expectation of the random

denominator, and there are mild technical issues because the estimator is undefined when,

for example, n1 = 0. One approach is to use n/�[n1] = 1/p as an approximation for β1. This

approximation is quite good; the bias is of high order for the same reasons as the bias for theHàjek

estimator (see Lemma 2.1). Furthermore, the undefined issue is of small concern as the chance of

n1 = 0 is exponentially small; giving the estimator an arbitrary value (e.g., 0) if this rare event

occurs, introduces only a small bias. An alternate approach is to condition on the number of units

treated: set p = n1/n anduseNeyman’s results. Conditioning is a reasonable choice thatweprefer.

It leads to a more accurate (and more readable) formula. For details, including formal definitions

and the derivations, see Miratrix, Sekhon, and Yu (2013).

It is important to underscore that any SATE analysis on the sample, given a truly modeled

treatment assignmentmechanism, is valid. That is, such an analysis is estimating a true treatment

effect parameter, the SATE. If �[τS] = τ , then any SATE analysis will be correct for PATE as well

(although estimates of uncertainty may be too low if they do not account for variability in τS). In
particular, if there is a constant treatment effect, then τS = τ for any sample, and the SATE will

be the PATE, and all uncertainty estimates for the SATE will be the same as for the PATE.2 But a

constant treatment effect is a large assumption.

4 Estimating the PATE

Imaginewehadbothpotential outcomes yi (1), yi (0) for all the sampled i ∈ S. Thesewould give us
exact knowledge of the SATE, and we could also use this information, coupled with the weights,

to estimate the PATE. In particular, with knowledge of the yi (� ) we have a sample of treatment

effects:

Δi = yi (1) − yi (0) for i ∈ S.

We can use theseΔi to estimate the PATE, τ , with, for example, a Hàjek estimator:

νS =
1

Z

∑
Si

π̄

πi
Δi =

1

Z

∑
Si

π̄

πi
yi (1) − 1

Z

∑
Si

π̄

πi
yi (0). (6)

1 Nearly unbiased, that is. Under randomizations where the estimator could be undefined (e.g., there is a chance of all units

getting assigned to treatment, such as with Bernoulli assignment where n1 is random and P{n1 = 0} > 0 or P{n0 = 0} >
0), this unbiasedness is conditional on the event of the estimator being defined. Because this probability is generally
exponentially small the bias is as well, however. See Miratrix, Sekhon, and Yu (2013) for further discussion.

2 The estimated uncertaintywill, however, depend on the sample S. For example, if S happens to havewidely varying units,
τ̂SATE will have high variance and the sample-dependent SATE SE estimate should generally reflect that by being large to
give correct coverage for τS . Now, as this is true for any sample, the overall processwill have correct coverage.
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This oracle estimator νS is slightly biased, but the bias is small, giving�S[νS] ≈ τ . If wewanted an
unbiased estimator, we could use a Horvitz–Thompson estimator by replacing Z with�[n] = N π̄,

the expected sample size.

Unfortunately, we do not, for a given sample S, observe νS . We can, however, estimate it
given the randomization and partially observed potential outcomes. Estimating the PATE is now

implicitly a two-step process: estimate the sample-dependent νS , which in turn estimates the
population parameter τ . Under this view, we have two concerns. First, we have to accurately

estimate νS , using all the tools available, by simple randomized experiments such as adjustment
methods or, if we can control the randomization, blocking. Second, we have to focus on a sample

parameter νS , that is itself a good estimator of τ . See Appendix A for further discussion.

4.1 Estimating νS
Equation (6) shows that our estimator is the difference in weighted means of our treatment

potential outcomes and our control potential outcomes. This immediately motivates estimating

these means with the units randomized to each arm of our study, as with the following “double-

Hàjek” estimator

τ̂hh =
1

Z1

N∑
i=1

SiTi
π̄

πi
yi (1) − 1

Z0

N∑
i=1

Si (1 −Ti ) π̄
πi

yi (0) (7)

with

Z1 =
N∑
i=1

SiTi
π̄

πi
and Z0 =

N∑
i=1

Si (1 −Ti ) π̄
πi
.

