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COVERINGS AND EMBEDDINGS OF INVERSE SEMIGROUPS
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A correspondence is established between a class of coverings of an inverse semigroup S and a class of
embeddings of S, generalising results of McAlister and Reilly on £-unitary covers of inverse semigroups.
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Introduction

The aim of this paper is to generalise two correspondences discovered by McAlister
and Reilly [9]. To state their results precisely, we shall need a few definitions. An
inverse monoid F with group of units U(F) is said to be factorisable if for each xeF
there exists geU(F) such that x^g. If G is any group then K(G), the coset semigroup of
G, has elements the cosets of subgroups of G and multiplication (Ha) <E> {Kb) =
<HuaKa~1>ab, where H and K are subgroups of G. It is easy to show that K(G) is a
factorisable inverse monoid with group of units isomorphic to G.

Now let S be a fixed inverse semigroup. Consider the following three classes of
morphisms:

(I) E-unitary covers 0:P->S of the inverse semigroup S through the group G = P/o,
where a is the minimum group congruence on P.

(II) Idempotent pure prehomomorphisms ip:S->K(G), where G=[J{il/(s):seS}.

(III) Embeddings r.S-*F, where F is a factorisable inverse monoid with group of units
U(F) = G, such that for each geU(F) there exists an element seS such that i(s)^g.

In [9], it is shown that there is a correspondence between coverings of S of type (I) and
morphisms with domain S of type (II), and between morphisms of type (II) and
embeddings of S of type (III). These correspondences were placed in a categorical
setting by the author in [7].

The key step in generalising these correspondences will be to generalise the coset
semigroup K(G) to arbitrary inverse semigroups. Although Nambooripad and Veera-
mony [10] have generalised K(G) in one direction, the generalisation needed for our
purposes is related to work of Schein [15]. For each inverse semigroup S we construct
the inverse semigroup of cosets of S, denoted K(S). This construction forms the basis of
Section 1. Independently, Leech [8] has likewise introduced the semigroup K(S) within
the context of his theory of inverse algebras. In Section 2, we show how idempotent
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400 MARK V. LAWSON

pure prehomomorphisms from S to semigroup of the form K(U), for some inverse
semigroup U, give rise to covers of S through U. In Section 3, we show how idempotent
pure prehomomorphisms from S to semigroups of the form K(U) give rise to
embedding of S into inverse semigroups T, which contain U as an inverse subsemigroup.
We refer the reader to Petrich [12] for the basic definitions from inverse semigroup
theory. We list below some definitions and notation of particular importance to this
paper.

Let S be an inverse semigroup and x, yeS. The trace product of x and y, denoted x.y,
is defined to be xy if x~lx = yy~l, and undefined otherwise. A prehomomorphism 9 from
an inverse semigroup S to an inverse semigroup T is a function 9:S->T such that
9(xy)^9(x)9{y) and 0(x~ *) = 6(x)~ *, for all elements x,yeS. Here, and throughout this
paper, the natural partial order on an inverse semigroup will be denoted by ";g". A
prehomomorphism is a homomorphism precisely when it preserves the meet of any two
idempotents. It is important to note that we use the term "prehomomorphism" in the
sense of our paper [3], and not in Petrich's sense [12]. A prehomomorphism 9 is said to
be idempotent pure if 0(x) is an idempotent only when x is an idempotent. We denote
the maximum idempotent pure congruence on an inverse semigroup by x. I(X) (resp.
I*(X)) is the symmetric inverse semigroup of all partial injective functions on the set X
with arguments written on the right (resp. left). The identity relation on a set will always
be denoted A. If A and B are any sets then nt and n2 denote the projections of A x B to
A and B respectively. If 9 is a homomorphism then ker0 denotes the equivalence
relation induced on the domain of 9. Finally, if p and a are two binary relations on a
set X, their product is written poo.

1. Closet semigroups

Unless stated otherwise, U will always denote an inverse semigroup.

Definition. Let A be a subset of an inverse semigroup U. Define

[yl]T = {ueU:a^u some aeA} and [A~] = {ueU:u^a some aeA).

The former set is called the upper closure of A and the latter the lower closure of A.
Since this paper will deal almost exclusively with upper closures we shall use the word
"closure" to mean "upper closure".

Definition. A subset A of U is said to be closed if [A]T =A.

The operation of taking the closure of a subset of U has a number of elementary
properties; we list them below, and leave the easy verifications to the reader.

Lemma 1.1. Let A and B be arbitrary subsets of U. Then:

(i) If A^BthenlAV ^
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(ii) A<=lAV.

(iii) / / A is an inverse subsemigroup of U then | \4]T is a closed inverse subsemigroup of
U.

Definition. A subset A of U is called an inductive atlas if A = AA~lA.

Remark. Since no other kinds of atlas will be considered in this paper we shall use
the word "atlas" rather than "inductive atlas". Ehresmann [1] introduced atlases in
ordered groupoids for his work in differential geometry. See Schein [13] for the related
notion of "groud". In checking that a subset A of an inverse semigroup U is an atlas, it
is enough to show that AA~1AzA, the reverse inequality holds automatically.

Lemma 1.2. Let U be an inverse semigroup. Then:

(i) / / A is an atlas in U then \_A~\T is a closed atlas.

(ii) / / p is a congruence on U then p(u) is an atlas for all ueU.

(iii) If A is a closed atlas in U then so is A'1.

(iv) / / H is a closed inverse subsemigroup of U and aa~1sH then [Ha] T is a closed
atlas.

(v) Let 0:L/-» V be a homomorphism of inverse semigroups. If A is a closed atlas of V
then B = 9~i(A) is a closed atlas of U.

Proof. The proofs of (i), (ii) and (iii) are straightforward.

(iv) It is enough to show that [ H a ] f is an atlas. Let x ,y , ze [ / / a ] T . Then there exist
h,k,leH such that ha^x, ka^y and la^z. Thus ha{ka)~l la^xy~lz. But haikd)'1 la =
(h{aa~l)k-xr)a, and aa'^H so that h(aa~l)k~11eH. Thus xy'^elHaV.

