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Abstract

The growth of machine learning (ML) in environmental science can be divided into a slow phase lasting till the mid-
2010s and a fast phase thereafter. The rapid transition was brought about by the emergence of powerful new ML
methods, allowing ML to successfully tackle many problems where numerical models and statistical models have
been hampered. Deep convolutional neural network models greatly advanced the use of ML on 2D or 3D data.
Transfer learning has allowed ML to progress in climate science, where data records are generally short for ML. ML
and physics are also merging in new areas, for example: (a) using ML for general circulation model parametrization,
(b) adding physics constraints in ML models, and (c¢) using ML in data assimilation.

Impact Statement

This perspective paper reviews the evolution and growth of machine learning (ML) models in environmental
science. The opaque nature of ML models led to decades of slow growth, but exponential growth commenced
around the mid-2010s. Novel ML models which have contributed to this exponential growth (e.g., deep
convolutional neural networks, encoder—decoder networks, and generative-adversarial networks) are reviewed,
as well as approaches to merging ML models with physics-based models.

1. Introduction

Thirty years ago, a typical environmental scientist would know some statistics but would not have heard
of “machine learning” (ML) and would know artificial intelligence (AI) only through science fiction.
After World War II, the great popularity of Al in science fiction led to very unrealistic expectations on how
fast Al research would progress. The inevitable disappointment led to negative reviews and two major “Al
winters,” periods of poor funding around 1974—1980 and 1987-1993 (Crevier, 1993; Nilsson, 2009).
Partly to focus on a more specific aspect and partly to avoid the stigma associated with Al, many
researchers started to refer to their work using other names, for example, ML, where the goal of ML is to
have computers learn from data without being explicitly programmed.
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Figure 1. Venn diagram illustrating the relation between artificial intelligence, statistics, machine
learning, neural networks, and deep learning, as well as kernel methods, random forests, and boosting.

While there is overlap between the data methods developed in statistics and in the younger field of ML
(Figure 1), ML germinated mainly in computer science, psychology, engineering, and commerce, while
statistics had largely been rooted in mathematics, leading to two fairly distinct cultures (Breiman, 2001b).
When fitting a curve to a dataset, a statistician would ensure the number of adjustable model parameters is
small compared to the sample size (i.e., number of observations) to avoid overfitting (i.e., the model fitting
to the noise in the data). This prudent practice in statistics is not strictly followed in ML, as the number of
parameters (called “weights” in ML) can be greater, sometimes much greater, than the sample size
(Krizhevsky et al., 2012), as ML has developed ways to avoid overfitting while using a large number of
parameters. The relatively large number of parameters renders ML models much more difficult to interpret
than statistical models; hence, ML models are often regarded somewhat dismissively as “black boxes.” In
ML, the artificial neural network (NN) model called the multilayer perceptron (MLP; Rumelhart et al.,
1986; Goodfellow et al., 2016) has become widely used since the late 1980s.

How readily an environmental science (ES) adopted NN or other ML models depended on whether
successful physics-based models were available. Meteorology, where dynamical models have been
routinely used for weather forecasting, has been slower to embrace NN models than hydrology, where
by year 2000 there were already 43 hydrological papers using NN models (Maier and Dandy, 2000), as
physics-based models were not very skillful in forecasting streamflow from precipitation data.

Relative to linear statistical models, the nonlinear ML models also need relatively large sample size to
excel. Hence, oceanography, a field with far fewer in situ observations than hydrology or meteorology,
and climate science, where the longtime scales preclude large effective sample size, are fields where the
application of ML models has been hampered. Furthermore, averaging daily data to produce climate data
linearizes the relation between the predictors and the response variables due to the central limit theorem,
thereby reducing the nonlinear modelling advantage of ML models (Yuval and Hsieh, 2002). Another
disadvantage of many ML models (e.g., NN) relative to linear statistical models is that they can
extrapolate much worse when given new predictor data lying outside the original training domain
(Hsieh, 2020), as nonlinear extrapolation is an ill-posed problem. This is not ML-specific, since any
nonlinear statistical model faces the same ill-posed problem when used for extrapolation.

Overall, around year 2010, ML models were fairly well accepted in hydrology and remote sensing, but
remained fringe in meteorology and even less developed in oceanography and climate science. Never-
theless, a number of books were written on the application of ML methods to ES in this earlier
development phase (Abrahart et al., 2004; Blackwell and Chen, 2009; Haupt et al., 2009; Hsieh, 2009;
Krasnopolsky, 2013). After this relatively flat phase, rapid growth of ML in ES commenced in the mid-
2010s.

