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On the double Laplace transform of the truncated variation
of a Brownian motion with drift

Rafa l Marcin  Lochowski

Abstract

The aim of this paper is to find a formula for the double Laplace transform of the truncated
variation of a Brownian motion with drift. In order to find the double Laplace transform, we
also prove some identities for the Brownian motion with drift, which may be of independent
interest.

1. Introduction

Let X = (Xt)t∈[a;b] be a real-valued stochastic process with càdlàg trajectories. In general, the
total path variation of X, defined as

TV (X, [a; b]) = sup
n

sup
a6t0<t1<...<tn6b

n∑
i=1

|Xti −Xti−1
|,

may be (and in many most important cases is) almost surely infinite. However, in the
neighborhood of every càdlàg path we may easily find a function, the total variation of which
is finite.

Let f : [a; b] → R be a càdlàg function and let c > 0. The natural question arises, what is
the smallest possible value (or infimum) of the total variations of functions g : [a; b]→ R from
the ball {g : ‖f − g‖∞ 6 1

2c}, where ‖f − g‖∞ := sups∈[a;b] |f(s) − g(s)|. The bound from
below reads as

TV (g, [a; b]) > TV c(f, [a; b]),

where

TV c(f, [a; b]) := sup
n

sup
a6t0<t1<...<tn6b

n∑
i=1

max{|f(ti)− f(ti−1)| − c, 0} (1)

and follows immediately from the inequality

|g(ti)− g(ti−1)| > max{|f(ti)− f(ti−1)| − c, 0}

holding for any ti−1, ti ∈ [a; b] and any function g : [a; b]→ R from the ball {g : ‖f−g‖∞ 6 1
2c}.

In fact, in [3], it was proven that we have the equality

inf{TV (g, [a; b]) : ‖f − g‖∞ 6 1
2c} = TV c(f, [a; b]). (2)

Remark 1.1. Since we deal with càdlàg functions, a more natural setting of our problem
would be the investigation of

inf{TV (g, [a; b]) : g – càdlàg, dD(f, g) 6 1
2c},

Received 15 September 2015; revised 28 December 2015.

2010 Mathematics Subject Classification 60E10 (primary), 60G15 (secondary).

https://doi.org/10.1112/S1461157016000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000127


282 r. m.  lochowski

where dD denotes the Skorohod metric. Since the total variation does not depend on the
(continuous and strictly increasing) change of the variable t and the function f c minimizing
TV (g, [a; b]) appears to be a càdlàg one, solutions of both problems coincide.

The bound (1) is called truncated variation. Moreover, for any c 6 sups,u∈[a;b] |f(s)− f(u)|,
there exists a unique càdlàg function f c : [a; b] → R such that ‖f − f c‖∞ 6 1

2c and, for any
s ∈ (a; b],

TV (f c, [a; s]) = TV c(f, [a; s]).

The function f c is a càdlàg function with jumps possible only at the points where the function
f has jumps and it may be represented in the following form:

f c(s) = f c(a) + UTV c(f ; [a; s])−DTV c(f ; [a; s]),

where

UTV c(f, [a; b]) := sup
n

sup
a6t0<t1<...<tn6b

n∑
i=1

max{f(ti)− f(ti−1)− c, 0}, (3)

DTV c(f, [a; b]) := sup
n

sup
a6t0<t1<...<tn6b

n∑
i=1

max{f(ti−1)− f(ti)− c, 0} (4)

are called upward and downward truncated variations of the function f respectively (see the
next section and, for more general results concerning regulated functions, see [4, Theorem 4]).
We also have

TV c(f, [a; b]) = UTV c(f, [a; b]) +DTV c(f, [a; b]). (5)

Properties of the truncated variation and two other related quantities (upward and downward
truncated variations) of trajectories of stochastic processes are up to some degree known
(see [2, 5, 6]). In particular, in [7], an exact representation of the truncated variation of
a (shifted) standard Brownian motion B in terms of its local times was given and in [2]
there were calculated double Laplace transforms of UTV c(W, [0;S]) and DTV c(W, [0;S]) for
Wt = Bt + µt being a standard Brownian motion with drift µ and [0;S] being a random
interval, the length of which is exponentially distributed and independent from the underlying
Brownian motion B.