The Z� are the total sample masses in each treatment arm. �[Z1] = pN π̄ = �[n1], the expected

number of units that will land in treatment (similarly for control).

This estimator is two separate Hàjek estimators, one for themean treatment outcome and one

for the mean control. Each estimator adjusts for the total mass selected into that condition. This

difference of weightedmeans is the one naturally seen in the field. It corresponds to the weighted

OLS estimate from regressing the observed outcomes Y obs on the treatment indicators T with

weightswi . This equivalence is shown in Appendix C.

Because this is a Hàjek estimator, there is bias for τ̂hh in the randomization step as well

as the selection step because the Z� depend on the realized randomization. Again, this bias

is small, which means the expected value of our actual estimator, conditional on the sample,

is approximately νS , our Hàjek “estimator” of the population τ : �[τ̂hh �S] ≈ νS . (For unbiased
versions, see Appendix A.)

We can obtain approximate results for the population variance of τ̂hh if we view the entire

selection-and-assignment process as drawing two samples from a larger population. We ignore

the finite-sample issues of no unit being able to appear in both treatment arms (i.e., we assume a

large population) anduse approximate formula basedon sampling theory. For a Poisson selection

scheme and Bernoulli assignment mechanismwe then have:

THEOREM 4.1. The approximate variance (AV) of τ̂hh is

AV (τ̂hh ) ≈ 1

p�[n]

1

N

N∑
j=1

wj (yj (1) − μ(1))2 + 1

(1 − p)�[n]
1

N

N∑
j=1

wj (yj (0) − μ(0))2,
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with μ(z ) = (1/N )
∑N

i=1 yi (z ). This formula assumes the πj are small; see Appendix C for a more

exact form. This variance can be estimated by

V̂ (τ̂sd ) =
1

Z 2
1

N∑
j=1

SiTiw
2
j (yj (1) − μ̂(1))2 +

1

Z 2
0

N∑
j=1

Si (1 −Ti )w 2
j (yj (0) − μ̂(0))2,

where μ̂(1) = (1/Z1)
∑N

i=1 SiTiwi yi (1) and μ̂(0) = (1/Z0)
∑N

i=1 Si (1 −Ti )wi yi (0).

See Appendix C for the derivation, which also givesmore general formulas that can be adapted

for other selection mechanisms. For related work and similar derivations, see Wood (2008) and

Aronow and Middleton (2013).

4.2 Uncertain andmisspecified weights
Following the survey sampling literature, this paper assumes the weights are exact, correct, and

known. They are considered to be the total chance of selection into the sample. In particular,

again following standard practice, the πi are the product of any original samplingweights and any

nonresponseweights, givenaclassic samplingcontext (Grovesetal.2009). By contrast, for surveys

such as YouGov the nonresponse is built in, as the recruited panels are in effect self-selected, so

we get the overall weights (which they call propensity or case weights) directly. Our results are

regarding these total weights.

Of course, especially when considering nonresponse, weights are not known but instead

estimated using amodel and, ideally, a rich set of covariates. This raises two concerns. The first is

if the weights are systematically inaccurate due to some selection mechanism that has not been

correctly captured. In this case, as theweights are independent of the assignmentmechanism, the

SATEestimatesare still valid andunbiased. ThePATEestimates, however, canbearbitrarily biased,

and this bias is not necessarily detectable. For example, if only those susceptible to treatment join

the study, the PATE estimatewill be too high, and theremay be nomeasured covariate that allows

for detection of this.

The second concern is whether there is additional uncertainty that needs to be accounted for,

given the estimatedweights, when doing inference for the PATE. There is, althoughwebelieve this

uncertainty can often bemuch smaller than the uncertainty in the randomized experiment itself.3

While this uncertainty could be taken into account, much of the literature does not tend to do so.