(v) B is an atlas, for if x, y, z e B then 6(x), 9(y), 8(z) e A. By assumption, A is an atlas and
so e{x)6(y)~1e(z)eA. Thus xy'^eB. B is closed, for if xeB and x^y, then 0{x)eA
and 9(x) ^ d(y). Thus 9{y) e A and so y e B. •

Definition. A subset A of an inverse semigroup U is called a coset if it is a closed
atlas. The set of cosets of U will be denoted by K(U).

The following result is central to the correspondence we shall set up in Section 2.

Proposition 1.3. Let U, Q and S be inverse semigroups and let 9:Q^>S and <j>:Q-*U
be surjective homomorphisms. Define a map \j/:S-*P{U) by \l/(s) = (f>(9~1(s)). Then

(i) ijj(s) is an atlas,

(ii) i]/(s) is a coset for all seS if and only if (ker i ^ o | ) c ker 9 o ker (p.

Proof. Since (i) is easily verified we prove (ii) only. We begin by assuming that ij/{s)
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is a coset for all elements s of S. Suppose that (p, q) e ker <j> o ^ . By definition there exists
an elements q' in Q such that

Since <j> is order preserving we have that 4>(q')^(f>{q) in U. Let 9(p) = s. Then, by the
definition of tp, <j)(p) is an element of i]/(s). By assumption, i//(s) is a coset, and
<f>(p)^<f)(q). Thus <£(g) also belongs to ^(s). From the definition of ty, there must
therefore exist an element q" in Q such that

0(9") = s and 0(«") = *(«).

But now we see that 0(p) = s = 0(<j") so that (p, q") e ker 0, and <p(q") = <t>(q) so that
(#", q) e ker $. Thus (p, q) € ker 0 o ker (j> as required.

Conversely, suppose that (ker</><> ̂ ) £ker0oker0. We shall prove that ij/(s) is a coset
for all elements s of S. By (i), it is enough to show that tj/(s) is closed. Let ue\p(s) and
suppose that u^v. By definition of i// there exists p e g such that <f)(p) = u and 9(p) = s.
Since $ is surjective there exists qeQ such that <̂ (q) = u. In particular, (/>(p)^0(q). Put
e = pp~1. Then (f>{p) = (j>{e)<j){q) = (j)(eq). Thus <j>(p) = <j>(eq) and eq^q, which means that
(p, q) e ker 0 o ̂ . By assumption, (p, q) e ker 0 o ker 0 so that there exists q'eQ such that

9(p) = 6(q') and

If follows that

s = 9(p) = 6(q') and
In particular,

Thus veij/(s). Hence \j/(s) is a coset. •

In the remainder of this section we shall prove that, with respect to a suitable
definition of multiplication, K(U) is an inverse semigroup. Some of the following results
could be deduced from Schein [15] but we have preferred to prove them directly, for
the sake of completeness.

Proposition 1.4. Let A be a coset in U.

(i) Put / / = [/l/4"1]T and let aeA. Then H is a closed inverse subsemigroup of U and

(ii) Put /C = [i4"1/4]T and let be A. Then K is a closed inverse subsemigroup of U and
A = lbKV-

Proof. We shall prove (i), the proof of (ii) is similar. It is easy to check that A A ~l is
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an inverse subsemigroup of U. By Lemma 1.1, H = [/1/4"1]T is a closed inverse
subsemigroup of U. We claim that Ha £ A Indeed, let h e H and consider the product
ha. By the definition of H there exist elements b,ceA such that bc~l^h. But then
bc~la^ha. Since A is an atlas bc~laeA. However, A is closed so that has A. Thus
Ha £ A, as required. By Lemma 1.1, we have that [Ha~\f £ [/I]T — A. We now show that
the reverse inclusion holds. Let be A. Then ba~1a^b. Now ba~1eAA~l and so
ba~leH. Thus ba~1aeHa and so ba^aefT/a] ' . But [#a]T is closed and so contains
the element b, thus A £ [//a] f . •

Remark. The above proposition together with Lemma 1.2(iv) shows that our
definition of coset coincides with Leech's [8].

Proposition 1.5. Let A be a coset of U which contains an idempotent. Then A is a
closed inverse subsemigroup of U.

Proof. Let e be an idempotent in A. Put H = [AA~1~\. Then by Proposition 1.4(i),
we have that A = [He~\1. Now He^fj, since eeH. Thus by Lemma l.l(i), we obtain
that A^H. Now let heH. Then he^h, and so h e [tfe]T = A. Thus lie A It follows that
A = H. •

Our definition of a suitable multiplication on K(U) will be achieved by means of
quantales, defined below. Although the multiplication can just as easily be defined
without them, our approach may have applications elsewhere in semigroup theory.

Definition. A quantale Q is a lattice-ordered semigroup which is join complete as a
lattice and satisfies the following distributivity conditions

for all aeQ and {bJsQ. A homomorphism of quantales is a semigroup map which
preserves arbitrary sups.

Homomorphisms on quantales are most easily described by means of nuclei.

Definition. Let Q be a quantale. A quantic nucleus is a map j:Q-*Q satisfying the
following conditions:

(QN2) a^b implies j(a)^j(b) for all a,beQ.
(QN3) j2(a) = j(a) for all aeQ.
(QN4) j{a)j(b)£j(ab) for all a,beQ.

Remark. Observe that if ; is a quantic nucleus then
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j(ab) = j(qj(b)) = j(j(a)b) = j(j

a result which we shall use many times in the sequel.

Definition. If j is any quantic nucleus on Q, put Qj = {aeQ:j(a) = a}. Define an
operation "o" on Qj by a°b=j(ab). It can be shown that (Qj,o) is a quantale and
J'Q^Qj is a surjective quantale homomorphism. We refer the reader to [11] for details.

Definition. If Q is a quantale and a and b are arbitrary elements of Q define two
new operations '/' and ' \ ' as follows:

qSa} and a\b =

Observe that for any element c of Q

be ̂  aoc ^ a/b and cb ̂  aoc ^ a\b.

