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Abstract. We present several applications of the weak specification property and certain
topological Markov properties, recently introduced by Barbieri, García-Ramos, and Li
[Markovian properties of continuous group actions: algebraic actions, entropy and the
homoclinic group. Adv. Math. 397 (2022), 52], and implied by the pseudo-orbit tracing
property, for general expansive group actions on compact spaces. First we show that
any expansive action of a countable amenable group on a compact metrizable space
satisfying the weak specification and strong topological Markov properties satisfies the
Moore property, that is, every surjective endomorphism of such dynamical system is
pre-injective. This together with an earlier result of Li (where the strong topological
Markov property is not needed) of the Myhill property [Garden of Eden and specification.
Ergod. Th. & Dynam. Sys. 39 (2019), 3075–3088], which we also re-prove here, establishes
the Garden of Eden theorem for all expansive actions of countable amenable groups
on compact metrizable spaces satisfying the weak specification and strong topological
Markov properties. We hint how to easily generalize this result even for uncountable
amenable groups and general compact, not necessarily metrizable, spaces. Second, we
generalize the recent result of Cohen [The large scale geometry of strongly aperiodic
subshifts of finite type. Adv. Math. 308 (2017), 599–626] that any subshift of finite type of
a finitely generated group having at least two ends has weakly periodic points. We show
that every expansive action of such a group having a certain Markov topological property,
again implied by the pseudo-orbit tracing property, has a weakly periodic point. If it has
additionally the weak specification property, the set of such points is dense.
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1. Introduction
Let G be a group and A a finite set. Then AG, with the product topology, is a compact
topological space on which G naturally acts by homeomorphisms. Such a topological
dynamical system is called a (topological) shift and any of its (topologically) closed
G-invariant subsets are called subshifts. These are the objects of study of symbolic
dynamics, whose many results and notions have inspired and have been generalized to
more general dynamical systems.

One of those is the Garden of Eden theorem. For G = Zd , Moore in [36], respectively
Myhill in [38], proved that every continuous surjective G-equivariant map τ : AG → AG

is pre-injective, respectively conversely every such pre-injective map is surjective (we shall
define pre-injectivity later). A dynamical system for which this equivalence holds is said
to satisfy the Garden of Eden theorem. This result was generalized to all amenable groups
in [16] and later also for certain subshifts of amenable groups (see [10, 27]). It did not take
long for the Garden of Eden theorem to be considered for many other dynamical systems
(see e.g. [7, 11, 13, 15, 34]). One of the most general versions of the Myhill property was
considered by Li in [34] where he proves that every expansive action of an amenable group
on a compact metrizable space having the weak specification property satisfies the Myhill
property.

Our aim is to provide such a general result also for the Moore property. However, the
weak specification property alone is not enough for establishing this property. This is
known even for subshifts, where a counterexample was provided for strongly irreducible
subshifts in [26] and it was showed in [34] that for subshifts, the weak specification
property is equivalent to being strongly irreducible. We add one of the topological Markov
properties that were introduced, for general expansive dynamical systems, very recently
by Barbieri, García-Ramos, and Li in [1] and which generalizes the pseudo-orbit tracing
property, also known as shadowing, which for subshifts corresponds to being of finite type
(see [18]).

Therefore, one of our main results is the following. All the notions will be defined in
the next section.

THEOREM A. Let G be a (countable) amenable group acting continuously and expan-
sively on a compact metrizable space X so that the action has the weak specification and
strong topological Markov properties (recall again that it is implied by the pseudo-orbit
tracing property). Then the dynamical system (X, G) has the Moore property. This together
with the result of H. Li, which we also re-prove, implies that this dynamical system satisfies
the Garden of Eden theorem.

The theorem covers and generalizes many of the previous results, including of [27],
where the Garden of Eden theorem is proved for strongly irreducible subshifts of finite type
of amenable groups, and of [11], where the same theorem is proved for certain hyperbolic
dynamical systems, namely, Anosov diffeomorphisms on tori; see Corollary 3.6, which
describes some of the new examples to which the theorem can be applied.

The theorem also covers many of the algebraic dynamical systems where the result
of [34] applies, that is, expansive algebraic actions of amenable groups with completely
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positive entropy. In particular, it also covers principal algebraic actions of amenable groups
since they have the weak specification and pseudo-orbit tracing properties (see [34, Lemma
2.1] and [35, Theorem 1.5] respectively).

The restriction to countable groups and metrizable spaces is not at all necessary,
although perhaps the most interesting. In §3.2, we hint at how to easily generalize the result
also for uncountable groups and non-metrizable spaces. This simplifies and generalizes the
result of Ceccherini-Silberstein and Coornaert in [12].

Next we consider periodic, respectively weakly periodic points of dynamical systems.
If (X, G) is a dynamical system, we call a point x ∈ X periodic if its orbit is finite, or
equivalently, if its stabilizer has a finite index in G. We call a point x ∈ X weakly periodic
if its stabilizer is infinite. In a recent breakthrough [20], Cohen showed that if G is a finitely
generated group having at least two ends, then every subshift of finite type of G must
contain a weakly periodic point. Compare this with the other results for several one-ended
groups which admit a subshift of finite type on which the group acts freely (see e.g. the
classical result for Z2 in [5] and many other more recent developments in [21, 22, 37].

Here we generalize Cohen’s result again to far more general dynamical systems. For this,
we introduce a new topological Markov property, called here the cover strong topological
Markov property, in the spirit of [1], which is implied by the pseudo-orbit tracing property
and implies the uniform strong topological Markov property – we do not know if it is
equivalent to the latter. We show the following.

THEOREM B. Let G be a finitely generated group having at least two ends. Suppose that G
acts continuously and expansively on a compact metrizable space X so that the action has
the cover strong topological Markov property. Then (X, G) has weakly periodic points.

If the action has moreover the weak specification property, then the set of such points is
dense in X.

For examples of dynamical systems satisfying various topological Markov properties,
the pseudo-orbit tracing property, and of systems satisfying them together with the weak
specification property, we refer the reader to e.g. [1, 14]. We remark that among the
standard examples are, in addition to various subshifts, also various finitely presented
algebraic actions.

2. Preliminaries
Throughout the paper, we work with groups acting continuously on compact (most of
the time metrizable) spaces. Groups, usually denoted by G, will be always discrete and
will be implicitly assumed to be countable, although this assumption is usually either not
necessary, or the arguments can be easily modified to work for uncountable groups as well.
Topological spaces with a continuous action of a group G are sometimes called G-spaces.

When working with a compact metrizable space, we fix some compatible metric and
formulate most of the notions using such a metric. For that reason, many of the statements
are formulated for compact metric spaces instead of compact metrizable spaces. However,
it should be emphasized that the statements are almost always of a topological, not metric,
nature, so the choice of the compatible metric is irrelevant. This can be easily verified
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e.g. in the following definition, where we specify the topological dynamical systems with
which we shall work.

Definition 2.1. Let G be a group acting continuously on a compact metrizable space X. We
say that the action is expansive if, having fixed some compatible metric d on X, there exists
δ > 0 (called the expansiveness constant) such that for every x �= y ∈ X, there is g ∈ G

so that

d(gx, gy) > δ.

Let X be a compact G-space and d a continuous pseudometric on X. For every subset
E ⊆ G, we shall denote by dE the pseudometric

dE(x, y) := sup
g∈E

d(gx, gy).