Interestingly, it is not obvious whether estimating the weights given the sample could actually

improve PATE precision similar to using estimated propensity scores instead of known propensity

scores—see, for example, Hirano, Imbens, and Ridder (2000). We leave this as an area for future

investigation.

For further thoughtsonconcerns regardinguncertainty in theweights,wepoint to the literature

on generalizing randomized trials to wider populations, such as discussed in Hartman et al. (2015)

and Imai, King, and Stuart (2008). Here, the approach is generally to estimate units’ propensity

for inclusion into the experiment, and then weight units by these quantities in order to estimate

population characteristics. These propensities of inclusion are usually estimated by borrowing

from the propensity score literature for observational studies (Cole and Stuart 2010). One nice

aspect of this approach is it provides diagnostics in the form of a placebo test. In particular, the

characteristics of the reweighted control group of the randomized experiment should match the

characteristics of the target population of interest (see Stuart et al. (2010) for a discussion).

Relatedly, O’Muircheartaigh and Hedges (2014) and Tipton (2013) propose poststratified

estimators, stratifying on these estimated weights. In their case, however, they also have the

3 Consider that the estimated weights are usually calibrating the full sample to a larger known population, while the

uncertainty of the experiment is of the difference in two subsamples,whichwill tend to have about four times the variance,

at least.
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population proportions of the strata as given, which allows for simpler variance expressions and

arguably less sensitivity to error in the weights themselves. Furthermore, they do not incorporate

the unit-level weights once they stratify. Tipton (2013) investigates the associated bias-variance

trade-offs due to stratification, and gives advice as to when stratification will be effective.

Generalizationassumesweknow theassignmentmechanism,but not necessarily the sampling

mechanism. There is some work on the reverse case, with estimated propensity scores of

treatment and known weights, see DuGoff, Schuler, and Stuart (2013). Here the final propensity

weights are also treated as fixed for inference.

4.3 Poststratification to improve precision
One can improve the precision of an experiment by adjusting for covariates. For an examination of

this under thepotential outcome framework, see, for example, Lin (2013).Weusepoststratification

for this adjustment. In poststratification, treatment effects are first estimated within each of a

seriesof specified strataof thedataand thenaveraged togetherwithweightsproportional to strata

size (Miratrix, Sekhon, and Yu 2013).

We use poststratification because it relies on very weak modeling assumptions and naturally

connects with the weighting involved in estimating the PATE. See Appendix B for the overall

framework and associated estimators. Other estimators that rely on regression and other forms

ofmodeling are also possible; see Zheng and Little (2003) or, more recently, Si, Pillai, and Gelman

(2015). For poststratification, the more the mean potential outcomes vary between strata, the

greater the gain in precision. And given that it is precisely when the weights and outcomes are

correlated thatwemustworry about theweights, poststratifying on them is a natural choice. Such

stratification is easy to implement: simply build K strata prerandomization (but not necessarily

presampling) by, e.g., taking the K -weighted quantiles of the 1/πi as the strata.

When the units are divided intoK quantiles by survey weight, the cut points of those quantiles

dependon the realizedweights of the sample. Because this is still prerandomization, this does not

impact the validity of the variance and variance-estimation formulas of the SATE estimate of τS .
It does, however, make generating appropriate population variance formulas difficult. Given this,

we propose using the bootstrap, incorporating the variable definition of strata to take this stage

being sample-dependent into account. Bootstrap is natural in that for survey experiments we are

pulling units froma large population, and so simulating independent draws is reasonable.While a

technical analysis of this approach is beyond the scope of this paper, we discuss some particulars

of implementation in Appendix B. Reassuringly, our simulation studies in the next section show

excellent coverage rates.

5 Simulation Studies

Wehere present a series of simulation studies to assess the relative performance of the respective

estimators. We also assess the performance of the bootstrap estimates of the standard errors.