Remark. Clearly, underlying every quantale is a semigroup and underlying every
quantale map is a semigroup homomorphism. Thus there is a forgetful functor from the
category of quantales and quantale maps to the category of semigroups and semigroup
homomorphisms. This functor has a left adjoint which takes a semigroup S to its power
semigroup P(S), which is clearly a quantale, and lifts semigroup homomorphisms to the
obvious map between power semigroups [11].

The following lemma provides a way of constructing quantic nuclei on quantales of
the form P(S).

Lemma 1.6. Let ^ = {Ai.ieI) be a family of subsets of S, satisfying the following three
conditions:

(i) For each XeP(S) there exists an AteJ such that XS/4,.
(ii) For all J<=/, the intersection f]{Ai'.ieJ} belongs to J.

(iii) For all XeP(S) the elements A,\X and AJX belong to J.

Define a map j:P(S)->P(S) by

Then j is a nucleus on P(S).

Proof. It is easy to see that (QNl), (QN2) and (QN3) hold, so that it only remains
to show that (QN4) holds. Let X and Y be arbitrary subsets of S. To prove that {QN4)
holds it is enough to show that every element C of J which contains XY must also
contain j(X)j(Y). To this end, let XY £ C, where C is an element of J. Then X<=,C\Y.
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By assumption, C\YeJ. Thus j(X) zC\Y and so j(X)Y^C. But then Y £ C/j(X). By
assumption, C/j{X)eJ. Thus j(Y) £ C/j(X), and so j(X) j(Y) c c, as required. •

As an application of the above result we have the following.

Proposition 1.7. Let J = {A: A e K(U)} u {0}. Then J satisfies the conditions of
Lemma 1.6.

Proof. Conditions (i) and (ii) are easy to verify. We shall show that (iii) holds.
Specifically, we shall prove that if A is a coset and X an arbitrary non-empty set such
that A\X is non-empty, then A\X is also a coset. The proof that, if A/X is non-empty
it is also a coset, is similar. We begin by showing the A\X is an atlas. Let u,v,we A\X
and let xeX. By definition we have that

ux = a, vx = b and wx = c,

for some a,b,ce A. Now

Such A is an atlas the product ab~1ceA. Also, A is closed so that the product
uv~iwxeA for all xeX. Thus uv'^eAXX, and A\X is an atlas. It now only remains
to show that A\X is closed. Let ueA\X and u^v. If xeX then ux = a, some aeA. It
follows that ux^vx. But ux — a is an element of A, which is a closed set. Thus vxeA
and the result follows. •

It is now immediate from Lemma 1.6 and Proposition 1.7 that the function
j:P{U)->P(U) defined by

j(X) = f\{A:AeK(U)\j{0} and X<=A}

is a nucleus. Thus the set P{U)j=K(U) u {0} becomes a quantale when we define a
product ® by

It is clear that if A and B are non-empty then A ® B is also non-empty. Thus
is a semigroup; that it is also an inverse semigroup is a consequence of the next result.

Remark. For the remainder of this paper " / ' will always denote the particular
nucleus defined above.

Theorem 1.8. (K(U), ®) is an inverse semigroup having the following properties:
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(i) The idempotents are the closed inverse subsemigroups of U.

(ii) The natural partial order is reverse inclusion.

(Hi) Put L/' = { [ M ] T : U 6 U}. Then V is an inverse subsemigroup of K{U) isomorphic to
U, such that [t/ '] = /C((7).

(iv) Let A,BeK(U). Let H = [AA-iy and aeA, and let /C = [BB"1]f and beB.
Then A® B=[[(H,aKa~lyV ab~\\ where (H,aKa~ls> is the inverse subsemi-
group generated by H and aKa'1.

Proof. It is clear that K(U) is a regular semigroup, since

for all AeK(U). To prove that K(U) is inverse, it is enough to prove that the
idempotents commute. The first step is to characterise the idempotents.

(i) Let A®A = A in K(U). We shall show that A contains an idempotent, the result
will then follow from Proposition 1.5. Let aeA and H = [AA~iy. Then /4 = [Ha]T by
Proposition 1.4. A is a subsemigroup of U, since AA^ j(AA) = A, and so a2eA. Since
a2e[Ha]T , there exists heH such that ha^aa. Thus (ha)a~1^a(aa~1)^a. Hence
e = a~i(ha)a~1 ^a~ia is an idempotent. But eeA~1AA~1 = A~i. Thus eeA. Conver-
sely, let A be a closed inverse subsemigroup of U. Then A ® A = j(AA) = j(A) = A since
AA = A. We can now show that the idempotents commute. Let A and B be arbitrary
closed inverse subsemigroups of U. Their product A (x) B is given by

A <g> B = j(AB) = f]{C:CeK(U) and AB s C}.

It is clear that, since A and B contain idempotents, so does AB. Thus by Proposition
1.5, any coset which contains AB must be a closed, inverse subsemigroup of U.
Furthermore, AB<=, C<>B~iA~i c C"1. Since A,B and C are all inverse subsemi-
groups, it follows that AB^CoBAzC. Thus /4®B = B®/ l i s an idempotent.

(ii) Suppose that X^Y, where ^ is the natural partial order on K(U). By the
definition of the natural partial order, we have that X = j(XX~1Y) and so XX~i Y £ X.
Let x and y be arbitrary elements of X and Y respectively and let u = xx~iy^y. The
element u belongs to XX ~i Y and so to X. But X is closed and thus also contains y.
Since y was chosen arbitrarily, we have shown that KsX. Conversely, suppose that
Y^X. Then, clearly, XX~lY<=X and so j(XX~iY)^X. Let x and y be chosen
arbitrarily from X and 7 respectively. Consider the product u=xy~ly. It is clear that
ueXX~iY. Since u^x, it follows that xej(XX~iY). Since x was chosen arbitrarily in
X, we have shown that X £ ^ Z X " l Y).

(iii) We begin by showing that U' is an inverse subsemigroup of K(U). It is clear that
[/' is closed under inverses. To establish closure under ®, observe that
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It is clear that ([/', ®) is isomorphic to V. Finally, let AeK(U) and seA. Then
LsV^A, so that /4g[s]T. Thus \_V\ = K(U).