Section 2 looks at the emergence of new and more powerful ML methods in the last decade, whereas
Section 3 reviews their applications to ES. The merging of ML and physical/dynamical models is
examined in Section 4.
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2. Evolution of ML Methods

The MLP NN model maps the input variables through layers of hidden neurons/nodes
(i.e., intermediate variables) to the output variables. Given some training data for the input and output
variables, the model weights can be solved by minimizing an objective function using a back-
propagation algorithm. The traditional MLP NN is mostly limited to one or two hidden layers, because
the gradients (error signals) in the back-propagation algorithm become vanishingly small after
propagating through many layers. Without a solution for the vanishing gradient problem, NN research
stalled while newer methods—kernel methods (e.g., support vector machines (Cortes and Vapnik,
1995)) emerging from the mid-1990s and random forests from 2001 (Breiman, 2001a)—seriously
challenged NN’s dominant position in ML.

The traditional MLP NN has each neuron in one layer connected to all the neurons in the preceding
layer. When working with image data, the MLP uses a huge number of weights—for example, mapping an
input 100 x 100 image to just one neuron in the first hidden layer requires 10,000 weights! Since, in
nature, biological neurons are connected only to neighboring neurons, to have every neuron in one layer of
an NN model connected to all the neurons in the preceding layer is unnatural and very wasteful of
computing resources. With inspiration from the animal visual cortex, the convolutional layer has been
developed, where a neuron is only connected to a small patch of neurons in the preceding layer, thereby
resulting in a drastic reduction of weights compared to the traditional fully connected layers and giving
rise to convolutional neural networks (CNNs; LeCun et al., 1989).

Eventually, the vanishing gradient problem was overcome, and deep NN or deep learning
(DL) models, that is, NN having >5 layers of mapping functions with adjustable weights (LeCun
et al., 2015), emerged. In 2012, a deep NN model won the ImageNet Large Scale Visual Recognition
Challenge (Krizhevsky et al., 2012). The huge reduction in the number of weights in convolutional layers
made deep NN feasible.

With all the impressive breakthroughs in DL since 2012 (Goodfellow et al., 2016), there is a popular
misconception that DL models are superior to all other ML models. Actually, the best ML model is very
problem-dependent. There are two main types of datasets, structured and unstructured. Structured datasets
have a tabular format, for example, like an Excel spreadsheet, with the variables listed in columns. In
contrast, unstructured datasets include images, videos, audio, text, and so forth. For unstructured datasets,
DL has indeed been dominant. For structured datasets, however, ML models with shallow depth structure,
for example, gradient boosting models such as XGBoost (Chen and Guestrin, 2016), have often beaten deep
NN in competitions, for example, those organized by Kaggle (www.kaggle.com).

How can “shallow” gradient boosting beat deep NN in structured data? Typically, in a structured
dataset, the predictors are quite inhomogeneous (e.g., pressure, temperature, and humidity), whereas in an
unstructured dataset, the predictors are more homogeneous (e.g., temperature at various pixels in a
satellite image or at various grid points in a numerical model). Boosting is based on decision trees, where
the effects of the predictors x are treated independently of each other, as the path through a decision tree is
controlled by questions like: is “x; > a?,” “x, > b?7,” and so forth (Breiman et al., 1984). In contrast, in
NN, the predictors are combined by a linear combination () _,w;x;) before being passed through an
activation/transfer function onto the next layer. With inhomogeneous predictors, for example, tempera-
ture and pressure, treating the two separately as in decision trees intuitively makes more sense than trying
to add the two together by a linear combination.

Another type of NN architecture is the encoder—decoder model, where the encoder part first maps from
a high-dimensional input space to a low-dimensional space, then the decoder part maps back to a high-
dimensional output space (Figure 2). If the target output data are the same as the input data, the model
becomes an autoencoder, which has been used for nonlinear principal component analysis (PCA), as the
low-dimensional space can be interpreted as nonlinear principal components (Kramer, 1991; Monahan,
2000; Hsieh, 2001). The popular U-net (Ronneberger et al., 2015) is a deep CNN model with an encoder—
decoder architecture.