Remark 1.2. In [2], the functionals UTV c(·, [a; b]) and DTV c(·, [a; b]) were defined with
slightly different formulas, but it is easy to see that both definitions coincide.

This also gives the full characterization of the distributions of UTV c(W, [0;T ]) and
DTV c(W, [0;T ]) for deterministic time T . However, since the variables UTV c(W, [0;T ]) and
DTV c(W, [0;T ]) are dependent, these results do not provide us with the full characterization
of the distribution of TV c(W, [0;T ]) and the dependence structure between UTV c(W, [0;T ])
and DTV c(W, [0;T ]).

The aim of this paper is to find a formula for the Laplace transform of TV c(W, [0;S]). In
order to find this double Laplace transform, we will also prove some identities for the Brownian
motion with drift, which may be of independent interest.

The paper is organized as follows. In the next section we introduce some necessary definitions,
notation and results. In the last section we deal with the Laplace transform of the truncated
variation of a standard Brownian motion with drift, its moments and the covariance between
the upward and downward truncated variations of the Brownian motion with drift.
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2. Truncated variation, upward truncated variation and downward truncated variation of
a càdlàg function, their optimality and other properties

2.1. Definitions and notation

Let −∞ < a < b < +∞ and let f : [a; b] → R be a càdlàg function. For c > 0, applying the
convention inf ∅ =∞, we define two stopping times

T cDf = inf

{
s ∈ [a; b] : sup

t∈[a;s]
f(t)− f(s) > c

}
,

T cUf = inf

{
s ∈ [a; b] : f(s)− inf

t∈[a;s]
f(t) > c

}
.

Assume T cDf > T cUf , that is, the first time f is at the distance greater than or equal to c above
its running minimum, appears before the first time f is at the distance greater than or equal to
c below its running maximum, or both events do not occur (both times are infinite). Note that
in the case T cDf < T cUf , we may simply consider the function −f . Now we define sequences
(T cU,k)∞k=0, (T

c
D,k)∞k=−1, in the following way: T cD,−1 = a, T cU,0 = T cUf and, for k = 0, 1, 2, . . . ,

T cD,k =

inf

{
s ∈ [T cU,k; b] : sup

t∈[T c
U,k;s]

f(t)− f(s) > c

}
if T cU,k < b,

∞ if T cU,k > b,

T cU,k+1 =

inf

{
s ∈ [T cD,k; b] : f(s)− inf

t∈[T c
D,k;s]

f(t) > c

}
if T cD,k < b,

∞ if T cD,k > b.

Remark 2.1. Note that there exists such K <∞ that T cU,K =∞ or T cD,K =∞. Otherwise
we would obtain two infinite sequences (sk)∞k=1, (Sk)∞k=1 such that a 6 s1 < S1 < s2 <
S2 < . . . 6 b and f(Sk) − f(sk) > 1

2c. But this is a contradiction, since f is càdlàg and
(f(sk))∞k=1, (f(Sk))∞k=1 have a common limit.

Now let us define two sequences of non-decreasing functions mc
k : [T cD,k−1;T cU,k)∩ [a; b]→ R

and M c
k : [T cU,k;T cD,k) ∩ [a; b] → R for such k that T cD,k−1 < ∞ and T cU,k < ∞, respectively,

with the formulas
mc
k(s) = inf

t∈[T c
D,k−1;s]

f(t), M c
k(s) = sup

t∈[T c
U,k;s]

f(t).

Next we define two finite sequences of real numbers (mc
k) and (M c

k) for such k that T cD,k−1 <
∞ and T cU,k <∞, respectively, with the formulas

mc
k = mc

k(T cU,k−) = inf
t∈[T c

D,k−1;T
c
U,k)∩[a;b]

f(t),

M c
k = M c

k(T cD,k−) = sup
t∈[T c

U,k;T
c
D,k)∩[a;b]

f(t).

Finally, let us define the function f c : [a; b]→ R with the formulas

f c(s) =


mc

0 + c/2 if s ∈ [a;T cU,0);

M c
k(s)− c/2 if s ∈ [T cU,k;T cD,k), k = 0, 1, 2, . . . ;

mc
k+1(s) + c/2 if s ∈ [T cD,k;T cU,k+1), k = 0, 1, 2, . . . .