(iv) By Lemma 1.2, [[</f,aKa~1>] ^ t ] 1 is a coset. A simple calculation shows that
A®B = j(HaKb). We shall show that j{HaKb) = [l(H,aKa-1>y ah] T. Let HaKb^C,
where C is any coset. Observe that

so that abeC. Put D = [CC"1]T. Then C = [Dai>]T by Proposition 1.4. Since HaKb^C
we obtain that HaKa'^H'ZD. It follows easily from this that H,aKa~lsD. But D is a
closed, inverse subsemigroup and so \_(H,aKa~ly~\^ ^D. Thus [[<if,a/Ca" 1>]Tafc]t £
c. a

Remark. Observe that S is embedded in K(S) via the map v:S->K(S) given by
u(s) = [s] t . This makes K(S) look like a kind of completion of S; what kind of
completion is made precise by Leech [8].

Theorem 1.8 can be extended to encompass homomorphisms between inverse
semigroups.

Theorem 1.9. There is a faithful endofunctor K on the category of inverse semigroups
and homomorphisms, which takes each inverse semigroup S to K(S).

Proof. Let 9:S-* T be a homomorphism between inverse semigroups. We define

K(0):K(S)->K(T) by K(6){A) = j(0(A)) for all AeK{S).

We shall usually write K(0) = 9*, to extend the notation used by Joubert [2] in the case
where S is a group. To show that 6* is a homomorphism, we have to show that for all
A,BeK(S),

9*(A ® B) = 0*(A) ® 0*(B),

which is equivalent to showing that j(6(j(AB))) = j(9(AB)). First observe that since
), we have that 9(AB) £ 9(j(AB)). Thus

Hence j(0{AB)) c j(6(j(AB))). This shows that 9* is a prehomomorphism. To show that
9* is a homomorphism it remains to show that j(9(j(AB))) s j(9(AB)). Let CeK(T) be
such that 0(AB)^C. Clearly, / 1 B S 0 - ' ( ^ B ) ) S^" 1 ^ ) - But fl-^QeKfS) by Lemma
1.2(i>), so that ./•(XBJsfl-'CC). Thus 9{j(AB)) £ C, and so j(9(j(AB))) <= C. Hence
J(0(_/(/4JE?))) £ J(0(/4B)). It is straightforward to check the K is a functor. It only remains
to prove that K is faithful. Let 9 and tp be homomorphisms from S to T and suppose
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that 9* = ip*. Then for all seS, 0*(|>]T) = <£*([>]T). But 0*([s]T) = [0(s)]T and
i/f*(ls]T) = |>(s)]T. Thus 0(s) = «A(s) for all seS. D

We now describe the form taken by the trace product in K(U).

Proposition 1.10. Let A and B be cosets in K(U) such that A'1 ® A = B® B~l. Then
A.B = j{ab(B~1B)), where aeA andbeB.

Proof. By Proposition 1.4, we have that

A = laKV where K = ZA~1Ay and aeA

and

B = [HbV where H = \_BB~lV and beB.

By assumption, K = H. Observe that A ® B = j(aHb), for

j(AB) = Kj(aH)j(Hb)) = j((aH)(Hb)) = j(aH2b) = j(aHb)

where H2 = H, since H is an inverse subsemigroup. We now prove that j(aHb) =
j(ab(B~lB)). Let xej(aHb). Then ahbf^x for some heH. Thus there exist c,deB such
that cd'^h, and so acd'lb^ahb^x. But ab(b~1c)(d~1b)^acd~lb^x, and
ab(b-1c)(d-1b)eab(B-1B). Thus xej{ab{B-lB)). Conversely, if xej{ab(B~lB)) then
there exist c,deB such that abc~xd^x. But a(bc~ldb~i)b^abc~1d^x, and

^ b . Thus xej(aHb). •

Definition. A representation of an inverse semigroup S by partial injections is a
homomorphism <x:S->I(X). The representation is said to be effective if every element of
X belongs to the domain of some partial function in a(S). The representation is said to
be an effective, transitive representation if it is effective and for any two element x,yeX
there exists seS such that tx(s){x) = y. Similar definitions apply to I*(X).

The significance of the next lemma will be explained in the Remark which follows it.

Lemma 1.11. Let K and S be inverse semigroups such that S is a subsemigroup of K
and [S] = K. Let e be an idempotent in K. Then:

(i) There is an effective, transitive representation cp of S in I(Le) given by <p(s) =
{(x,y)eLexLe:sx = y}.

(ii) There is an effective, transitive representation 8 of S in /*(/?„) given by
s) = i^x, y)eRexRe: xs = y}.

Proof. We shall prove (i), the proof of (ii) is similar. </>(s) is injective on its domain:
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indeed, suppose that (x,sx),(y,sy)e$(s) and sx = sy. Thus s~isx = s~isy. But s'isx = x
and s~1sy = j ' , and so $(s) is injective. Next, we claim that for all x,yeLe there exists
seS such that sx=y: indeed, since xLy there exists keK such that kx = y. But [S] = K,
so that there exists seS such that k^s. Clearly, y^sx. But sxLy since y ^ ' y ^
( s x ^ ' s x ^ x ^ x . Thus y=sx. It remains to show that <f> defines a semigroup homomor-
phism. Observe that

x e dom (0(s)<£(t)) <*• x e Le, tx e Le and stx e Le.

On the other hand, xedom<t)(st)oxeLe and stxeLe. It is easy to see that this implies
txeLe. It is now evident that (f>(si) = 0(s)0(t). •

Remark. The above lemma enables us to show that the semigroup K(S) contains all
the information about the effective transitive representations of S by partial one-to-one
maps. Let H be an idempotent in K(S). The 32-class of H in K(S) consists of all those
cosets A in K(S) such that A ® A'1 = H. Thus

The elements of RH are precisely the "right co-cosets of H in S" [12]. Observe that if
seS and AeK(S) and A ® v(s)&#A then the product X ® v(s) is given by

A <g> v(s) = j(Av(s)) = j{KHa)v(s)) = j(Has) = \

By Lemma 1.11, each element s of S determines a partial one-to-one map <f>(s) of RH by

<£(s) = {(A, B)eRHxRH:A<g> v(s) = B}.