LEMMA 2.2. Let G act continuously on a compact metric space expansively, with an
expansive constant δ > 0. Then for every 0 < γ , there exists a finite set Dγ ⊆ G such
that for every x, y ∈ X, if d(x, y) ≥ γ then dDγ (x, y) > δ.

Proof. Suppose that no such finite set exists. Then for every finite D ⊆ G, there
exist elements xD , yD ∈ X such that d(xD , yD) ≥ γ , yet dD(x, y) ≤ δ. Without loss of
generality, we may assume that xD → x ∈ X and yD → y ∈ X (where (xD) and (yD)

are nets indexed and ordered by finite subsets of G ordered by inclusion). By continuity,
d(x, y) ≥ γ and dD(x, y) ≤ δ for every finite D ⊆ G. The first inequality implies that
x �= y, while the latter, using expansiveness, that x = y, a contradiction.

The following, formally stronger, result follows immediately from Lemma 2.2.

PROPOSITION 2.3. Let G act continuously and expansively on a compact metric space
expansively, with an expansive constant δ > 0. Then for every subset S ⊆ G, γ > 0, and
x, y ∈ X, if dS(x, y) ≥ γ , then dDγ ·S(x, y) > δ.

Definition 2.4. Let G act continuously on a compact metric space X. For x, y ∈ X and
ε > 0, we denote by �ε(x, y) the set {g ∈ G : d(gx, gy) > ε}. If the constant ε is fixed
and clear from the context, we write simply �(x, y).

Notice that if the action from the previous definition is moreover expansive with the
expansiveness constant δ > 0 and ε ≤ δ, then for x, y ∈ X, �ε(x, y) is non-empty if and
only if x �= y.

Next we introduce a crucial notion related to the Garden of Eden theorem.

Definition 2.5. Let G act continuously on a compact metric space X. We say that two
elements x, y ∈ X are homoclinic, x ∼ y in symbols, if limg→∞ d(gx, gy) = 0.

It is easy to see that being homoclinic is an equivalence relation.

COROLLARY 2.6. Let G act continuously and expansively on a compact metric space X.
Then for every δ > 0 and every elements x, y ∈ X, we have x ∼ y if and only if �δ(x, y)

is finite.
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Proof. Fix δ > 0 and x, y ∈ X. If x ∼ y, then by definition, limg→∞ d(gx, gy) = 0, so
�δ(x, y) is finite. Conversely, suppose that �δ(x, y) is finite, however d(gx, gy) does
not converge to 0. Then there is γ > 0 and an infinite set S ⊆ G such that for all s ∈ S,
d(sx, sy) ≥ γ . By Lemma 2.2, for each s ∈ S, Dγ s ∩ �γ (x, y) �= ∅. Since S is infinite
and Dγ is finite, this implies that �δ(x, y) is infinite, a contradiction.

We also recall the topological entropy of amenable group actions that will play an
important role in the proof of Theorem A. Here we use Bowen–Dinaburg’s characterization
of topological entropy adapted to amenable group actions; we refer the reader to [33, §9.9]
for more details.

In general, having a compact metric space X with a metric d and given some ε > 0,
we write sep(d, ε) for the maximal cardinality of a subset A ⊆ X that is ε-separated with
respect to d, that is, for x �= y ∈ A, we have d(x, y) ≥ ε. Now given a continuous action
of an amenable group G on a compact metric space X, we define the topological entropy
of the action to be the value

htop(X, G) := sup
ε>0

hsep(ε, d),

where

hsep(ε, d) = lim sup
n→∞

1
|Fn| log sep(dFn , ε)

and (Fn)n is an arbitrary Følner sequence (or net if G is uncountable). We again refer to
[33, §9.9] for further explanations.

The following result, likely well known, shows that the computation of topological
entropy is easier for expansive dynamical systems.

PROPOSITION 2.7. Let G be an amenable group and let X be a compact expansive
G-metric space with an expansive constant δ > 0. Then htop(X, G) = hsep(δ, d).

Proof. It suffices to show that for every ε > 0, we have hsep(ε, d) = hsep(δ, d). Since for
0 < ε′ < ε, we have hsep(ε

′, d) ≥ hsep(ε, d), it suffices to show that for every 0 < γ < δ,
we have hsep(γ , d) ≤ hsep(δ, d).

Fix 0 < γ < δ. By Proposition 2.3, there is a finite set Dγ ⊆ G such that for every
subset S ⊆ G and x, y ∈ X, we have dDγ ·S(x, y) ≥ δ if dS(x, y) ≥ γ . It follows that for
every subset S ⊆ G, sep(dDγ ·S , δ) ≥ sep(dS , γ ). Fixing a Følner sequence (respectively
net) (Fn)n, we get

lim sup
n→∞

1
|Fn| log sep(dFn , γ ) ≤ lim sup

n→∞
1

|Fn| log sep(dDγ ·Fn , δ).

Since (Fn)n is Følner, so for every finite subset D ⊆ G (in particular for D − Dγ ) we have
limn→∞(|D · Fn�Fn|/|Fn|) = 0, we get the following:
(1) (Dγ · Fn)n is Følner as well;
(2) lim supn→∞(1/|Fn|) log sep(dDγ ·Fn , δ)

= lim supn→∞(1/|Dγ · Fn|) log sep(dDγ ·Fn , δ).
This implies that hsep(γ , d) ≤ hsep(δ, d) and we are done.
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Definition 2.8. Let X and Y be compact metric spaces on which a group G acts
continuously and expansively with expansiveness constants δX > 0 and δY > 0 respec-
tively. Let τ : X → Y be a continuous G-equivariant map. A memory set for τ is a set
M ⊆ G such that for every x, y ∈ X and g ∈ G, if dM(gx, gy) ≤ δX, then d(gτ(x),
gτ(y)) ≤ δY .

LEMMA 2.9. Let X, Y, and τ : X → Y be as above. There exists a finite memory set for τ .

Proof. Suppose the contrary. Then for every finite set E ⊆ G, there are xE , yE ∈ X and
gE ∈ G such that dE(gExE , gEyE) ≤ δX, yet d(gEτ(xE), gEτ(yE)) > δY . By replacing
xE , respectively yE , by g−1

E xE , respectively g−1
E yE , we may and will assume that gE = 1G.

By compactness, there is a net (Ei)i∈I such that
⋃

i∈I Ei = G and limi xEi
= x and

limi yEi
= y. By continuity and since (Ei)i cover the group, we have d(gx, gy) ≤ δX

for every g ∈ G, thus x = y by expansiveness. By continuity, for large enough i, we must
have d(τ(xEi

), τ(yEi
)) ≤ δY , a contradiction.

What follows next is a list of definitions of several specification properties that will be
used in this paper.

Definition 2.10. Let X be a G-space. We say that the following hold.
• X has the weak specification property if for every ε > 0, there exists a finite symmetric

S ⊆ G such that for every subsets A1, A2 ⊆ G and x1, x2 ∈ X such that S · A1 ∩
A2 = ∅, there is y ∈ X satisfying d(gxi , gz) < ε, i ∈ {1, 2} and g ∈ Ai .