Our simulation studies are as follows: we generate a large population of size N = 10, 000with

the two potential outcomes and a selection probability for each unit. Using this fixed population,

we repeatedly take a sample and run a subsequent experiment, recording the treatment effect

estimates for the different estimators. In particular, we first select a sample of size n , sampling

without replacement but with probabilities of selection inversely proportional to the weights.4

Once we have obtained the final sample, we randomly assign treatment and estimate the

treatment effect. After doing this 10,000 times we estimate the overall mean, variance, and MSE

of the different estimators to compare their performance to the PATE. We also calculate bootstrap

4 We ignore a mild technical issue of the πi not being exactly proportional to the weights due to not sampling with
replacement.
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Table 1. Simulations A & B. Performance of different estimators as estimators for the PATE for (A) a

heterogeneous treatment effect scenario with τ = 32.59 and (B) a constant treatment effect of τ = 30. For
each estimator, we have, from left to right, its expected value, bias, standard error, root mean squared error,

average bootstrap SE estimate, and coverage across 10,000 trials.

Estimator Mean Bias SE RMSE boot SE Coverage

A

1 τS 40.36 7.77 1.35 7.89

2 νS 32.58 0.00 1.84 1.84

3 τ̂SATE 40.37 7.78 3.14 8.39 3.12 30%

4 τ̂hh 32.62 0.03 3.91 3.91 3.79 95%

5 τ̂ps 32.60 0.01 2.67 2.67 2.69 95%

B

1 τS 30.00 0.00 0.00 0.00

2 νS 30.00 0.00 0.00 0.00

3 τ̂SATE 30.01 0.01 2.58 2.58 2.58 95%

4 τ̂hh 30.03 0.03 3.35 3.35 3.31 95%

5 τ̂ps 30.02 0.02 3.32 3.32 3.29 95%

standard error estimates for all the estimators using the case-wise bootstrap scheme discussed in

Appendix B.

5.1 Simulation A
Our first simulation is for a population with a heterogeneous treatment effect that varies in

connection to the weight. See Appendix D for some simple plots showing the structure of the

populationandasingle sample.Our treatmenteffect, outcomes, andsamplingprobabilitiesareall

strongly related.We then took samplesof a specified size fromthis fixedpopulation, andexamined

the performance of our estimators as estimators for the PATE.

Results for n = 500 are on Table 1. Other sample sizes such as n = 100, not shown, are

substantively the same. The first two lines of the table show the performance of the two “oracle”

estimators τS (Equation (1)) and νS (Equation (6)), which we could use if all of the potential
outcomes were known. For τS there is bias because the treatment effect of a sample is not
generally the same as the treatment effect of the population. The Hàjek approach of νS , second
line, is therefore superior despite the larger SE. Line 3 is the simple estimate of the SATE from

Equation (2). Because it is estimating τS , it has the same bias as line 1, but because it only uses
observed outcomes, the SE is larger. Line 4 uses the “double-Hàjek” estimator shown in Equation

(7). This estimator is targeting νS , reducing bias, but has a larger SE relative to line 3 due to the fact
that we are incorporating weights. Line 5 is the poststratified “double Hàjek” given in Appendix B.

Units were stratified by their survey weight, with K = 7 equally sized (by weight) strata. For this

scenario, poststratifying helps, as illustrated by the smaller SE and RMSE, compared to τ̂hh .

An inspection of the coverage rates reflects what we have already discussed: the estimate τ̂SATE

does not target the PATE while the other two sample estimates, τ̂hh and τ̂ps , do. Therefore, it has

terrible coverage. Furthermore, the latter two estimates give correct coverage, which is reflective

of the bootstrap SE estimates hitting their mark.