Thus the map <p:S-*I*{RH) is an effective, transitive representation of S. From the
theory of inverse semigroup representations every effective, transitive representation of S
is isomorphic to one obtained in this way (see [12]).

2. Coverings of inverse semigroups

Our first definition can be regarded as a generalisation of certain properties of
factorisable inverse monoids: if F is factorisable with group of units G then {F,G) is a
"covering pair" in the sense of the following.

Definition. Let U be an inverse subsemigroup of the inverse semigroup T. We
suppose in addition that the following two axioms hold:

zy =u.
(CP2)
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Then we call (T,U) a covering pair.

Definition. Let (T, U) be a covering pair and let K:S-> T be an embedding of S in T.
Suppose, in addition, that for each ueU there exists seS such that K(S)^u. Then we say
that S is covered by U in T. The map K is called a covered embedding (of S in T by U).

We now show that every such covered embedding of S by U gives rise to a cover of S
through U.

Theorem 2.1. Wit/i tfte notation above, put

Then i

(i) Q is an inverse subsemigroup of SxU.
(ii) n^.Q-iS is a surjective homomorphism.
(iii) n2:Q—*U is a surjective idempotent pure homomorphism.
(iv) ker n1 n ker n2 = A.
(v) (ker7i2° ^ ) £ ker fti oker7t2.

Proof, (i) Straightfoward.
(ii) That n^ is a homomorphism is easy to check. Surjectivity follows from (CP2).
(iii) That n2 is a homomorphism is easy to check. Surjectivity follows from the fact

that for every ueU there exists seS such that K(S)^u. It is also clear that n2 is
idempotent pure.

(iv) Immediate.
(v) Let ((s, u),(t, v)) e ker TC2 ° ^ . Then there exists an element (s', u') e Q such that

((s, u), (s', u')) e ker n2 and (s', u') g (t, v).

Thus M = w', s'^t and u^v. Since K(S)^u and M î> then K(S)^u. The pair (s,u) is
therefore an element of Q. But then

n1(s,u) = n1(s,v) and 7t2(s, u) = TT2(£, f).

Thus ((s, u), (t, )̂) e ker 7i! o ker TC2 • •

In the result below recall that T denotes the maximum idempotent pure congruence.

Corollary 2.2 With the notation of Theorem 2.1, we have
(i) if ((s, u), (t, u)) er in Q then (u, v)ex in U,
(ii) U is E-disjunctive if and only if ker n2=x.

Proof, (i) Let x and y be elements of U such that xuyeE(U). By the definition of
covered embeddings, there exist p,qeS such that i(p)^x and i(q)^y. Thus both (p,x)
and (q, y) belong to Q. Now
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(p, x)(s, u)(q, y) = (psq, xuy) and (p, x)(t, v)(q, y) = (ptq, xvy).

By assumption, xuy is an idempotent. Thus psq is an idempotent. We have shown that
(psq, xuy) e £ (©. Since ((s, M), (t,»)) e T, we have that (ptq, xiry) e £(6). Thus xvy is an
idempotent. A similar argument shows that if xvy is an idempotent then xuy is an
idempotent. It can similarly be shown that

xueE(U)oxveE(U) and uyeE(U)ovyeE(U).

Thus ((s, u), (t, v)) e T implies (u, u) e T in [/.
(ii) If U is £-disjunctive, then T = A on U. Suppose that ((s,u),(t,v))ex in Q. Then by the
above, (u,v)ez in U. Thus u = t>. It follows that ((s,u),(t,v))ekeTit2, and so tcker7c2 .
Conversely, since ker n2 is idempotent pure ker n2 £ T. Thus ker 7t2 = i- The converse is
immediate, since T is the maximum idempotent pure congruence on Q. •

In view of Theorem 2.1, we now make the following definition.

Definition. Let S, Q and U be inverse semigroups. A special cover of S is a pair of
homomorphisms (d,</>), where 0:Q->S and 4>:Q->U, satisfying the following conditions:

(SCI) 6 and <£ are surjective.
(SC2) <f> is idempotent pure.
(SC3)ke r0nke r0 = A.
(SC4) (ker </> o g ) s ker 6 o ker </>.

We say that Q is a special cover of S through U.

Definition. A representation of S by cosets of U is a function il/:S-^K(U) satisfying
the following conditions:

(Rl) i// is a prehomomorphism.
(R2) \ji is idempotent pure.
(R3) U = Kj{iJ/(s):seS}.

Theorem 2.3. There is a correspondence between special covers of S through U and
representations of S in K(U).

Proof. We proceed in the following way. From each special cover (6, <p) of S we shall
construct a representation R(8, <p) of S in K(U). Similarly, for each representation i]/ of S
in K(U), we construct a cover, C(I/J) of S, through U. Finally, we prove that C(R(6, </))) is
isomorphic to (8,<p) and R(C(\j/)) = \j/. It is in this sense that we understand the word
"correspondence". Let (9,4>) be a special cover of S through U. Define R(0,4>) to be the
function ip:S->K(U) given by \j/(s) = (l>(9~l(s)). This function is well-defined by Proposi-
tion 1.3 and (SC4). (Rl) holds: indeed let uei//(s) and vexj/(t). Then there exist elements
p,qeQ such that

6(p) = s and 6(q) = t and <p(p) = u and (p(q) = v.
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Now, 9(pq) = st and (f)(pq) = uv. Thus uve\j/(st). {R2) holds: indeed suppose that î (s) is
an idempotent in K(U). By Theorem 1.8, ^(s) is a closed inverse subsemigroup of U. In
particular, U contains idempotents. Let eetp(s)ri E{U). Then there exists a p e g such
that <f>(p) = e and 0(p) = s. But (j) is idempotent pure by (SC2), so that p is an
idempotent. Hence s is an idempotent. (R3) holds by (SCI).