Remark 2.2. Note that due to Remark 2.1, b belongs to one of the intervals [T cU,k;T cD,k)
or [T cD,k;T cU,k+1) for some k = 0, 1, 2, . . . and the function f c is defined for every s ∈ [a; b].
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The subtraction (respectively addition) of the term c/2 from M c
k(s) (respectively to mc

k+1(s))
joins pieces of the graph of the function f c so that it becomes continuous (in the case when f
is continuous).

Remark 2.3. One may think about the function f c as the most ‘lazy’ function possible,
which changes its value only if it is necessary for the relation ‖f − f c‖∞ 6 c/2 to hold.

The function f c has finite total variation since it is non-decreasing on the intervals
[T cU,k;T cD,k)∩ [a; b], k = 0, 1, 2, . . . and non-increasing on the intervals [T cD,k;T cU,k+1)∩ [a; b], k =
0, 1, 2, . . . and, since f c has finite total variation, we know that there exist two non-decreasing
functions f cU and f cD : [a; b] → [0; +∞) such that f c(t) = f c(a) + f cU (t) − f cD(t) for s ∈ [a; b].
Setting f cU (s) = f cD(s) = 0 for s ∈ [a;T cU,0),

f cU (s) =



k−1∑
i=0

{M c
i −mc

i − c}+M c
k(s)−mc

k − c if s ∈ [T cU,k;T cD,k);

k∑
i=0

{M c
i −mc

i − c} if s ∈ [T cD,k;T cU,k+1)

and

f cD(s) =



k−1∑
i=0

{M c
i −mc

i+1 − c} if s ∈ [T cU,k;T cD,k);

k−1∑
i=0

{M c
i −mc

i+1 − c}+M c
k −mc

k+1(s)− c if s ∈ [T cD,k;T cU,k+1),

we have

f c(s) = f c(a) + f cU (s)− f cD(s) for s ∈ [a; b].

2.2. Important result

In the case T cDf < T cUf , we may apply the definitions from the previous subsection to the
function −f and simply define f c = −(−f)c, f cU = −(−f)cU and f cD = −(−f)cD. In this way
the mappings f 7→ f c, f 7→ f cU and f 7→ f cD are defined for any càdlàg function f : [a; b]→ R.

We have the following result (cf. [3, Corollary 3.8 and Theorem 4.1]).

Theorem 2.1. The function f c is optimal, that is, if g : [a; b]→ R is such that ‖f − g‖∞ 6
c/2 and has finite total variation, then, for every s ∈ [a; b],

TV (g, [a; s]) > TV (f c, [a; s]).

It is unique in such a sense that if for every s ∈ [a; b] the opposite inequality holds:

TV (g, [a; s]) 6 TV (f c, [a; s])

and c 6 sups,u∈[a;b] |f(s) − f(u)|, then g = f c. Moreover, for any s ∈ (a; b], the following
equalities hold:

UTV c(f, [a; s]) = f cU (s), (6)

DTV c(f, [a; s]) = f cD(s), (7)

TV c(f, [a; s]) = f cU (s) + f cD(s). (8)
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3. The Laplace transform of truncated variation process of Brownian motion with drift
stopped at exponential time

Let Bt, t > 0, be a standard Brownian motion, c > 0, µ ∈ R and Wt = Bt + µt be a
standard Brownian motion with the drift µ. For typographical reasons, instead of Wt we will
sometimes write W (t). In this section we will calculate the double Laplace transform of the
truncated variation process of W , that is, the Laplace transform of the process TV c(W, s) :=
TV c(W, [0; s]), s > 0, stopped at (independent from W ) exponentially distributed time S.