5.2 Simulation B
As a second simulation we kept the original structure between Y (0) and w , but set a constant

treatment effect of 30 for all units. Results are on the bottom half of Table 1. Here, τS = τ for any

sample S, so there is no error in either estimate with known potential outcomes (lines 1–2). This
also means that τ̂SATE is a valid estimate of the PATE and this is reflected in the lack of bias and
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Figure 1. (a) Bias, (b) standard error, and (c) rootmean squared error of estimateswhen selection probability

is increasingly related to the potential outcomes (Simulation C). The horizontal axis, γ, varies the strength
of the relationship between outcome and weight. Gray are SATE-targeting, black PATE-targeting. Solid are

oracle estimators using all potential outcomes of the sample, dashed are actual estimators. The thicker lines

are averages over the 20 simulated populations in light gray dots.

nominal coverage rate (line 3). The increase of SE of the weighted and poststratified estimators

(lines 4–5) reflects theuseofweightswhen they are in fact unnecessary.Overall, the SATEestimate

is the best, as expected in this situation.

5.3 Simulation C
In our final simulation, we systematically varied the relationship between selection probability

and outcomeswhilemaintaining the samemarginal distributions in order to examine the benefits

poststratification.

In our data generating process (DGP)we first generate abivariate normal pair of latent variables

with correlation γ, and then generate the weights as a function of the first variable and the

outcomes as a function of the second. Then, by varying γ we can vary the strength of the

relationshipbetweenoutcomeandweight. (SeeAppendixD for theparticulars.)Whenγ = 1,which

corresponds to Simulation A,wi and (Yi (0),Yi (1)) have a very strong relationship and we benefit

greatly frompoststratification. Converselywhen γ = 0,wi and (Yi (0),Yi (1)) are unrelated and there

will be no such benefit.

For eachγwegenerated20populations, conductinga simulation studywithineachpopulation.

We then averaged the results and plotted the averages against γ on Figure 1. The solid lines give

the performance of the oracle estimators τS andνS , and the nonsolid lines are the estimators. The
gray lines are estimators that do not incorporate the weights, and the black lines are estimators

that do. The light gray points show the individual population simulation studies; they vary due to

the variation in the finite populations.

We first see that, because both the double Hàjek and its poststratified version are targeting νS ,
which in turn estimates the PATE, they remain unbiased regardless of the latent correlation. On

the other hand, the SATE and its estimator, τ̂SATE, are affected. The bias continually increases as

the relationship between weight and treatment effect increases.

Luke W. Miratrix et al. � Political Analysis 285

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.1


As expected, the SE of the estimators that do not use weights, τS and τ̂SATE, stay the same

regardless of γ because the marginal distributions of the outcomes are the same across γ. The

estimators that only use weights to adjust for sampling differences, νS and τ̂hh , also remain the

same, although their SEs are larger than for τS and τ̂SATE because of incorporating the weights.

We pay for unbiasedness with greater variability. The poststratified estimator τ̂ps , however, sees

continual precisiongainsas theweights are increasinglypredictiveof treatmenteffect. For lowγ, it

has roughly the sameuncertainty as τ̂hh , but is soon themost precise of all (nonoracle) estimators.

These conclusions are tied together in the rightmost panel of Figure 1, showing theRMSE,which

gives the combined impact of bias and variance on performance. As γ increases, the RMSE of τ̂SATE

steadily climbs due to bias, eventually being the worst at γ = 0.2. Meanwhile, the poststratified

estimator that exploits weights, τ̂ps , performs better and better. Overall, if weights are important

then (1) the bias terms can be too large to be ignored, and (2) there is something to be gained

by adjusting the estimates of treatment effects with those weights beyond simple reweighting.

Otherwise, SATE estimators are superior, as incorporating weights can be costly.