In many games, having two individuals playing against each other enhances the skill level of both, for
example, a soccer goal scorer practicing against a goal keeper. The generative adversarial network (GAN)

https://doi.org/10.1017/eds.2022.2 Published online by Cambridge University Press


http://www.kaggle.com
https://doi.org/10.1017/eds.2022.2

e3-4 Environmental Data Science

ﬁﬁﬁﬁﬁﬁ Encoder .~ - Decoder

! X

—»4’8\0\ u

—0 O

—0

— ‘

' Input layer | Output layer

Figure 2. The encoder—decoder is an NN model with the first part (the encoder) mapping from the input x
to u, the “code” or bottleneck, and the second part (the decoder) mapping from u to the output y.
Dimensional compression is achieved by forcing the signal through the bottleneck. The encoder and the
decoder are each illustrated with only one hidden layer for simplicity.
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Figure 3. Generative adversarial network with the generator creating a fake image (e.g., a fake Picasso
painting) from random noise input, and the discriminator classifying images as either real or fake.
Whether the discriminator classifies a fake image rightly or wrongly leads, respectively, to further
training for the generator or for the discriminator.

has two submodels, the generator and the discriminator, playing as adversaries, with the goal of producing
realistic fake data (Goodfellow et al., 2014). Given a random input vector, the generator outputs a set of fake
data. The discriminator receives either real data or fake data as input and classifies them as either “real” or
“fake” (Figure 3). If a fake is correctly classified, the generator’s model weights are updated, whereas if the
fake is mistaken to be real, the discriminator’s model weights are updated. The skill levels of both players
improve until at the end the discriminator can only identify fake data from the generator about 50% of the
time. After training is done, the discriminator is discarded while the generator is retained to produce new
fake data. The variational autoencoder model provides an alternative to GAN (Kingma and Welling, 2014).

Conditional generative adversarial network (CGAN), introduced by Mirza and Osindero (2014),
supplies additional input x to both the generator and the discriminator. If x is an image, CGAN can be used
for image-to-image translation tasks (Isola et al., 2017), for example, translating a line drawing to a photo
image, a map to a satellite map, or vice versa (Figure 4).

3. Applications in Environmental Science

Applications of ML to ES have come in roughly two groups. In the first group, ML methods are used
largely as nonlinear generalizations of traditional statistical methods. For instance, MLP NN models are
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Figure 4. Conditional generative adversarial network where the generator G receives an image x and a
random noise vector z as input. The discriminator D receives x plus either a fake image from G (left) or a
real image y (vight) as input. Here, a line drawing is converted to a photo image; similarly, a photo image
can be converted to a line drawing. Adapted from Figure 2 of Isola et al. (2017).

used for nonlinear regression, classification, PCA, and so forth (Hsieh, 2009). In the second group, the
ML methods do not have counterparts in statistics, for example, GAN or CGAN.

CNN models have appeared in ES in the last few years, for example, to estimate the posterior
probability of three types of extreme events (tropical cyclones, atmospheric rivers, and weather fronts)
from 2D images of atmospheric variables (Liu et al., 2016), to detect synoptic-scale weather fronts (cold
front, warm front, and no front; Lagerquist et al., 2019) and for next-hour tornado prediction from radar
images (Lagerquist et al., 2020).

Performing classification on each pixel of an image is called semantic segmentation in ML. Most CNN
models for semantic segmentation use an encoder—decoder architecture, including the popular U-net deep
CNN model (Ronneberger et al., 2015), giving classification (or regression) on individual output pixels.
U-net has been applied to rain-type classification (no-rain, stratiform, convective, and others) using
microwave satellite images (Choi and Kim, 2020), to precipitation estimation using satellite infrared
images (Sadeghi et al,, 2020) and to cloud cover nowcasting using visible and infrared images
(Berthomier et al., 2020).

As traditional MLP NN models require a very large number of weights when working with 2D images
or 3D spatial fields, limited sample size often necessitates the compression of input variables to a modest
number of principal components by PCA, a linear technique (Jolliffe, 2002). The introduction of the CNN
model has drastically reduced the number of weights, so compression by PCA is not needed, and deep
CNN models have noticeably improved the performance of ML methods when working with 2D or 3D
spatial fields in ES since the mid-2010s.

PCA has been used to impute missing values in datasets (Jolliffe, 2002, Section 13.6) and U-net, with
its encoder—decoder architecture, can replace PCA in this task. Using sea surface temperature (SST) data
from two sources (NOAA Twentieth-Century Reanalysis [20CR] and Coupled Model Intercomparison
Project Phase 5 [CMIP5]), Kadow et al. (2020) trained U-net models, which outperformed PCA and
kriging methods in imputing missing SST values.

The CGAN (Figure 4) has also been used in ES: In atmospheric remote sensing, CGAN generated
cloud structures in a 2D vertical plane in the satellite’s along-track direction (Leinonen etal., 2019). As an
alternative to U-net in super-resolution applications, CGAN has been used to convert low-resolution
unmanned aircraft system images to high-resolution images (Pashaei et al., 2020).