3.1. The Laplace transform

We begin with some auxiliary observations. First let us notice that by Theorem 2.1, on the
set {T cDW > T cUW}, applying the definition of sequences (T cU,k)∞k=0 and (T cD,k)∞k=−1 (cf. § 2.1)
to the function f = W , for s > 0 we obtain

TV c(W, s) =



0 if s ∈ [0;T cU,0);

k−1∑
i=0

{M c
i −mc

i − c}+

k−1∑
i=0

{M c
i −mc

i+1 − c}

+M c
k(s)−mc

k − c if s ∈ [T cU,k;T cD,k);

k∑
i=0

{M c
i −mc

i − c}+

k−1∑
i=0

{M c
i −mc

i+1 − c}

+M c
k −mc

k+1(s)− c if s ∈ [T cD,k;T cU,k+1)

(although T cU,k, T
c
D,k were defined for a function with a domain being the compact interval

[a; b], the extension of their definition to a function defined on a half-line is straightforward).
By the continuity of Brownian paths, on the set {T cDW > T cUW}, we have

W (T cU,k) = mc
k + c,W (T cD,k) = M c

k − c

and hence

TV c(W, s) =



0 if s ∈ [0;T cU,0);

k−1∑
i=0

{M c
i −W (T cU,i)}+

k−1∑
i=0

{W (T cD,i)−mc
i+1}

+M c
k(s)−W (T cU,k) if s ∈ [T cU,k;T cD,k);

k∑
i=0

{M c
i −W (T cU,i)}+

k−1∑
i=0

{W (T cD,i)−mc
i+1}

+W (T cD,k)−mc
k+1(s) if s ∈ [T cD,k;T cU,k+1).

Now let us define two sequences of stopping times (T̃ cU,k)∞k=0, (T̃
c
D,k)∞k=0 in the following way:

T̃ cU,0 = T cUW and, for k = 0, 1, 2, . . . ,

T̃ cD,k = inf

{
s > T̃ cU,k : sup

t∈[T̃ c
U,k;s]

Wt −Ws > c

}
,

T̃ cU,k+1 = inf

{
s > T̃ cD,k : Ws − inf

t∈[T̃ c
D,k;s]

Wt > c

}
.

Notice that on the set {T cDW > T cUW}, the sequences (T cU,k)∞k=0, (T cD,k)∞k=0 and (T̃ cU,k)∞k=0,

(T̃ cD,k)∞k=0 coincide.
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Now, for any 0 6 a 6 b < +∞, we define two auxiliary functions

U [a; b] = sup
a6t6b

Wt −Wa,

D[a; b] = Wa − inf
a6t6b

Wt

and, for s > 0, we define two quantities

U c(W, s) =

∞∑
i=0

U [T̃ cU,i ∧ s; T̃ cD,i ∧ s] +

∞∑
i=0

D[T̃ cD,i ∧ s; T̃ cU,i+1 ∧ s],

Dc(W, s) =

∞∑
i=0

D[T̃ cD,i ∧ s; T̃ cU,i+1 ∧ s] +

∞∑
i=0

U [T̃ cU,i+1 ∧ s; T̃ cD,i+2 ∧ s].

Notice that on the set {T cDW > T cUW}, we have

TV c(W, s) = U c(W, s).

Similarly, if T cDW < T cU (W ), then we change in the definitions of the sequences (T̃ cU,k)∞k=0 and

(T̃ cD,k)∞k=0 W for −W and obtain

TV c(W, s) = U c(−W, s).

What will be important to us is the fact that the conditional distribution of U c(W, s) given
T cDW > T cU (W ), L(U c(W, s)|T cDW > T cU (W )), is the same as the distribution of U c(W, s).
This follows from the strong Markov property and the independence of the increments of a
Brownian motion.

Now let S be an exponential random variable, independent from W , with density νe−νx. By
MTV c(W,S)(λ), we denote the moment generating function of TV c(W,S), that is,

MTV c(W,S)(λ) := E[exp(λ · TV c(W,S))].

We have the following equation:

MTV c(W,S)(λ) = E[exp(λ · U c(W,S))|S > T cU,0, T
c
DW > T cUW ]× P (S > T cU,0, T

c
DW > T cUW )

+E[exp(λ · U c(−W,S))|S > T cU,0, T
c
DW < T cUW ]

×P (S > T cU,0, T
c
DW < T cUW )

+P(min{T cUW,T cDW} > S). (9)

By the lack of memory of the exponential distribution, the strong Markov property and the
independence of the increments of a Brownian motion, we have

E[exp(λ · U c(W,S))|S > T̃ cU,0, T
c
DW > T cUW ]

= E exp(λ · U c(W,S + T̃ cU,0))

= E[exp(λ · U c(W,S + T̃ cU,0));S < T̃ cD,0 − T̃ cU,0]