6 Real Data Application

To better understand the overall trade-offs involved in using weighted estimators of PATE versus

simply estimating theSATEonactual survey experiments,weanalyzeda set of survey experiments

embedded in 7 separate surveys fielded by us though YouGov over the course of 5 years. Studies

appeared in two modules of the 2010 CCES, one module each of the 2012 and 2014 CCES, a

survey of Virginia voters run prior to the 2013 gubernatorial election in that state, and two other

national YouGov surveys. Each survey had post hoc weights assigned by YouGov through that

firm’s standard procedure. Across these surveys were 18 separate assignments of respondents

to binary treatments. In several of these cases, multiple outcomes were measured, producing

46 randomization/outcome combinations.5 All of the studies examined were conducted in the

United States and focused on topics related to partisan political behavior.6 As such, we make

our comparisons of SATE and PATE by looking at Democratic and Republican respondents

separately. This is because treatment effects for such studies are generally highly heterogeneous

by respondent party identification. Our set of 46 randomization/outcome combinations produce

92 experiments (half among Democrats and half among Republicans). Sample sizes for the

experiments analyzed range from 145 to 504.7 Weights varied substantially in these samples,

ranging from near 0 to around 8, when normalized to 1 across the sample (standard deviation of

1.04). Sixty fiveof them (70.7%) showedSATEs thatwere significantly different fromzero.However,

once the weights provided by YouGov were taken into account to estimate the PATE (via the

double-Hàjek estimate) only 52 experiments (56.5%) had significant effects.

Our first finding is that incorporating weights substantially increased the standard errors.

Figure 2 shows a 32.1% average increase in standard error estimates of τ̂hh over τ̂SATE across

experiments.

We next examined whether there is evidence of some experiments having a PATE substantially

different from the SATE. To do this, we calculated bootstrap estimates of the standard error for the

5 In the analyses presented here, we use all of these outcomes. We elected to do this becausemore outcomes providemore

opportunity for divergence between SATE and PATE, and thus provide amore conservative test of our conclusion that such

divergence is rare. Also, selecting outcomes would represent an added researcher degree of freedom, which we sought

to avoid. In the interest of transparency, we present, in Appendix E, the results of our examination when only the primary

outcome for each randomization is used. Our findings remain the same.

6 Some of the studies featured random assignment of campaign advertisements shown to respondents with ad tone

and partisan source varied. Several of the studies presented respondents with vignettes or news stories describing

candidates or groups of voters with characteristics such as party label and gender randomized. Another set of studies

asked respondents to evaluate artwork when told (or not told) that the art was produced by Presidents Bush and Obama.

More details regarding the specific studies used can be found in Table 1 in the supplementary materials.

7 These survey experiments along with the code to replicate the following analyses are publicly available, see Miratrix et al.

2017.
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Figure 2. Relative efficiency of τ̂hh versus τ̂SATE of the estimates for the 92 experiments.

difference in the estimators, and calculated a standardized difference in estimates of δ̂ = (τ̂SATE −
τ̂hh )/ŜE . If there were no difference between the SATE and the PATE, the δ̂s should be roughly

distributed as a standardNormal. First, the averageof these δ̂ is−0.115, giving noevidence for any
systematic trend of the PATE being larger or smaller than the SATE. Second, when we compared

our 92δ̂ values to the standard normalwith a qq-plot (Figure 3), we find excellent fit. While there is

a somewhat suggestive tail departing from the expected line, the bulk of the experiments closely

follow the standard normal distribution, suggesting that the SATE and PATE were generally quite

similar relative to their estimation uncertainty. A test using q-statistics (modeled after Weiss et al.

2017) failed to reject the null of no differences across the experiments (p > 0.99); especially

considering the possible correlation of outcomes would make this test anticonservative, we have

no evidence that the PATE and SATE estimates differ (see Appendix E for further investigation of

this). An FDR test also showed no experiments with a significant difference.

Finally, we consider whether poststratification onweights improved precision. Generally, it did

not: the estimated SEs of τ̂ps are very similar to those for τ̂hh , with an average increase of about

0.6%. Further examination offers a hint as to why poststratification did not yield benefits: the

weights generated by YouGov for these samples do not correlatemeaningfully with the outcomes

of interest. In no case did themagnitude of the correlation between weights and outcome exceed

0.23. To further explore potential benefits of poststratificationwe examine the effects of adjusting

for a covariate, respondent party identification, on the full experiments not separated by party ID.