• X has the pseudo-orbit tracing property (POTP), or shadowing, if for every ε > 0,
there exist γ > 0 and finite S ⊆ G such that for every G-indexed set (xg)g∈G ⊆ X

satisfying d(sxg , xsg) < γ , for all g ∈ G and s ∈ F , there exists z ∈ X such that
d(gz, xg) < ε for every g ∈ G.

• X has the strong topological Markov property if for every ε > 0, there exist γ > 0
and finite S ⊆ G such that for every x, y ∈ X and every finite A ⊆ G satisfying
dSA\A(x, y) < γ , there exists z ∈ X such that dA(z, x) < ε and dG\A(z, y) < ε.

• X has the uniform strong topological Markov property if for every ε > 0, there exist
γ > 0 and finite S ⊆ G such that for every subset A ⊆ G and every V ⊆ G with
S · A · v1 ∩ S · A · v2 = ∅, for v1 �= v2 ∈ V and every V-indexed set (xv)v∈V ⊆ X and
an element y ∈ X satisfying d(SA\A)v(xv , y) < γ , for all v ∈ V , there exists z ∈ X

such that dAv(xv , z) < ε, for all v ∈ V , and dG\AV (z, y) < ε.

Remark 2.11. The weak specification in this generality for general group actions was
defined in [19], the pseudo-orbit tracing property (or shadowing) in this generality in
[40]. The topological Markov properties in this generality were introduced in the recent
[1], building on previous definitions from [29, §8.C] (under the name ‘spliceability’),
[2, 17], where it was, in particular, shown that for expansive actions, the uniform
strong topological Markov property and the strong topological Markov property are the
same.

LEMMA 2.12. Let G act expansively on a compact metric space X with an expansiveness
constant δ > 0. Then X has the pseudo-orbit tracing property if and only if there is
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a finite set F ⊆ G such that for every G-indexed set (xg)g∈G satisfying d(sxg , xsg) ≤
δ/2 for every g ∈ G and s ∈ F , there is z ∈ X such that d(gx, xg) ≤ δ/2 for every
g ∈ G.

Proof. Suppose that X has the POTP. Apply the definition for δ/2 as ε to get some γ and
a finite set S ⊆ G. Let Dγ be a finite symmetric set from Lemma 2.2 and set F := Dγ · S,
which we claim to be the desired finite set. Indeed, let (xg)g∈G ⊆ X be a G-indexed set
satisfying d(txg , xtg) ≤ δ/2 for every g ∈ G and t ∈ F . We claim that for every g ∈ G

and s ∈ S, we have d(sxg , xsg) ≤ γ which will be enough. Fix g ∈ G and s ∈ S. Then for
every t ∈ Dγ , we have

d((ts)xg , txsg) ≤ d((ts)xg , xtsg) + d(xtsg , txsg) ≤ δ/2 + δ/2,

which by definition of Dγ implies that d(sxg , xsg) ≤ γ as needed.
Now conversely suppose X satisfies the condition from the statement and let us show

it has the POTP. Fix ε > 0. We claim that γ = δ/2 and S = Dε · F are as desired. Let
(xg)g∈G ⊆ X be such that d(sxg , xsg) ≤ δ/2 for every g ∈ G and s ∈ S. Since F ⊆ S,
we get that there is z ∈ X satisfying d(gz, xg) ≤ δ/2 for every g ∈ G. We claim that in
fact d(gz, xg) ≤ ε is true. Indeed, fix g ∈ G. We check that for every t ∈ Dε, we have
d((tg)z, txg) ≤ δ which will prove the claim. So take t ∈ Dε, we have

d((tg)z, txg) ≤ d((tg)z, xtg) + d(xtg , txg) ≤ δ/2 + δ/2,

as desired.

The following two lemmas are proved analogously as Lemma 2.12 and the proofs are
left to the reader.

LEMMA 2.13. Let G act expansively on a compact metric space X with an expansiveness
constant δ > 0. Then X has the weak specification property if and only if there is a finite
symmetric set F ⊆ G such that for every subsets A1, A2 ⊆ G and x1, x2 ∈ X such that
A1 · F ∩ A2 = ∅, there is y ∈ X satisfying d(gxi , gz) < δ/2, i ∈ {1, 2} and g ∈ Ai .

LEMMA 2.14. Let G act expansively on a compact metric space X with an expansiveness
constant δ > 0. Then X has the strong topological Markov property if and only if there
is a finite symmetric set F ⊆ G containing the unit such that for every finite set A ⊆ G,
every V ⊆ G with v1 /∈ FAv2, for v1 �= v2 ∈ V and every V-indexed set (xv)v∈V ⊆ X and
an element y ∈ X satisfying d(FA\A)v(xv , y) < δ/2, for all v ∈ V , there exists z ∈ X such
that dAv(xv , z) < δ/2, for all v ∈ V , and dG\AV (z, y) < δ/2.

Remark 2.15. If the expansiveness constant δ > 0 of a G-space X is fixed and clear from
the context, we can then obtain the finite set F ⊆ G from the statement of Lemma 2.12
called a pseudo-orbit tracing set. It also follows from Lemma 2.12 that if X has the POTP
and F ⊆ G is a pseudo-orbit tracing set for X, then if (xG)g∈G ⊆ X is a pseudoorbit for
Dε · F , meaning that d(txg , xtg) ≤ δ/2 for every g ∈ G and t ∈ Dε · F , then there is z ∈
X satisfying d(gz, xg) ≤ ε for every g ∈ G.
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Analogously, we can call the finite set F ⊆ G from Lemma 2.13 a weak specification
set. If we need the weak specification with particular ε > 0, the weak specification set F
can be replaced by Dε · F .

Moreover, we can call the finite set F ⊆ G from Lemma 2.14 a strong topological
Markov set. If we need this property with a specific ε, the strong topological Markov set F
can be replaced by Dε · F .

3. Garden of Eden theorem
In this section, we prove one of the two main results of the paper and we establish the
Garden of Eden theorem for continuous and expansive actions of amenable groups on
compact metrizable spaces satisfying the strong topological Markov and weak specifica-
tion properties.

We shall need the definition of a tiling of a group.

Definition 3.1. Let G be a group and A ⊆ B ⊆ G be two finite subsets. We say that a
subset T ⊆ G is an (A, B)-tiling of G if the following hold:
• for s �= t ∈ T , the sets A · t and A · s are disjoint; and
• ⋃

t∈T B · t = G.

3.1. The metrizable case.
THEOREM 3.2. Let G be a countable amenable group and X an expansive and compact
G-metric space satisfying the weak specification property and the strong topological
Markov property. Then X satisfies the Moore–Myhill property.

Proof. Fix an expansiveness constant δ > 0. Let us show the Moore property. Let
τ : X → X be a surjective continuous G-equivariant map. We show it is pre-injective.
Suppose the contrary and choose x ∼ y ∈ X satisfying τ(x) = τ(y). Set � := �δ(x, y),
which is by Corollary 2.6 finite and we may assume it is non-empty and contains 1G. Also,
let S′ ⊆ G be a finite symmetric memory set for τ . Finally, let S ⊆ G be a finite symmetric
subset containing 1G such that the following hold:
(1) S is a weak specification and strong topological Markov set for X;
(2) (S′)2 ⊆ S;
(3) for all u ∈ X for all g ∈ S′ · Dδ/8 · � (dS(gu, gy) ≤ δ ⇒ d(τ(gu), τ(gx)) ≤ δ/2).