+E[exp(λ · U c(W,S + T̃ cU,0));S > T̃ cD,0 − T̃ cU,0]

= E[exp(λ · U [T̃ cU,0;S + T̃ cU,0]);S < T̃ cD,0 − T̃ cU,0]

+E[exp{λ · U [T̃ cU,0; T̃ cD,0] + λ ·Dc(W,S + T̃ cU,0)};S > T̃ cD,0 − T̃ cU,0]

= E[exp(λ · U [T̃ cU,0;S + T̃ cU,0]);S < T̃ cD,0 − T̃ cU,0]

+E[exp(λ · U [T cU,0;T cD,0]);S > T̃ cD,0 − T̃ cU,0]E exp(λ ·Dc(W,S + T̃ cD,0)). (10)
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Notice that in all the calculations above, except the first line, the starting value of T̃ cU,0 > 0 is

irrelevant: we need only to know the recursive definitions of T̃ cD,0, T̃
c
U,1, . . . ; thus, we may set

T̃ cU,0 = 0 and we have

E[exp(λ · U c(W,S + T̃ cU,0));S < T̃ cD,0 − T̃ cU,0] = E
[
exp

(
λ · sup

06t6S
Wt

)
;S < T cDW

]
(11)

and

E[exp(λ · U [T cU,0;T cD,0]);S > T cD,0 − T cU,0] = E
[
exp

(
λ · sup

06t6T c
DW

Wt

)
;S > T cDW

]
. (12)

Similarly,

E exp(λ ·Dc(W,S + T̃ cD,0))

= E[exp(λ ·Dc(W,S + T̃ cD,0));S < T̃ cU,1 − T̃ cD,0]

+E exp(λ ·D[T̃ cD,0; T̃ cU,1];S > T̃ cU,1 − T̃ cD,0)E[exp(λ · U c(W,S + T̃ cU,1))], (13)

from which we get

E[exp(λ ·Dc(W,S + T̃ cD,0));S < T̃ cU,1 − T̃ cD,0] = E
[
exp

(
−λ · inf

06t6S
Wt

)
;S < T cUW

]
(14)

and

E
[
exp(λ ·D[T cD,0;T cU,1]);S > T̃ cU,1 − T̃ cD,0

]
= E

[
exp

(
−λ · inf

06t6T c
UW

Wt

)
;S > T cUW

]
. (15)

Now, substituting in (10) the expression (13) for E exp(λ · Dc(W,S + T cD,0)), and using
(11)–(12) and (14)–(15), we get

E[exp(λ · U c(W,S))|S > T cU,0, T
c
DW > T cUW ]

=
E[exp(λ · sup06t6SWt);S < T cDW ]

1− E[exp(λ · sup06t6T c
DW

Wt);S > T cDW ]E[exp(−λ · inf06t6T c
UW

Wt);S > T cUW ]

+
E[exp(λ · sup06t6T c

DW
Wt);S > T cDW ]E[exp(−λ · inf06t6SWt);S < T cUW ]

1− E[exp(λ · sup06t6T c
DW

Wt);S > T cDW ]E[exp(−λ · inf06t6T c
UW

Wt);S > T cUW ]
.

(16)

Using results of [8], we will be able to calculate all quantities appearing in (16).
To calculate E[exp(λ · sup06t6SWt);S < T cDW ], we will use formulas appearing in

[8, p. 236]. Denote τ(x) = inf{t > 0 : sup06s6tWs = x}. We have the equality (note that in
the notation of [8], S is denoted by ξ with parameter β = ν, T cDW is denoted by T and c is
denoted by a)

P
(

sup
06t6S

Wt > x, S < T cDW

)
= P(τ(x) < S < T cDW ) = P(τ(x) < S 6 T cDW )

= P(τ(x) 6 T cDW, τ(x) < S)− P(τ(x) 6 T cDW < S)

= exp(−θµ(ν)x)[1− E exp(−νT cDW )]

= exp(−θµ(ν)x)[1− e−µcVµ(ν)/θµ(ν)],

where we define
θµ(ν) =

√
µ2 + 2ν coth(c

√
µ2 + 2ν)− µ
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and

Vµ(ν) =

√
µ2 + 2ν

sinh(c
√
µ2 + 2ν)

.