Relative to no stratification, if wepoststratify onparty ID,weighting the strata by the total sampled

mass in both treatment and control, our PATE estimate shows an average reduction of 1.4% in

estimated SEs across experiments with participants of both major parties. If we poststratify on

both party ID and theweights, we see an average estimated SEs reduction of 1%. These reductions

would in no waymake up for the larger SEs from attempting to estimate the PATE.
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Figure 3. Quantile–quantile plot of the relative standardized differences δ̂ of the estimates for the 92

experiments grouped into the larger surveys they are part of.

While this does not imply that scholars need not consider poststratifying on weights, it does

show that outcomes of interest in political science studies are not necessarily going to be

correlated with these weights. This makes clear the importance of researchers understanding,

and reporting, the process used to generateweights and being aware of the covariates withwhich

thoseweights are likely to be highly correlated (for online surveys, such a list would often includes

certain racial and education-level categories).

6.1 Discussion
Overall, it appears that in this context and for these experiments, the survey weights significantly

increaseuncertainty, and that there is little evidence that theRMSE (which includes theSATE–PATE

bias) for estimating the PATE is improved by estimators that include these weights. Furthermore,

theweights are not predictive enough of outcome to help the poststratified estimator.With regard

topoststratification,wenote that in practice the analysis of anyparticular experimentwould likely

be improved by poststratifying on known covariates predictive of outcome rather than naïvely on

the weights.

In understanding these findings, it is useful to consider the ways in which data from these

leading online survey firms (in this case, YouGov) may differ from more convenience-based

online samples. Even unweighted, datasets from these firms tend to bemore representative. This

is because they often engage in extensive panel recruitment and retention efforts and assign

subjects from their panels to client samples throughmechanisms such as block randomization. As

a result, theunweighteddataareoften largely representativeof theoverall populationalongmany

relevantdimensions.Relatedly, firmsmayuseaclean-upmatchingstep, suchas theoneemployed

by YouGov, where they downsample their data to generate more uniform weights (Rivers 2006).
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Thiswill likely increase the heterogeneity of the final sample,which could decrease precision.8 We

recommend that researchers request the original, preweighted data, in order toworkwith a larger

and more homogeneous sample. For the SATE the gains are immediate. For the PATE, one might

generate weights for the full sample by extrapolating from the weights assigned in the trimmed

sample or by contracting with the survey firm to obtain weights for this full unmatched sample.

Then, by poststratifying on the weights, the researcher can take advantage of the additional units

to increase precision in some stratawithout increasing variability in the others. For both SATE and

PATE estimation, power would be improved.

7 Discussion and Practical Guidance

We investigate incorporating weights in survey experiments under the potential outcomes

framework. We focus on two styles of estimator, those that incorporate these weights to take

any selection mechanisms into account, and those that ignore weights and instead focus on

estimating the SATE. We primarily find that incorporating weights, even when they are exactly

known, substantially decreases precision. Because of this, researchers are faced with a trade-off:

more powerful estimates for the SATE, ormore uncertain estimates of the PATE.We concludewith

several observations that should inform how one navigates this trade-off.

The PATE can only be different from the SATE when two things hold: (1) there is meaningful

variation in the treatment impact, and (2) that variation is correlated with the weights (see

Equation (3)). Moreover, the random assignment of treatment protects inference for the

weighted estimator, even if the weights are incorrect or known only approximately: because

the randomization of units into treatment is independent of the (possibly incorrect) weights,

any inference conditional on the sample and the weights is a valid inference. When PATE is the

estimand, we are estimating the treatment effect for a hypothetical population defined by the

weights and sample, even if it does not correspond to the actual population. For example, if we

find a treatment effect in our weighted sample, we know the treatment does have an effect for at

least some units. See Hartman et al. (2015) for a discussion of this issue in the case of evaluating

the external validity of an experiment.