Now set E := Dδ/8 · S · Dδ/8 · �. Since all of the finite sets involved in the product
may be assumed to be symmetric and contain 1G, we expect E to satisfy the same. By [8,
Proposition 5.6.3], there exists an (E2, E4)-tiling of G, denoted by T. Let Z be the closed
(not necessarily G-invariant) subset

{z ∈ X : for all t ∈ T (dE2t (z, t−1x) ≥ δ/8)}.

Claim 3.3. We have τ [Z] = τ [X].

That is, for every w ∈ X, there exists z ∈ Z satisfying τ(w) = τ(z). Fix w ∈ X. What
follows is the proof of the existence of such z that will be divided into three steps.
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Step 1. Finding z using the strong topological Markov property.
We define a T-indexed set (zt )t∈T in the following way. For t ∈ T , we set

zt :=
{

t−1y if dE2t (w, t−1x) < δ/4,

w otherwise.

We want to use the strong topological Markov property with the constant δ/8,
thus with the set P := Dδ/8 · S, for A = E, for V = T , where the T-indexed set
is (zt )t∈T , and for y = w. Since T is a (E2, E4)-tiling and P ⊆ E, we have that
P · E · t1 ∩ P · E · t2 = ∅, for every t1 �= t2 ∈ T . So we need to check that for every
t ∈ T , we have d(PE\E)t (zt , w) < δ/2. Fix t ∈ T . If dE2t (w, t−1x) ≥ δ/4, then zt = w

and the inequality d(PE\E)t (zt , w) < δ/2 is obvious. So suppose that dE2t (w, t−1x) <

δ/4 and therefore zt = t−1y. Since dG\Dδ/8·�(x, y) < δ/8 and Dδ/8 · � ⊆ E, we
have d(PE\E)t (t

−1x, t−1y) < δ/8. Since P ⊆ E, we also have by the assumption
d(PE\E)t (w, t−1x) < δ/4, so by the triangle inequality, we get d(PE\E)t (zt , w) < δ/2
as desired.

By the strong topological Markov property, it follows that there exists z ∈ X such that
dEt (z, zt ) < δ/2, for all t ∈ T , and dG\FT (z, w) < δ/2.

Step 2. We claim that z ∈ Z.

Suppose the contrary. Then there is t ∈ T such that dE2t (z, t−1x) < δ/8. Either we
have zt = w, if dE2t (w, t−1x) ≥ δ/4, in which case dE2t (z, w) ≤ δ/8, so by the triangle
inequality, dE2t (z, t−1x) ≥ δ/8, a contradiction.

Or we have zt = t−1y if dE2t (w, t−1x) < δ/4, in which case dEt (z, t−1y) ≤ δ/8. Since
dEt (t

−1x, t−1y) > δ, by the triangle inequality, we have

δ/2 < dEt (z, t−1x) ≤ dE2t (z, t−1x),

another contradiction.

Step 3. We claim that τ(z) = τ(w).

Suppose again the contrary. Then there exists g ∈ G such that

d(gτ(w), gτ(z)) = d(τ(gw), τ(gz)) > δ.

Define V ⊆ T to be the set {t ∈ T : dE2t (w, t−1x) < δ/4}. We have two cases. Either there
exists t ∈ V such that S′g ∩ Et �= ∅, or not. In the latter case, we have that for every s ∈ S ′,

d((sg)z, (sg)w) ≤ δ/8,

thus since S′ is a memory set for τ , we get d(τ(gz), τ(gw)) ≤ δ, a contradiction.
So suppose that there is t ∈ V such that S′g ∩ Et �= ∅. Then we distinguish three more

subscases:
• either S′g ⊆ Et , however, S′g ∩ Dδ/8 · �t = ∅;
• or S′g ∩ Dδ/8 · �t �= ∅;
• or S′g � Et .
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In the first case, we have for every s ∈ S′,

d((sg)z, (sgt−1)y) ≤ δ/8,

and since S′g ∩ Dδ/8 · �t = ∅, we also have for every s ∈ S′,

d((sgt−1)y, (sgt−1)x) < δ/8),

so for every s ∈ S′, we have

d((sg)z, (sgt−1)x) < δ/4.

Combining this with the fact that, since t ∈ V , for every s ∈ S ′,

d((sg)w, (sgt−1)x) < δ/4,

we finally obtain that for all s ∈ S′,

d((sg)z, (sg)w) < δ/2,

thus, since S′ is a memory set for τ , d(τ(gz), τ(gw)) ≤ δ, again a contradiction.
In the second case, we have g ∈ S′ · Dδ/8 · �t . Then, since S · g ⊆ Et , we have

dS(gz, gt−1y) ≤ δ,

since for every s ∈ S, we have d((sg)z, (sgt−1)y) ≤ δ/8, so by item (3), we get

d(τ(gz), τ(gx)) ≤ δ/2.

However, since dDδ/8·S′(gw, (gt−1)x) < δ/4 and S′ is a memory set for τ , we get

d(τ(gw), τ(gx)) ≤ δ/8.

So finally, by triangle inequality, we get

d(τ(gz), τ(gw)) ≤ δ,

which is again a contradiction.
For the last third case, pick s ∈ S′. If sg /∈ Et , then d((sg)z, (sg)w) ≤ δ/8. If sg ∈ Et ,

then we have d((sg)z, (sgt−1)y) ≤ δ/8. However, since there is by assumption s′ ∈ S′
such that s′g /∈ Et , we have sg /∈ Dδ/8 · �t since otherwise s′s−1sg ∈ Et as s′s−1 ∈ S

and S · Dδ8 · � ⊆ E. It follows that d((sgt−1)y, (sgt−1)x) < δ/8 and so by the triangle
inequality,

d((sg)z, (sgt−1)x) < δ/4.

Combining this with the fact that d((sg)w, (sgt−1)x) < δ/4, we finally obtain by another
application of the triangle inequality that

d((sg)z, (sg)w) < δ/2.

So again, since S is a memory set for τ , we get d(τ(gz), τ(gw)) ≤ δ, a contradiction. This
finishes the proof of Claim 3.3.

Claim 3.4. We have htop(Z) < htop(X).
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First notice that for every closed subset Y ⊆ X, γ > 0, and every E ⊆ F ⊆ G, where
E, F are finite, we have

sep(Y , γ , F) ≤ sep(Y , γ , F \ E) · sep(Y , γ /2, E). (1)

Indeed, suppose the contrary and let N ⊆ Y be a γ -separated subset of (Y , dF ) of
size strictly bigger than sep(Y , γ , F \ E) · sep(Y , γ /2, E). Let M ⊆ N be a maxi-
mal γ /2-separated subset of N with respect to dE . Since |N | > sep(Y , δ, F \ E) ·
sep(Y , δ/2, E), while |M| ≤ sep(Y , γ /2, E), there must exist m ∈ M and set A ⊆ N of
size strictly bigger than sep(Y , γ , F \ E) such that for every a ∈ A, we have dE(a, m) ≤
γ /2. It follows, by triangle inequality, that for every a, b ∈ A, we have dE(a, b) ≤ γ .
However, for every a �= b ∈ A, we have dF (a, b) > γ , so there must be e ∈ F \ E such
that d(ea, eb) > γ . It follows that A is γ -separated for dF\E which contradicts that
|A| > sep(Y , γ , F \ E).