Thus, for λ such that <(λ) < θµ(ν),

E
[
exp

(
λ · sup

06t6S
Wt

)
;S < T cDW

]
=
θµ(ν)− e−µcVµ(ν)

θµ(ν)− λ
.

Further, by the definition of T cDW , we have sup06t6T c
DW

Wt = WT c
DW

+ c. By this and by the
independence of S from T cDW , we calculate

E
[
exp

(
λ · sup

06t6T c
DW

Wt

)
;S > T cDW

]
= E

[
exp

(
λ · sup

06t6T c
DW

Wt

)
exp(−νT cDW )

]
= E[exp(λ · (WT c

DW
+ c)− νT cDW )]

= eλcE[exp(λ ·WT c
DW
− νT cDW )].

Now, utilizing the main result of [8], that is, equation (1.1), we have

eλcE[exp(λ ·WT c
DW
− νT cDW )] =

e−µcVµ(ν)

θµ(ν)− λ
.

Similarly, using symmetry, for λ such that <(λ) < θ−µ(ν),

E
[
exp

(
−λ · inf

06t6S
Wt

)
;S < T cUW

]
=
θ−µ(ν)− eµcVµ(ν)

θ−µ(ν)− λ

and

E
[
exp

(
−λ · inf

06t6T c
UW

Wt

)
;S > T cUW

]
=

eµcVµ(ν)

θ−µ(ν)− λ
.

Substituting the above formulas into (16) and simplifying, for λ such that <(λ) <
min{θµ(ν), θ−µ(ν)}, we obtain

E[exp(λ · Uc(W,S))|S > T cU,0, T
c
DW > T cUW ]

=
(θµ(ν)− e−µcVµ(ν))/(θµ(ν)−λ) + (e−µcVµ(ν)/(θµ(ν)−λ))((θ−µ(ν)− eµcVµ(ν))/(θ−µ(ν)−λ))

1− ((θµ(ν)− e−µcVµ(ν))/(θµ(ν)− λ))((θ−µ(ν)− eµcVµ(ν))/(θ−µ(ν)− λ))

= 1 + λ
θ−µ(ν) + e−µcVµ(ν)− λ
λ2 + 2ν + 2λµ− 2λθ−µ(ν)

. (17)

To obtain the formula for E[exp(λ ·U c(−W,S))|S > T cU,0, T
c
DW < T cUW ], we need only change

µ into −µ in the formula for E[exp(λ · U c(W,S))|S > T cU,0, T
c
DW > T cUW ].

To calculate the probabilities appearing in the expression (9) for MTV c(W,S)(λ), that is,

P(S > T cU,0, T
c
DW > T cUW ) = P(S > T cUW,T

c
DW > T cUW )

and

P(S > T cU,0, T
c
DW < T cUW ) = P(S > T cDW,T

c
DW < T cUW ),

we will use results of [2]. Since S is independent from (T cDW,T
c
UW ), we have

P(S > T cUW,T
c
DW > T cUW ) = Ee−νT

c
UW I{T c

DW>T c
UW},

P(S > T cDW,T
c
DW < T cUW ) = Ee−νT

c
DW I{T c

UW>T c
DW}.
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Using the formula just below formula (19) in [2], with y = 0, we get

Ee−νT
c
DW I{T c

UW>T c
DW} = (1− L−W0 (ν; c))Ee−νT

c
DW ,

where (cf. [2, last but one formula on p. 389]) we have

L−W0 (ν; c) =

√
µ2 + 2ν

2ν

{
eµcθµ(ν)

sinh(c
√
µ2 + 2ν)

−
√
µ2 + 2ν

sinh(c
√
µ2 + 2ν)2

}

=
Vµ(ν)

2ν
(eµcθµ(ν)− Vµ(ν)).

Thus,

P(S > T cDW,T
c
DW < T cUW ) =

(
1− Vµ(ν)

2ν
(eµcθµ(ν)− Vµ(ν))

)
e−µcVµ(ν)

θµ(ν)

and similarly

P(S > T cUW,T
c
DW > T cUW ) =

(
1− Vµ(ν)

2ν
(e−µcθ−µ(ν)− Vµ(ν))

)
eµcVµ(ν)

θ−µ(ν)
.