We now show how to construct a special cover of S through U, given a
representation \j/:S-*K(U). Put

Q = {(s,u)eSxU:ueip{s)}

and let ^ Q ^ S and n2:Q-*lJ be the projection maps. Then we claim that C(ij/) =
(nl,n2) is a special cover through U. Note that <2 is easily seen to be inverse from the
properties of prehomomorphisms. It is also evident that 7tt and n2 are homomorphisms.
(SCI) holds: it is immediate that 7^ is surjective. Surjectivity of n2 is a consequence of
(R3). (SC2) holds: indeed suppose that n2(s,u) is an idempotent. Then u is an
idempotent and ueij/(s). By Proposition 1.5, t/f(s) is a closed, inverse subsemigroup of U.
In particular, tj/(s) is an idempotent in K(U). But by (R2), \j/ is idempotent pure and so s
is an idempotent. It follows that (s,u) is an idempotent in Q, as required. That (SC3)
holds is immediate from the definitions. To see that (SC4) holds: observe that

which is just \//(s). Thus by Proposition 1.3, (SC4) holds. Notice that we have also
proved that R(C(\p)) = il/.

Finally we shall prove that C(R(6,4>)) is isomorphic to (6,4>). Let (6, <j>) be a special
cover of S through U. Define R(9, <j>) = ij/, the associated representation as above. Now
define an inverse semigroup Q' by

Q' = {(s,u)eSxU:ueiP(s)}.

Then C(R(6,</>)) = (nltn2) is a cover of S through U. Define a map OL:Q-*Q' by
a(q) = (9(q),(l>(q)). We shall prove that a is an isomorphism, such that

7t1a = 0 and n2a = (t>.

It is evident that it is in fact enough to prove that a is an isomorphism, as the rest of
the result follows from the definition of a. That a is injective is immediate from (SC3).
That a is surjective follows from the definition of \j/. It is clear that a is a
homomorphism. •

3. Embeddings of inverse semigroups

In Theorem 2.1, we showed that covered embeddings give rise to special covers,
whereas in Theorem 2.3, we showed that there is a correspondence between special
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covers and representations. In this section, we shall complete the circle by showing that
there is a correspondence between representations and covered embeddings. It will be
convenient to make use of the category of ordered groupoids and ordered functors. We
refer the reader to [3] for more information, but to make this paper reasonably self-
contained we provide below the main definitions.

A groupoid G is a (small) category in which every morphism is an isomorphism. If
xeG then x~l will be the unique inverse of x. We shall usually denote the partial
product in G by concatenation, except when we denote it by "." for the sake of
emphasis. An identity in G is any element e such that whenever e.x (resp. x.e) is defined
it equals x. The (unique) left and right identities of x are written r(x) and d(x)
respectively. The set of identities is written Go. For us, xy will be defined iff d(x) = r(y),
the usual convention in category theory. The star of a groupoid G at the identity e is
the set Le = {xeG:d(x) = e}. If 6 is a functor from G to H then 0 maps Le to Lf, where
f=9(e). Any other definitions we use from category theory will be standard.

A groupoid G is said to be ordered if it is equipped with an order relation ^ such
that the following axioms are satisfied:

(G) Ifx^y then x~l^y~l.

(OC3) If x^y and x'^y' and the products xx' and yy' exist then xx'^yy'.

(OC8)(i) If xeG and e^d(x), where eeG0 then there exists a unique element (x|e),
called the restriction of x to e, such that (x|e)^x and d(x|e) = c.

(OC8)(ii) If xeG and e^r(x), where eeG0 then there exists a unique element (e|x),
called the corestriction of x to e, such that (e | x) ̂  x and r(e | x) = e.

In [3] we followed Ehresmann's usage [1] and called groupoids satisfying the axioms
above functorially ordered. We usually refer to "the ordered groupoid G" rather than to
"the ordered groupoid (G,.,^)". We shall have cause later to refer to the following two
axioms both of which hold in ordered groupoids (the first trivially so):

(OC5)(i) If xeG and egd(x) there exists an element x' in G such that x '^x and
d(x') = e.

(0/) Go is an order ideal of G.

In an ordered groupoid G a pair of elements x and y, for which the greatest lower
bound e of d(x) and r(y) exists, are said to have a pseudoproduct x® y=(x|e).(e| y). A
subgroupoid G of an ordered groupoid H is called an ordered subgroupoid if for each
xeG and eeG0 such that e^d(x) the restriction (x|e)eG; it is clear that with respect to
the induced order G is an ordered groupoid in its own right.

An ordered functor between ordered groupoids is simply a functor which also
preserves the partial orders. An ordering embedding i:G->H is an injective ordered
functor i such that whenever i(x)^i(y) then x^y. An ordered functor 6:G->H is said
to be star injective (resp. star surjective) if for each identity e in G the restriction
functions (0 \ Le) from Le to Lf, where / = 6(e), are injective (resp. surjective). An ordered
covering functor is an ordered functor which is both star injective and star surjective.
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An ordered groupcid G is said to be inductive if the set Go with the induced order is a
meet semilattice. An inductive functor between inductive groupoids is an ordered functor
which preserves meets when restricted to the semilattice of identities. In an inductive
groupoid G the pseudoproduct is everywhere defined and (G, ®) is an inverse
semigroup. Conversely, every inverse semigroup S gives rise to an inductive groupoid
(S,. ,^) where "." is the trace product and ^ the natural partial order. These
correspondences form part of an isomorphism of categories called the Ehresmann-
Schein Theorem (Theorem 3.5 of [3]) which asserts that the category of inverse
semigroups and prehomomorphisms (resp. homomorphisms) is isomorphic to the
category of inductive groupoids and ordered functors (resp. inductive functors). Under
this correspondence, idempotent pure prehomomorphisms correspond to star injective
ordered functors.

Lemma 3.1. Let G be an ordered groupoid. If x^y and u^v and the pseudoproducts
x ® u and y<S>v are defined then x ® u ̂  y ® v.

Proof. Put e = d(x) A r(u) and f = d(y) A r(v). Then by definition

x®u = (x\e).(e\u) and y® v = (y\f).(f\v).

From x ^ w e have that d(x)^d(y). Similarly, from u^v it follows that r(u)^r(v). Thus
eg,f- But then by Lemma 1.10 [7]

Thus the result holds by (0C3). •

We now extend the definition of covering pair given in Section 2 to the ordered
groupoid case.