Now fix j ∈ N. Enumerate Tj as {t1, . . . , tn}. For every 1 ≤ i ≤ n, define

Zi := {z ∈ X : for all j ≤ i (dE2tj
(z, t−1

j x) ≥ δ/8)}.

Moreover, set Z0 := X. Next we claim that for every 1 ≤ i ≤ n, we have

sep(Zi , Fj , δ/4) ≤ sep(Zi−1, Fj , δ/4) − sep(Zi−1, Fj , δ/4) · �i−1, (2)

where �i−1 := 1/sep(Zi−1, Eti , δ/2). To show that, pick an arbitrary δ/2-separated set
N ⊆ Zi−1 with respect to dFj \Eti . By the weak specification property (recall that S is a
weak specification set) and since E contains Dδ/8 · S · �, for each w ∈ N , we can find
wx ∈ X such that the following hold:
• for every e ∈ Fj \ Eti , we have d(ew, ewx) < δ/8;
• for every g ∈ �ti , we have d((gt−1

i )x, gwx) < δ/8.
In particular, it follows that Nx := {wx : w ∈ N} ⊆ ((X \ Zi) ∩ Zi−1) and that Nx is
δ/4-separated with respect to dFj \Eti . Since by (1) we have sep(Zi−1, Fj \ Eti , δ/2) ≥
sep(Zi−1, Fj , δ/4) · �i , we obtain

sep(Zi , Fj , δ/4) ≤ sep(Zi−1, Fj , δ/4) − sep(Zi−1, Fj \ Eti , δ/2)

≤ sep(Zi−1, Fj , δ/4) − sep(Zi−1, Fj , δ/4) · �i),

which verifies (2).
If we show that for every i < n, we have �i ≤ � := sep(X, E, δ/2), then we get from

(2) that

sep(Z, Fj , δ/4) ≤ sep(Zn, Fj , δ/4) ≤
n−1∏
i=0

(1 − �i)sep(Z0, Fj , δ/4)

≤ (1 − �)|Tj |sep(X, Fj , δ/4).

However, it is clear since for every i < n, if M ⊆ Zi is a δ/2-separated set with respect to
dEti+1 , then t−1

i+1M is a δ/2-separated set in X with respect to dE .
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Finally, using that for all sufficiently large n ∈ N we have by [8, Proposition 5.6.4]
|Tn| ≥ K|Fn|, for some constant K > 0, we get

log sep(Z, dFn , δ/4) ≤ log(1 − �)|Tn|sep(X, Fn, δ/4)

= |Tn| log(1 − �) + log sep(X, Fn, δ/4)

≤ K|Fn| log(1 − �) + log sep(X, Fn, δ/4);

therefore, we get

htop(Z, G) = hsep(Z, δ/4, d) = lim sup
n→∞

1
|Fn| log sep(Z, dFn , δ/4)

≤ lim sup
n→∞

1
|Fn| (K|Fn| log(1 − �) + log sep(X, Fn, δ/4))

= lim sup
n→∞

(
K log(1 − �) + 1

|Fn| (log sep(X, Fn, δ/4))

)
= K log(1 − �) + hsep(X, δ/4, d)

< htop(X, G),

which finishes the proof of Claim 3.4.

Claim 3.5. We have htop(τ [X]) < htop(X).

Since we already proved that htop(Z) < htop(X) and that τ [Z] = τ [X], it is enough
to show that htop(τ [Z]) ≤ htop(Z). By Proposition 2.7, it is enough to show that
hsep(τ [Z], δ, d) ≤ hsep(Z, δ, d). Let N ⊆ τ [Z] be a δ-separated set with respect to dF

for some F ⊆ G. For each x ∈ N , let x′ ∈ Z be any element from τ−1(x) and let N ′ :=
{x′ : x ∈ N} ⊆ Z. We claim that N ′ is δ-separated for dS·F . Indeed, this follows since S is
a memory set for τ as follows. If x �= y ∈ N , then there is e ∈ F such that d(ex, ey) > δ.
If there were not s ∈ S such that d((se)x′, (se)y′) > δ, then by the definition of a memory
set and the fact that S is symmetric, we would have that d(ex, ey) ≤ δ, a contradiction. It
follows that

hsep(Z, δ, d) = lim sup
n→∞

1
|S · Fn| log sep(Z, dS·Fn , δ)

≤ lim sup
n→∞

1
|Fn| log sep(Z, dS·Fn , δ)

≤ lim sup
n→∞

1
|Fn| log sep(τ [Z], dFn , δ) = hsep(τ [Z], δ, d),

and we are done.
For the sake of completeness, although this has been already shown by Li in [34], let

us prove the Myhill property under the weaker assumption that the G-space X satisfies the
weak specification property. We again assume that the expansiveness constant is δ > 0.

Let τ : X → X be a continuous G-equivariant map and suppose that it is not surjective.
We shall show that it is not pre-injective. Let S ⊆ G be a finite symmetric set containing
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1G such that the following hold:
(1) there is a memory set S′ ⊆ G such that Dδ/4 · S′ ⊆ S;
(2) there is a weak specification set S′′ ⊆ G for X such that Dδ/4 · S′′ ⊆ S.

Set Y := τ [X] ⊆ X. Since Y �= X, arguing exactly as in the proof of Claim 3.4 and
using Proposition 2.7, we get that htop(Y , G) < htop(X, G) and that moreover, for a given
Følner sequence (Fn)n (respectively net in case G is uncountable), there exists j ∈ N such
that

sep(Y , S2 · Fj , δ) < sep(X, Fj , δ).

Fix x ∈ X. Let X0 be the set {z ∈ X : dG\S·Fj
(x, z) ≤ δ}. By Corollary 2.6, X0 ⊆ [x]∼.

Let N ⊆ X be a δ-separated set with respect to dFj
of size sep(X, Fj , δ). Using the weak

specification property with respect to Dδ/4 · S′′ ⊆ S, for each y ∈ N , we can find zy ∈ X0

such that dFj
(y, zj ) ≤ δ/4. In particular, we get

sep(X0, Fj , δ/2) ≥ sep(X, Fj , δ).

Since S is also a memory set for τ , we get that for every z ∈ X0,

dG\S2·Fj
(τ (z), τ(x)) ≤ δ. (3)

Therefore, as sep(X0, Fj , δ/2) > sep(Y , S2 · Fj , δ), there must exist y, y′ ∈ X0 such that
dFj

(y, y′) > δ/2, in particular, y �= y′, yet dS2·Fj
(τ (y), τ(y′)) ≤ δ. Combining with (3),

we have that for every g ∈ G,

d(gτ(y), gτ(y′)) ≤ δ,

thus τ(y) = τ(y′) by expansiveness. Since y, y′ ∈ X0 ⊆ [x]∼, we have y ∼ y′ and we are
done.

In the following corollary, we list several classes of dynamical systems to which
Theorem 3.2 applies and for which the result is new.

COROLLARY 3.6. The dynamical systems below satisfy the Moore–Myhill property.
(1) Let (X, f ) be a mixing uniformly hyperbolic dynamical system.
(2) Let G be a countable amenable group, A a finite set, and X ⊆ AG a strongly

irreducible subshift with the strong topological Markov property.