Now, by (9), (17) and calculations above, we have

MTV c(W,S)(λ)

=

(
1 + λ

θ−µ(ν) + e−µcVµ(ν)− λ
λ2 + 2ν + 2λµ− 2λθ−µ(ν)

)
P (S > T cUW,T

c
DW > T cUW )

+

(
1 + λ

θµ(ν) + eµcVµ(ν)− λ
λ2 + 2ν − 2λµ− 2λθµ(ν)

)
P (S > T cDW,T

c
DW < T cUW )

+ 1− P(S > T cUW,T
c
DW > T cUW )− P (S > T cDW,T

c
DW < T cUW )

= 1 + λ
θ−µ(ν) + e−µcVµ(ν)− λ
λ2 + 2ν + 2λµ− 2λθ−µ(ν)

(
eµc − Vµ(ν)

2ν
θ−µ(ν) + eµc

Vµ(ν)2

2ν

)
Vµ(ν)

θ−µ(ν)

+λ
θµ(ν) + eµcVµ(ν)− λ

λ2 + 2ν − 2λµ− 2λθµ(ν)

(
e−µc − Vµ(ν)

2ν
θµ(ν) + e−µc

Vµ(ν)2

2ν

)
Vµ(ν)

θµ(ν)
.

Thus, we have obtained the following result.

Theorem 3.1. Let W be a standard Wiener process with drift µ and S be an exponential
random variable with density νe−νxI{x>0}, independent from W . For any complex λ such that
<(λ) < min{θµ(ν), θ−µ(ν)}, one has

E[exp(λ · TV c(W,S))]

= 1 + λ
θ−µ(ν) + e−µcVµ(ν)− λ
λ2 + 2ν + 2λµ− 2λθ−µ(ν)

(
eµc − Vµ(ν)

2ν
θ−µ(ν) + eµc

Vµ(ν)2

2ν

)
Vµ(ν)

θ−µ(ν)

+λ
θµ(ν) + eµcVµ(ν)− λ

λ2 + 2ν − 2λµ− 2λθµ(ν)

(
e−µc − Vµ(ν)

2ν
θµ(ν) + e−µc

Vµ(ν)2

2ν

)
Vµ(ν)

θµ(ν)
. (18)

3.2. Examples of applications of formula (18)

3.2.1. The first two moments of the truncated variation process of the Brownian motion
with drift stopped at exponential time. Differentiating formula (18), we obtain

ETV c(W,S) =

[
∂

∂λ
MTV c(W,S)(λ)

]
λ=0

=
Vµ(ν)

ν
cosh(cµ), (19)
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which agrees with the relation

TV µ(W,S) = UTV c(W,S) +DTV c(W,S) (20)

and formulas already obtained in [2]

EUTV c(W,S) =
eµcVµ(ν)

2ν
, EDTV c(W,S) =

e−µcVµ(ν)

2ν
. (21)

Similarly, we calculate

ETV c(W,S)2 =

[
∂2

∂λ2
MTV c(W,S)(λ)

]
λ=0

=
Vµ(ν)

ν2
(Vµ(ν) + cosh(µc)θµ(ν) + eµcµ). (22)

Remark 3.1. Inverting formulas (19) and (22), similarly as was done with formula (21)
in [2, § 4.1], we may calculate the first and the second moments of TV c(W,T ), where T > 0 is
deterministic. To invert (22), one may use formulas from [1, p. 642].

3.2.2. Covariance of the upward and downward truncated variation processes of the
Brownian motion with drift stopped at exponential time. Using (20), (22) and (21) as well as
results of [2, § 4.3], we are able to calculate the covariance of UTV c(W,S) and DTV c(W,S).
Indeed, we have

E(UTV c(W,S) ·DTV c(W,S)) =
1

2
(ETV c(W,S)2 − EUTV c(W,S)2 − EDTV c(W,S)2)

=
Vµ(ν)2

2ν2
, (23)

where we have used (22), the following formula (cf. [2, § 4.3]):

EUTV c(W,S)2 =

∫∞
0

EUTV c(W, t)2P (S ∈ dt)

= ν

∫∞
0

e−νtEUTV c(W, t)2 dt

=
eµcVµ(ν)(µ2 + 2ν − ν(1− cosh(2c

√
µ2 + 2ν)))

2ν2θµ(ν) sinh2(c
√
µ2 + 2ν)

=
eµcVµ(ν)θ−µ(ν)

2ν2
(24)

and the symmetric formula

EDTV c(W,S)2 =
e−µcVµ(ν)θµ(ν)

2ν2
.