The application of ML methods to climate problems has been impeded by the relatively small effective
sample size in observational records. In transfer learning, ML models trained on a dataset with large
sample size can transfer their learning to a different problem hampered by a relatively small sample size.
Using a CNN to learn the El Nifio-Southern Oscillation (ENSO) behavior from the dynamical models
(CMIP5 climate model data for 2,961 months), then transferring the learning to observed data (by further
training with 103 months of reanalysis data), Ham et al. (2019) developed a CNN model with better
accuracy in ENSO prediction than the dynamical models.
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4. Merging of Machine Learning and Physics

As some components of a physical model can be computationally expensive, ML methods have been
developed to substitute for the physics: For atmospheric radiation in atmospheric general circulation
models (GCMs), MLP NN models have been used to replace the equations of physics (Chevallier et al.,
2000; Krasnopolsky et al., 2008). For a simple coupled atmosphere—ocean model of the tropical Pacific,
the atmospheric component has been replaced by an NN model (Tang and Hsieh, 2002). Resolving clouds
in a GCM would require high spatial resolution and prohibitive costs; hence, NN models, trained by a
cloud-resolving model, have been used to supply convection parametrization in a GCM (Krasnopolsky
et al., 2013; Brenowitz and Bretherton, 2018; Rasp et al., 2018). Increasingly, ML methods are used to
learn from high-resolution numerical models, then implemented as inexpensive parametrization schemes
in GCMs.

In physics-informed machine learning, ML models can be solved satisfying the laws of physics, for
example, conservation of energy, mass, and so forth. In the soft constraint approach, the physics
constraints are satisfied approximately by adding an extra regularization term in the objective function
of an NN model (Karniadakis et al., 2021). Alternatively, in the hard constraint approach, the physics
constraints are satisfied exactly by the NN architecture (Beucler et al., 2021).

Initially developed in numerical weather prediction (NWP), data assimilation (DA) aims to optimally
merge theory (typically a numerical model based on physics) and observations. The most common DA
method used in NWP is variational DA—4D-Var (three spatial dimensions plus time) and 3D-Var (spatial
dimensions only; Kalnay, 2003). Hsieh and Tang (1998) noted that back propagation used in finding the
optimal NN solution is actually the same technique as the backward integration of the adjoint model used
in variational DA; hence, one could combine numerical and NN models in DA by solving a single
optimization problem. For the three-component dynamical system of Lorenz (1963), Tang and Hsieh
(2001) replaced one of the dynamical equations with an NN equation, and tested using variational
assimilation to estimate the parameters of the dynamical and NN equations and the initial conditions. In
recent years, there has been increasing interest in merging ML and DA using 4D-Var in a Bayesian
framework (Bocquet et al., 2020; Geer, 2021) or using the ensemble Kalman filter (Brajard et al., 2020).
NN models have the potential to greatly facilitate the building/maintaining of the tangent linear and
adjoint models of the model physics in 4D-Var (Hatfield et al., 2021).

5. Summary and Conclusion

The recent growth of ML in ES has been fueled mainly by deep NN models (Camps-Valls et al., 2021),
especially deep CNN models, which have greatly advanced the application of ML to 2D or 3D spatial data,
gradually replacing many standard techniques like multiple linear regression, PCA, and so forth.
Furthermore, some of the new ML models (e.g., GAN or CGAN) are no longer merely nonlinear
generalization of a traditional statistical method. Progress has also been made in rendering ML methods
less opaque and more interpretable (McGovern et al., 2019; Ebert-Uphoff and Hilburn, 2020). In climate
science, where observational records are usually short, transfer learning has been able to utilize long
simulations by numerical models for pretraining ML models. ML and physics have also been merging, for
example, in (a) the increasing use of ML for parametrization in GCMs, with the ML model trained using
data from high-resolution numerical models, (b) the implementation of physics constraints in ML models,
and (c) the increasing interest in using ML in DA.

My overall perspective is that the evolution of ML in ES has two distinct phases, slow initial
acceptance followed by exponential growth starting in the mid-2010s. If an assessment were made on
the progress of ML in ES in 2010, one would have come to the conclusion that, with the exception of
hydrology and remote sensing, ML was not considered mainstream in ES, as numerical models (or even
statistical models) were far more transparent and interpretable than “black box” models from ML. It is
encouraging to see the resistance to ML models waning, as new ML approaches have been increasingly
successful in tackling areas of ES where numerical models and statistical models have been hampered.
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