Proof. For (1), notice that such a dynamical system is an expansive action of Z that has
the weak specification property and the pseudo-orbit tracing property, and thus also the
strong topological Markov property. For expansiveness, see [32, Corollary 6.4.10], for the
pseudo-orbit tracing property, see [32, Theorem 18.1.2], and for the weak specification
property, see [32, Theorem 18.3.9]. It follows that Theorem 3.2 applies.

For (2), we can apply Theorem 3.2 since for subshifts, strong irreducibility is equivalent
with the weak specification property (see the appendix of [34]).

A source of examples of subshifts with the strong topological Markov property is the
supports of Markovian measures on subshifts. We refer to [1, §3.3] for the definitions and
proof.
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Both Moore and Myhill properties make sense to be investigated only for expansive
actions of amenable groups. Indeed, it was shown by Bartholdi in [3], respectively in
[4], that the Moore, respectively Myhill, property fails already for a full topological shift
of any non-amenable group. However, there is a well-known weakening of the Myhill
property, called surjunctivity, which asks whether an injective continuous G-equivariant
map of some dynamical system is surjective. It is a famous conjecture of Gottschalk from
[28] whether for every group G and finite alphabet A, the full shift AG is surjunctive.
This conjecture has received considerable attention especially since Gromov’s introduction
of sofic groups and his proof state that such groups do satisfy Gottschalk’s conjecture
(see [29]). A very recent result of Ceccherini-Silberstein, Coornaert, and Li establishes
surjunctivity of expansive actions of sofic groups on compact metrizable spaces having
the weak specification and strong topological Markov properties, and having non-negative
sofic entropy (see [14]).

It is only very recent that an analogous weakening has been introduced also for the
Moore property. This is the dual surjunctivity of Capobianco, Kari, and Taati from [6]
(see also the recent [23] for additional results, including those concerning more general
expansive dynamical systems), which has been also proved for full shifts of sofic groups.
Applying Theorem 3.2, we can extend the results about dual surjunctive dynamical systems
from [23]; we also refer there for unexplained notions from the next corollary.

COROLLARY 3.7. Let G be a countable amenable group and X an expansive and compact
G-metric space satisfying the weak specification and the strong topological Markov
properties. Then X is dual surjunctive.

Proof. Let T : X → X be a post-surjective continuous G-equivariant map. It is well
known that the weak specification property implies that each equivalence class [x]∼, for
x ∈ X, is dense, so we can apply [23, Lemma 5.7] to get that T is surjective. Applying
Theorem 3.2 gives us then that T is pre-injective. The proof is finished by the application
of [23, Theorem 5.6] showing that T is injective.

With respect to the recent result [14], it is natural to ask whether actually all expansive
actions of sofic groups on compact metrizable spaces satisfying certain additional proper-
ties, as in [14], are dual surjunctive.

We finish this subsection with a discussion on endomorphisms of general expansive
dynamical systems. Although such maps have appeared in the literature extensively
(in addition to the papers on the Moore and Myhill properties and surjunctivity of
expansive dynamical systems cited above, see e.g. [39] and references therein), we are
not aware of any detailed research on them comparable to what has been investigated for
endomorphisms of shifts, where a thorough investigation was presented already in the
influential [30].

In the symbolic case, the Curtis–Hedlund–Lyndom theorem characterizes all the
endomorphisms of a given shift dynamical system, which both provides some restrictions,
e.g. makes the set of all endomorphisms at most countable, and – at least in the full shift
case – allows one to generate endomorphisms.
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Using the notion of a memory set of an endomorphism of a general expansive dynamical
system (X, G) and the fact that such a set is finite (see Definition 2.8 and Lemma 2.9
respectively), one can show that given a finite set F ⊆ G, there are only finitely many
endomorphisms of X whose memory set is F. We leave the verification to the reader. Thus
the set of all endomorphisms of X is at most countable – as in the symbolic case.

Finding how to generate endomorphisms seems to be a much more complicated task
and we propose here a way to turn a continuous approximately G-equivariant map
τ0 : X → X into a continuous G-equivariant map – in the case when X has the POTP.
Here we call a map τ0 : X → X approximately G-equivariant or, to be coherent with
the term ‘pseudo-orbit’, pseudoequivariant with respect to (S, ε), where S ⊆ G and
ε > 0, if for every x ∈ X and s ∈ S, we have d(τ0(sx), sτ0(x)) < ε. Now, assuming
that the expansiveness constant of X is δ > 0 and S ⊆ G is the pseudo-orbit tracing
set, any pseudoequivariant map τ0 : X → X, with respect to (S, δ/3), gives rise to a
continuous G-equivariant map τ : X → X as follows. For any x ∈ X, set τ(x) to be
the unique element of X whose orbit traces the pseudo-orbit (τ0(gx))g∈G. We leave the
straightforward verifications that the latter is indeed a pseudo-orbit and that τ is continuous
and G-equivariant again to the reader.

3.2. Beyond countable groups and metrizable spaces. Although Theorem 3.2 was stated
for countable groups, one can check that the proof can be easily adapted to handle the
uncountable case as well, replacing the limits of sequences by limits of nets in appropriate
places. Here we hint how to remove the assumption of metrizability of the compact space
X from Theorem 3.2. First, we state the following general definition of expansiveness of an
action, not using any metric. It is an exercise that this coincides with Definition 2.1 when
X is equipped with a compatible metric.

Definition 3.8. Let G be an arbitrary group acting continuously on a compact topological
space X. The action is expansive if there exists a finite open cover (Ui)

n
i=1 of X such that

the sets {gUi : g ∈ G, i ≤ n} form a subbase of the topology of X.

A general definition of expansive actions of groups on uniform spaces was given in [9].
It is again an exercise that it coincides with the definition above.

The following are well-known facts from general topology (we shall refer to the book
[25]).
• The topology of X is induced by a unique uniform structureU (see e.g. [25, Theorem

8.3.13]).
• For every U ∈ U, there is a uniformly continuous pseudometric ρ on X such that

ρ(x, y) < 1 for every (x, y) ∈ U (see e.g. [25, Corollary 8.1.11]).
• For every two uniformly continuous pseudometrics ρ1 and ρ2 on X, also max{ρ1, ρ2}

is a uniformly continuous pseudometric (this is obvious).
Since the finite open cover from Definition 3.8 can be replaced by any finite open

subcover, it follows from the general facts above that if a group G acts expansively on
a compact space X, then there exists a single uniformly continuous pseudometric ρ on X
and a constant δ > 0 such that for every x �= y, there is g ∈ G so that ρ(gx, gy) > δ.
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If τ : X → X is continuous and G-equivariant, Definition 2.8 and Lemma 2.9 are
adapted in a straightforward way to this pseudometric ρ. The topological entropy of
the action on X can be also computed using this pseudometric ρ. This follows from
the fact that ρ is dynamically generating in the sense of [33, Definition 9.35] and then
applying [33, Theorem 9.38]. Note that the argument there is for a metrizable compact
space; however, it can be also used for non-metrizable spaces by replacing the genuine
metric from [33, Lemma 9.37] by the pseudometric max{ρ, ρ′}, where ρ′ is a uniformly
continuous pseudometric generating the open sets of the finite open cover (which varies)
from [33, Lemma 9.37].