Now we have

Cov(UTV c(W,S), DTV c(W,S))

= E(UTV c(W,S) ·DTV c(W,S))− EUTV c(W,S) · EDTV c(W,S)

=
Vµ(ν)2

2ν2
− eµcVµ(ν)

2ν

e−µcVµ(ν)

2ν
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=
Vµ(ν)2

4ν2

=
µ2 + 2ν

4ν2(sinh(c
√
µ2 + 2ν))2

> 0.

Thus, we can observe that the correlation between UTV c(W,S) and DTV c(W,S) is positive.
This is due to the fact that the magnitudes of UTV c(W,S) and DTV c(W,S) are highly
dependent on the value of S.

3.2.3. Covariance of UTV and DTV of the Brownian motion with drift. Performing similar
calculations to those in [2, § 4.1], we may simply obtain formulas for the covariance between
UTV c(W,T ) and DTV c(W,T ), where T is deterministic. Indeed, denoting by L−1ν (g) the
inverse of the Laplace transform of the function g(ν) =

∫∞
0
e−νtf(t) dt, that is, the function

f(t), we get

L−1ν (ν−3) = t2/2,

L−1ν
(

2ν + µ2

sinh2(c
√

2ν + µ2)

)
= L−1ν

(
2(ν + µ2/2)

sinh2(c
√

2(ν + µ2/2))

)

= e−µ
2t/2L−1ν

(
2ν

sinh2(c
√

2ν)

)
and, by the second formula in [1, p. 642],

L−1ν
(

2ν

sinh2(c
√

2ν)

)
= 4

∞∑
k=0

Γ(2 + k)e−(2c+2kc)2/(4t)

√
2πt2Γ(2)k!

D3

(
2c+ 2kc√

t

)

=
8c√
2π

∞∑
k=0

(k + 1)2
4(k + 1)2c2 − 3t

t7/2
e−2(k+1)2c2/t,

where D3 denotes the parabolic cylinder function of order 3.
Now, by (23) and the Borel convolution theorem, we obtain

E(UTV c(W,T ) ·DTV c(W,T ))

= L−1ν
(

2ν + µ2

2ν3 sinh2(c
√

2ν + µ2)

)

=
1

2

∫T
0

(T − t)2

2
L−1ν

(
2ν + µ2

sinh2(c
√

2ν + µ2)

)
dt

=
2c√
2π

∞∑
k=0

(k + 1)2
∫T
0

(T − t)2 4(k + 1)2c2 − 3t

t7/2
e−µ

2t/2−2(k+1)2c2/t dt. (25)

Finally, by (25) and [2, formula (28)] (notice that in [2, formula (28)] and in [2, formula (27)]
the term µ2t shall be changed into µ2t/2),

Cov(UTV c(W,T ), DTV c(W,T ))

=
2c√
2π

∞∑
k=0

(k + 1)2
∫T
0

(T − t)2 4(k + 1)2c2 − 3t

t7/2
e−µ

2t/2−2(k+1)2c2/t dt

− 1

2π

( ∞∑
k=0

∫T
0

(T − t) (2k + 1)2c2 − t
t5/2

e−µ
2t/2−(2k+1)2c2/(2t) dt

)2

. (26)
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Numerical experiments show that formula (26) gives negative numbers, but the strict proof
of this fact is not known to the author.

Remark 3.2. Inverting formula (24), using the second formula in [1, p. 642] and the just
calculated covariance, it is possible to obtain a formula for VarUTV c(W,T ) and hence for
Cor(UTV c(W,T ), DTV c(W,T )). However, numerical experiments show that the obtained
formulas are rather unstable for small values of c. On the other hand, results of [5] give
the exact value of Cor(UTV c(W,T ), DTV c(W,T )) as c→ 0+, namely,

lim
c→0+

Cor(UTV c(W,T ), DTV c(W,T )) = − 1
2 .
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