Definition. Let G be an ordered groupoid and U a subset of G satisfying the
following conditions:

(GCP1) U is an inductive groupoid with respect to the pseudoproduct in G.

(GCP2) [ t / ] T = t7 .

(GCP3) [C/] = G.

Then we say that (G, U) is a covering pair.

Next we generalise a result of Joubert [2]; in the semigroup case it simply says that
covering pairs give rise to a class of representations.

Theorem 3.2. Let G be an ordered groupoid and (G, U) a covering pair. Define a
function (p:G-*K(U) by <f>(g) = {ueU:g^u}. Then <f> is a well-defined, ordered covering
functor such that U = \J{<f>(g):geG}.
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Proof. In this proof, we shall represent the pseudoproduct in U by concatenation. It
is straightforward to show that </>(x) is a coset of U on the basis of Lemma 3.1. 0 is a
functor: indeed, it is clear by Theorem 1.8 that if e is an identity in G then <p(e) is an
identity in K(U). It therefore remains for us to prove that if the product xy is defined in
G then 0(x).$(y) is defined in K(U) and <t>(xy) = 4>(x).<j)(y). We prove first that
d(0(x)) = <£(d(x)). Clearly d(0(x)) = [0(x~l)<£(x)]T. Let uecf>(d(x)) and ve<f>{x) be arbi-
trary elements. Since the pseudoproduct is everywhere defined in U, we have that
(v~1v)(u~1u)u^u. Now, x^v and x - 1 x g u , so that x"1^!;"1 and x^v(u~lu)u. Hence
X"1X^U"1(U«"1MM)^M. Thus M6[(^)(x)"10(x)]T, and so #(d(x)) £ d(</>(x)). The reverse
inclusion is immediate. We may similarly show that r($(x)) = (/>(r(x)). We may now
complete the proof that <p is a functor. Suppose that the product xy is defined in G.
Then d(x) = r(y), so that 0(d(x)) = 0(r(y)). But by the result above 0(d(x)) = d(0(x)) and
<j>(r(y)) = r(<p(y)), so that the product <j>(x).4>(y) is defined in K(U). Finally, we show that

) = ()>(x).(l)(y). By Proposition 1.10, <j>(x).(t>(y) = j(uvi(<l)(y))) where ue0(x) and
). Now, «e</)(x) and vs<p{y) imply that uve<f>(xy) by Lemma 3.1. Thus

4>(xy) = j(uv<i>{A{xy))) =j(uv<t>(d(y))),

and so (f)(x)<t>(y) = 4>(xy).
It is easy to check that (j> preserves the order and that <f> is star injective. We shall

prove that <j> is star surjective. Let e be an identity in G, so that (p(e) = A, a closed
inverse subsemigroup of U. Let B be a coset in K(U) such that d(B) = A, and let beB.
Then b~lbeA. In particular, e^b~1b. Let g = (b\e). Then d(g) = e,

and fc e tf>(g). Thus 4>(g) = j(bA) = B. •

Remark. We call the functor </> defined above the majorising functor associated with
the covering pair (G, U). If (S, U) is a covering pair of inverse semigroups then the
function <j> is called the majorising prehomomorphism associated with (S, U).

We now lead up to the proof of Theorem 3.6 by proving a number of auxiliary
results.

Theorem 3.3. Let G be an ordered groupoid and let U be an inductive groupoid. Let
0:G->K(U) be an ordered covering functor such that U = \J{8(g):geG}. Put H = GRU
as a groupoid. Define a relation ̂  on H by:

x,yeU and x^y

x,ysG andx^y

xeG, yeU andyed(x).
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Then

(i) (H, U) is a covering pair.
(ii) Define a map 9':H-+K(U) by

ifheG
ifheU.

Then 9' is the majorising functor associated with the pair (H, U).

Proof, (i) By Proposition 2.2 (iii) of [3] it is only necessary to check that the axioms
(G),(0C5)(i) and (01) hold. It is clear that H is a groupoid and easy to check that ^ is
a partial order. Since 0 is a functor, (G) holds. That (01) holds follows by Proposition
1.5 and Theorem 1.8 and the fact that 6 is a covering functor. (OC3) is easy to check.
To check that (OC5)(i) holds, we consider the one non-trivial case. Let yeU and e be
an identity in G such that e^d(y). By definition of the order in H, d(y)e9(e). Thus
0(e)^[d(y)]T. It follows that the restriction ([y]T10(e)) is well-defined in K(U). But 9 is
an ordered covering functor, so that there exists a (unique) element / in G such that
d(y') = e and 9(y')=([yV\9(e)). Thus 0( / )g[y] T , and so ye9(y'). By definition y'^y.
Hence (OC5)(i) holds. To prove that (H, U) is a covering pair, we check the axioms
(GCP1), (GCP2) and (GCP3). (GCPl) holds: indeed let ieG0, e,feU0 and i^e,f. Then
e, f e0(i). But 9(i) is an inverse subsemigroup of U and so e<E>/e0(i). Thus i^e® f in
H. Hence the meet of any two identities in U belongs to U, and so the pseudoproduct
in U is the same as the pseudoproduct in H. It is immediate from the definition of the
order in H that [ t / ] T = l / , thus (GCP2) holds. (GCP3) holds: indeed, let g be an
arbitrary element of G and u e 9(g). Then g :g u in H.

(ii) The majorising functor <j> associated with the pair (H, U) is defined by (p(h) =
{ueU:hSu}. IfheU then <j>(h) = [/J] T, and if h e G then

4>(h) = {UBU: 9(h) ^ [w]T} = 9(h).

Thus 4> = 9'. •

Suppose that U is an inverse subsemigroup of the inverse semigroup S and that (CP2)
holds. We show now that we can cut S down to a subsemigroup T such that (T, U) is a
covering pair.

Lemma 3.4. Let S be an inverse semigroup and U an inverse subsemigroup of S such
that [ t / ]=S . Let

T' = {seS\U:u^s some ueU}.