The other notions such as the strong topological Markov property, the weak specification
property, and the homoclinic relation are defined as in the metrizable case with the
exception that their definition starts with the quantifier ‘for every uniformly continuous
pseudometric λ’ and the rest of the definition is with respect to λ. The set �δ(x, y) is
defined with respect to the distinguished pseudometric ρ and Corollary 2.6 is still valid.

We can then repeat verbatim the whole proof of Theorem 3.2, using the pseudometric
ρ instead of the metric d.

4. Weakly periodic points
The goal of this section is to prove the second main result, that certain expansive actions of
finitely generated groups with at least two ends have weakly periodic points, generalizing
the result from [20].

We shall need another variant of the topological Markov property, different from those
introduced in [1], although it may turn out that it is equivalent to one of them. We formulate
the following definition only for expansive actions, since our work is limited to them;
however, a straightforward modification allows us to formulate it generally.

Definition 4.1. Let a group G act continuously and expansively on a compact metric space
X with an expansiveness constant δ > 0. We say that the action has the cover strong
topological Markov property if there is a finite symmetric set S ⊆ G containing the unit
such that for every cover (Fn)n∈N of G by disjoint, not necessarily finite, sets and for
every sequence of elements (xn)n∈N ⊆ X satisfying that for every n �= m ∈ N and every
g ∈ S · Fn ∩ Fm,

d(gxn, gxm) ≤ δ/2,

then there exists z ∈ X with the property that for every n and g ∈ Fn, we have

d(gz, gxn) ≤ δ/2.

The next result says that for expansive actions, this topological Markov property lies, in
principle, somewhere in between the pseudo-orbit tracing property and the uniform strong
topological Markov property, but we conjecture that it might be actually equivalent to the
latter.

PROPOSITION 4.2. Let a group G act continuously and expansively on a compact metric
space X with an expansiveness constant δ > 0. If the action has the pseudo-orbit tracing
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property, then it has the cover strong topological Markov property, and if it has the latter,
then it has the uniform strong topological Markov property.

Proof. Let us fix the group G, the space X, and the action of G on X. Suppose first it has the
pseudo-orbit tracing property and let us show it has the cover strong topological Markov
property. Let S be a finite pseudo-orbit tracing set for the action, assuming as usual that
it is symmetric and containing the unit. Let (Fn)n∈N be a cover of G by disjoint sets and
let (xn)n∈N ⊆ X be a sequence of elements satisfying that for every n �= m ∈ N and every
g ∈ S · Fn ∩ Fm,

d(gxn, gxm) ≤ δ/2.

We produce a G-indexed set (yg)g∈G as follows. For any g ∈ G, we set

yg := gxn if g ∈ Fn.

Let us verify that (yg)g is a pseudo-orbit for the set S. Pick any g ∈ G and s ∈ S. We need
to check that d(syg , ysg) < δ/2. Let n ∈ N be such that g ∈ Fn. If sg ∈ Fn, then syg is, by
definition, equal to ysg , and there is nothing to prove. So we assume that sg ∈ Fm, where
m �= n, and we have sg ∈ S · Fn ∩ Fm. It follows we have

d(syg , ysg) = d(sgxn, sgxm) < δ/2,

and the verification is finished. Therefore, there exists z ∈ X shadowing the pseudo-orbit,
that is, for every g ∈ G, we have d(gz, yg) < δ/2, consequently for for every n and g ∈ Fn,
we have

d(gz, gxn) ≤ δ/2,

and we are done.
Now assume that the action has the cover strong topological Markov property and

we show that it has the uniform strong topological Markov property. Let S be the finite
symmetric set from the definition and we show it is also a strong topological Markov
set. Let A ⊆ G be a finite set and let V ⊆ G be such that for every v �= w ∈ V , we have
S · A · v ∩ S · A · w − ∅. Let (xv)v∈V ⊆ X and y ∈ X be such that d(SA\A)v(xv , y) < δ/2,
for every v ∈ V . Then U := (A · v)v∈V ∪ {G \ A · V } is a cover of G by disjoint sets.
Pick B �= C ∈ U and assume that there is g ∈ B and s ∈ S so that sg ∈ S · B ∩ C. By
the assumption, necessarily C = G \ A · V , and again by the assumption, we get that
d(sgxv , sgy) < δ/2, where v ∈ G is such that B = A · v. By the cover strong topological
Markov property, there is z ∈ X so that the following hold:
• for every v ∈ V and every g ∈ A · v, we have d(gz, gxv) < δ/2;
• for every g ∈ G \ A · V , we have d(gz, gy) < δ/2,
which is exactly what we were supposed to show.

We are ready to state the main result of this section. We shall not define here the ends of
groups since we will not directly need them. The reader can find it either in Cohen’s article
[20], or we refer to [24, §9.1.3] for a general treatment and more information.
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THEOREM 4.3. Let G be a finitely generated group with at least two ends and let G act
expansively on a compact metrizable space X so that the action satisfies the cover strong
topological Markov property. Then X has a weakly periodic point.

Moreover, if the action satisfies the weak specification property, then the set of such
points is dense in X.

The following lemma extracts the main geometric group theoretic ingredient from [20]
that is sufficient for our generalization.

LEMMA 4.4. (Extracted from the proof of [20, Theorem 2.1]) Let S ⊆ G be a finite
symmetric set containing the unit. There exists an infinite order g ∈ G such that for any
m ∈ N, there is a subset Am ⊆ G satisfying the following properties.
• The sets {Am · gnm}n∈Z form a disjoint partition of G.
• We have S · Am ⊆ Am ∪ S2 ∪ S2 · gm.
• If for some k �= l ∈ Z we have S · Am · gkm ∩ Am · glm �= ∅, then |k − l| = 1 and for

any h ∈ S · Am · gkm ∩ Am · glm, we have either

h ∈ S2 · gkm and hgm ∈ Am · gkm (when k = l + 1),

or

h ∈ S2 · g(k+1)m and hg−m ∈ Am · gkm (when k = l − 1).

Proof of Lemma 4.4. Let S ⊆ G be the given finite set as in the statement of the lemma.
Fix a word metric ρ on G with respect to some finite symmetric generating set of G and
let n ∈ N be big enough so that n ≥ NG, where NG is a constant depending on G from
[20, Lemma 2.5], and S ⊆ BG(n), where BG(n) is a ball around the unit of G with respect
to ρ. In fact, we may without loss of generality assume that S = BG(n).

Let g′ ∈ G be the element obtained by [20, Lemma 2.5] as n-axial (we refer for the
terminology to [20], but here we do not need to know its precise meaning). We have that
g′ has infinite order (see the paragraph after the proof of [20, Lemma 2.5]) and we set g to
be some power of g′ so that S2 · gk ∩ S2 = ∅, exactly as in [20, p. 609].

In the rest of the proof, we show that g ∈ G is as desired (we already know it has infinite
order) and we fix additionally some m ∈ N. Now we let Am be equal to the set S from [20,
Definition 2.6] using the same integer m. The first two items of Lemma 4.4 then follow
from [20, Lemma 2.7] (notice that the order of multiplication in [20] is reversed).