It is important to compare the PATE and SATE estimates. A meaningful discrepancy between

them is a signal to look for treatment effect heterogeneity and a flag that weight misspecification

could be a real concern. If the estimates do not differ, however, and there is no other evidence

of heterogeneity, then extrapolation is less of a concern—and furthermore the SATE is probably

a sufficient estimate for the PATE. Of course, with misspecified weights if there is heterogeneity

associated with being selected into the experiment that is not captured by the covariates, then

PATE estimation can be undetectably biased. For more on assessing heterogeneity, see Ding,

Feller, and Miratrix (2018).

8 Consider a standard scenario wherein a researcher purchases a sample of 1000 respondents. To generate these data, the

survey firm might recruit 1400 respondents, all of whom participate in the study. Two datasets result from this. The first

contains all 1400 respondents. The second is a trimmed version, where the firm drops 400 of the most overrepresented

respondents (which is tantamount to assigning these respondents a weight of 0). This second set, which comes with

weights assigned to each observation, is what many scholars analyze. Some firms will, upon request, also provide the

full dataset, but these data do not generally includeweights, as the process for generating these weights is combinedwith

the procedure for trimming down the larger dataset bymatching it to some frame based upon population characteristics.

Theweightswill be less extreme than theywouldhavebeenhad theentire original samplebeen included, and the trimmed

sample will be more heterogeneous, as many similar observations will be purged. This will make it more difficult to

estimate its SATE compared to the full set (do note the SATEs could differ). Furthermore, poststratification shows that

estimators that includeweights for the trimmedsetwill alsobe less variable than for the sameestimatorson the full dataset

(assumingweights could beobtained), even though the trimmeddatasetweightswill be less variable. Consider a casewith

two classes of respondents, reluctant and eager, equally represented in the population. The trimmed sample will have

fewer eager respondents. Then, compared to the full dataset, wewill have a less precise estimate of the eager respondents

in the trimmed dataset. The precision for the reluctant respondents would be the same. Overall, our combined estimate

will be, therefore, less precise.
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Interestingly, our examination of real survey data found no strong connection between the

weights and outcomes. The SATE and PATE estimators tended to be similar. Based on this, we

have several general pieces of practical guidance: (1) When analyzing survey experiments using

high-quality, broadly representative samples, such as those recruited and provided by firms like

YouGov and Knowledge Networks, SATE estimates will generally be sufficient for most purposes.

(2) If a particular research question calls for estimates of the PATE, a “double-Hàjek” estimator

is probably the most straightforward (and a defensible) approach, unless weights are highly

correlated with the outcomes variables. (3) If weights are strongly correlated with a study’s

outcome(s) of interest, poststratification on the weights with bootstrap standard errors can help

offset the cost of including weights for those seeking to draw population inferences.

This motivates a two-stage approach. First, focus on the SATE using the entire, unweighted

sampleanddeterminewhether the treatmenthad impact. Thiswill generallybe themostpowerful

strategy for detecting an effect, as the weights, being set aside, will not inflate uncertainty

estimates. Then, once a treatment effect is established, work on how to generalize it to the

population. This second stage is an assessment of the magnitude of an effect in the population

once an effect on at least some members of the population has been established. First estimate

the PATE with the weights, and then compare it to the SATE estimate. If they differ, then consider

working to explain any treatment effect heterogeneity with covariates, and think carefully

about weight quality. Regardless, ensure that all analyses preserve the original strength of the

assignment mechanism; the weights do not need to jeopardize valid assessment of the presence

of causal effects. Part of preserving valid statistical inference would be to commit to a particular

procedure before analyzing the given dataset. A preanalysis plan or sample splitting would help

prevent a fishing expedition to find treatment effects.
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