Put T — S\T'. Then T is an inverse semigroup containing U. Furthermore, (T,U) is a
covering pair.
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Proof. Clearly U £ T. Suppose that s,teT. We shall prove that steT. Suppose to the
contrary that steT. Then there exists ueU such that u^st. Let st = s'.t', where s'^s
and t'^t and s'.t' is a trace product. By Proposition 2.2 of [3], there exist elements
u',u"eS such that u = u'.u" and u '^s ' and u"^t'. Since [l/] = S, there exists v'eU such
that rgi/. Thus u"gt 'gt^u ' . We claim that u"el/. Indeed, it is clear that u'lu =
(u")"1"" and v'u~iu^v' and so u" = v'u~lueU. Thus teT' , which contradicts teT.
Hence steT. If seT then it is immediate that s~ieT. Thus T is an inverse semigroup
containing U. It is now straightforward to check that (T, U) is a covering pair. •

The next result will enable us to convert from ordered groupoids to inverse semigroups.

Proposition 3.5. Let (G, U) be a covering pair, where G is an ordered groupoid, with
majorising functor (j>'. Then there exists an inductive groupoid T and an embedding
i:G-*T such that (T, U) is a covering pair. If the majorising functor associated with (T, U)
is <f> then </>! = </>'.

Proof. By the generalisation of the Vagner-Preston Representation Theorem [6],
there exists an ordered embedding r.G->I(G). Put S = [i(t/)] in I(G). Then S is an
inductive groupoid which contains i{G). We now apply Lemma 3.4 to the inductive
groupoid S and its inductive subgroupoid i{U). In this way, we obtain an inductive
groupoid T which is an inductive subgroupoid of S and which contains i{U). We claim
that I ( G ) E T ; for suppose geG is such that i(u)^i(g), where ueU. But by [6],
i(u)^i(g) implies that u^g. Thus geU, since (G,U) is a covering pair. Hence i(G)^ T
as required. We may easily relabel the elements of i(U) so that U = i(U). Finally, we
calculate 4>(i(g)), where geG. By definition, ue<p(i(g)) if, and only if, i(g)^u in T. Thus
g^u in G. Hence ^(i(g)) = 0'fe). •

We now come to the main result of this section.

Theorem 3.6. (i) Let (T, U) be a covering pair, where T and U are inverse semigroups,
and K:S-+T a covered embedding. If </> is the majorising prehomomorphism associated with
the pair (T, U) then 4>K:S -»K(U) is a representation.

(ii) Let S and U be inverse semigroups and let il/:S-*K(U) be a representation. Then
there exists a covering pair (T, U), where T is also inverse, and a covered embedding
K:S-*T such that 0 K = I^, where <j> is the majorising prehomomorphism associated with the
pair(T,U).

Proof, (i) Immediate by Theorem 3.2.

(ii) We begin by thinking of S and K(U) as inductive groupoids and i/' as an ordered
functor. Since \jj is star injective we may apply Theorem 2.3 of [7], the Maximum
Enlargement Theorem. Thus there exists an embedding (,:S-*G into an ordered
groupoid G and an ordered covering functor ip':G-*K(U) such that \j/'i = \ji and £(S) is
a full, reflective subgroupoid and order ideal of G. We now apply the construction of
Theorem 3.3 to the ordered functor ij/'. We obtain an ordered groupoid H such that
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(H, U) is a covering pair. G is contained in H and the restriction to G of the majorising
functor t//" associated with (H, U) is i//'. By Proposition 3.5 there is an embedding
i:H-»Tinto an inductive groupoid T, where (T, U) is a covering pair with majorising
prehomomorphism <j>. Define K=I£:S->T, which is an embedding. It follows from the
construction that <j)K = \j/. Finally, K is a covered embedding by: let ueU. Then uei//(s)
some seS, since \j/ is a representation. Thus ue(J)(K(S)), and so K(S)^U in T. •

We now summarise the results of this paper. Consider the following three classes of
morphisms:

(I) Special covers (8,(f)) of S through U, where 0:Q-*S and </>:Q->U are surjective
homomorphisms between inverse semigroups, <j> is idempotent pure, ker 9 n ker <f> = A
and (ker <f> o ̂ ) c ker 0 o ker <j>.

(II) Representations ij/ of S in K(U), where i/> is an idempotent pure prehomomorphism
and U = u{ij/(s):seS}.
(III) Covered embeddings of S in (T,U), where K:S->T is an embedding, U is a
subsemigroup of T, [ t / ] = T", [C/]T = t/ and for each ueU there exists seS such that

The correspondence between special covers and representations is the subject of
Theorem 2.3. The correspondence between representations and covered embeddings is
the subject of Theorem 3.6. A noteworthy special case is obtained, according to
Corollary 2.2, by taking <j> to be the homomorphism associated with T, the maximum
idempotent pure congruence on Q. This forces U to be E-disjunctive.

The classical case of £-unitary covers of inverse semigroups, discussed in the
Introduction to this paper, fits into the general theory we have developed. Let Q be an
£-unitary inverse semigroup and let G = Q/o. By Proposition III.7.2 of [12], we have
that <T = T. In particular, a is idempotent pure. The homomorphisms 6:Q-*S for which
(CT", 6) is a special cover of S are easy to characterise: (SC3) holds precisely when 8 is
idempotent separating, whereas (SC4) holds automatically, since G is a group.
McAlister's covering theorem tells us that every inverse semigroup S has a special cover
of the above form. Thus by Theorem 3.6, every inverse semigroup S can be embedded in
a factorisable inverse monoid T by a map r.S-*T, in such a way that each g in U(T)
lies above some element i(s) of i(S), as originally proved in [9].

Notes added in proof. (1) In the application of the generalisation of the Vagner-
Preston Representation Theorem used in the proof of Proposition 3.5, it is important to
note that the ordered embedding i:G-»/(G) preserves any pseudoproducts
in G.

(2) Boris M. Schein proves explicitly that K(U) is an inverse semigroup, when U is
inverse, in his 1966 paper "Semigroups of strong subsets" published in volume 4 of
Volzhskii Matem. Sbornik in pages 180-186.
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