Finally, we show the last item. So pick some k �= l ∈ N such that S · Am · gkm ∩ Am ·
glm �= ∅. Translating these sets from the right by g−km, we can assume that k = 0. So
suppose that there is h ∈ S · Am ∩ Am · glm. We have already shown that we also have
that h ∈ Am ∪ S2 ∪ S2 · gm. Since Am and Am · glm are disjoint, we must have that h ∈
S2 ∪ S2 · gm.
(1) If we have that h ∈ S2, then we are in the situation as in the last item on [20, pp. 610]

(notice the typo there: our case here corresponds to the case x ∈ B2 \ S, although
there is mistakenly stated x ∈ gmB2 \ S) and by the argument there, we have hgm ∈
Am, and so h ∈ Am · g−m and l = −1.

(2) If we have that h ∈ S2 · gm, then like in the first item on [20, p. 611] (the case there
when x ∈ gmB2 \ S), we get that hg−m ∈ Am, so h ∈ Am · gm and l = 1.
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Proof of Theorem 4.3. Let S ⊆ G be a finite symmetric set containing the unit that is a
cover strong topological Markov set for the action.

Fix now some compatible metric d on X and suppose the expansiveness constant, with
respect to d, is some δ > 0. Fix also a finite δ/4-dense net N ⊆ X. That is, for every x ∈ X,
there is y ∈ N such that d(x, y) < δ/4. Let N denote the set of non-empty subsets of N.
Let η : X → N be the function associating to every x ∈ X the set of those elements of N
that realize the distance of x from N; that is, for every x ∈ X and y ∈ η(x),

d(x, y) = d(x, N).

Finally, let ξ : x → NS2
be the function defined by, for x ∈ X and s ∈ S2,

ξ(x)(s) := η(sx).

Pick now some arbitrary x ∈ X. Since NS2
is a finite set, there must exist m, m′ ∈ N

so that ξ(gmx) = ξ(gm′
x). By replacing x by g−mx if necessary, we may without loss of

generality assume that in fact there is m ∈ N so that

ξ(x) = ξ(gmx).

By the definition of the function ξ and by the triangle inequality, we obtain

dS2(x, gmx) < δ/2.

For every n ∈ Z, set xn := g−nmx. We wish to apply the cover strong topological
Markov property with respect to the partition {Am · gnm : n ∈ N} and the set of elements
(xn)n∈Z to obtain an element z ∈ X satisfying

for all k ∈ Z (dAm·gkm(z, xk) < δ/2).

To show that, we need to check that for every k �= l ∈ Z and s ∈ S, if s · Am · gkm ∩ Am ·
glm �= ∅, that is, there are a1, a2 ∈ Am such that sa : 1gkm = a2g

lm, then

d((sa : 1gkm)xk , (a2g
lm)xl) ≤ δ/2.

By Lemma 4.4, we have that |k − l| = 1 and one of the following:
(1) either k = l + 1 and sa : 1gkm ∈ S2 · gkm and sa : 1g(k+1)m ∈ Am · gkm;
(2) or k = l − 1 and sa : 1gkm ∈ S2 · g(k+1)m and sa : 1g(k−1)m ∈ Am · gkm.

In the former case, since dS2(x, gmx) < δ/2 and sa : 1 ∈ S2, we have

d((sa : 1gkm)xk , (a2g
lm)xl) = d((sa : 1gkmg−km)x, (sa : 1gkmg−lm)x)

= d((sa : 1)x, (sa : 1gm)x) < δ/2.

In the latter case, we have analogously, since dS2(x, gmx) < δ/2 and sa : 1g−m ∈ S2,

d((sa : 1gkm)xk , (a2g
lm)xl) = d((sa : 1gkmg−km)x, (sa : 1gkmg−lm)x)

= d((sa : 1)x, (sa : 1g−m)x)

= d((sa : 1g−mgm)x, (sa : 1g−m)x) < δ/2.
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It follows that there indeed is z ∈ X satisfying, as desired,

for all k ∈ Z (dAm·gkm(z, xk) < δ/2).

We show that gmz = z. If not, there is, by expansiveness, some h ∈ G such that
d(hz, (hgm)z) > δ. Since the sets (Am · gkm)k∈Z form a cover of G, there is k ∈ Z and
a ∈ Am such that h = agkm. It follows that

d(hz, (hgm)z) ≤ d(hz, hxk) + d(hxk , (hgm)xk+1) + d((hgm)xk+1, (hgm)z)

= d(hz, hxk) + d(ax, ax) + d((hgm)xk+1, (hgm)z)

≤ δ/2 + δ/2 = δ,

a contradiction.
We now show the ‘moreover’ part of the statement of the theorem. We retain the notation

established during the proof.
Let W ⊆ G be a finite symmetric set containing the unit that is a weak specification set

for the action. To prove the density, pick some w ∈ X and δ/2 > ε > 0 and we shall find a
weakly periodic point zw ∈ X such that d(zw, w) < ε. By Lemma 2.2, there is a finite set
Dε ⊆ G such that for every z′ ∈ X, if dDε(z

′, w) ≤ δ, then d(z′, w) < ε. Using the weak
specification property, we can find z′

w ∈ X such that the following hold:
• dD2

ε
(z′

w, w) ≤ δ/2 (thus dDε(z
′
w, w) < ε);

• and dG\(Dδ/4·W ·D2
ε )(z

′
w, z) ≤ δ/4.

Let l ∈ N be such that Dδ/4 · W · D2
ε ⊆ ⋃

i∈[−l,l] Am · gim. We now set Ā :=⋃
i∈[−l,l] Am · gim. We consider the cover of G by the disjoint sets {Ā · glmn : n ∈ Z}

and we define the elements (wn)n∈Z by setting wn := g−lmnz′
w. We wish to apply the

cover strong topological Markov property with this cover of G and this set of elements
of X. We need to check that for any n, n′ ∈ Z and any h ∈ S · Ā · glmn ∩ Ā · glmn′

, we
have d(hwn, hwn′) ≤ δ/2. We may assume that h /∈ Ā · glmn, in particular, hg−lmn /∈
Dδ/4 · W · D2

ε , and that h = saglmn for some s ∈ S and a ∈ Ā. Then we have

d(hwn, hwn′) ≤ d((sa)z′
w, (sa)z)

+ d((sa)z, (sag(n−n′)lm)z) + d((sag(n−n′)lm)z, (sag(n−n′)lm)z′
w)

≤ δ/4 + 0 + δ/4 = δ/2,

which verifies the claim. So there exists zw ∈ X such that for every n and h ∈ Ā · glmn, we
have d(hzw, (hg−lmn)z′

w) ≤ δ/2.
Then we have

dDε(zw, w) ≤ dDε(zw, z′
w) + dDε(z

′
w, w) ≤ δ/2 + ε ≤ δ,

thus d(zw, w) < ε.
Finally, we claim that glmzw = zw. However, the proof is completely analogous to the

proof that gmz = z and is left to the reader.

Cohen mentions in [20] that he originally conjectured that given a finitely generated
group G, there exists a subshift of finite type of G that is strongly aperiodic if and only
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if G is one-ended. This was refuted by Jeandel in [31] who showed that groups with an
undecidable word problem do not admit such subshifts of finite type.

While Cohen’s geometric argument can be generalized to more general dynamical
systems, as demonstrated above, this is less clear with Jeandel’s computability argument,
which seems to be more closely tight to subshifts. It is therefore plausible, although it
would be surprising, that the original Cohen’s conjecture is correct within the larger class
of expansive dynamical systems satisfying certain topological Markov properties.
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