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Abstract
We consider the problem of parameter estimation for the superposition of square-root diffusions. We first derive
the explicit formulas for the moments and auto-covariances based on which we develop our moment estimators.
We then establish a central limit theorem for the estimators with the explicit formulas for the asymptotic covariance
matrix. Finally, we conduct numerical experiments to validate our method.

1. Introduction

Square-root diffusion has become a popular model in the econometric area since it was first proposed
by [12] for modeling the term structure of interest rates, thus it is also called Cox–Ingersoll–Ross (CIR)
model. Heston [17] further extends its usage in option pricing by using it in modeling the underling asset
price volatility, to improve the famous Black–Scholes option pricing formula. Among an important class
of processes, affine jump-diffusions (see [14]), square-root diffusion functions as a major component.
One-factor square-root diffusion is preferred for simple cases, however, superposition of several square-
root diffusions or multi-factor square-root diffusion plays a more important role in many applications
because of its better explanation for many scenarios in practice. Barndorff-Nielsen [5] constructs a class
of stochastic processes based on the superposition of Ornstein–Uhlenbeck type processes. In this paper
we consider the problem of parameter estimation for superposition of square-root diffusions.

Due to lack of closed-form transition density, maximum likelihood estimation (MLE) is not applica-
ble to the problem of our interest without approximation. Even for one-factor square-root diffusion, this
remains the case, though the transition law is known as a scaled noncentral chi-square distribution (see
[12]). What is worse is the log likelihood is not globally concave, as pointed out in [22] for the one-factor
model, which makes the efficiency of MLE depending on the goodness of starting values in numerical
optimization algorithms. Therefore, Overbeck and Rydén [22] propose conditional least-squares esti-
mators for the parameters of the one-factor model. Almost all the previous works on the parameter
estimation for the superposition of square-root diffusions are based on various types of approximations.
By using a closed-form approximation of the density, Ait-Sahalia and Kimmel [1] design an MLE for the
multi-factor model, in which they first make the factors (states) observable by inverting the zero-coupon
bond yields. This simplification makes it not applicable to general cases where the states are latent, such
as the superposition of square-root diffusions studied in this paper. Using Kalman filter is another way
of approximation. By approximating the transition density with a normal density, Geyer and Pichler [16]
first infer the unobservable states with an approximate Kalman filter, and then estimate the parameters
with quasi-maximum-likelihood estimation; see [9] for another Kalman filter approach. Christoffersen
et al. [10] consider nonlinear Kalman filtering of multi-factor affine term structure models. Based on
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continuous time observations, Barczy et al. [4] estimate the parameters by MLE and least squares of
a subcritical affine two-factor model in which one factor is a square-root diffusion. There are some
works that only consider the drift-parameter estimation for the one-factor model, such as [2], [13],
and parameter estimation for extended one-dimensional CIR model, such as [3], [20], [11], and [21].
A gradient-based simulated MLE estimate is proposed in [23, 24] for a related model. In summary,
these approximations used in the MLE methods are computationally time-consuming, and some of the
assumptions may be hard to satisfy in practical applications.

Method of moments (MM) offers an alternative to likelihood-based estimation, especially for cases
where the likelihood does not have a closed-form expression while the moments can be easily derived
analytically, see [26] and [8] for detailed description. The major issue of moment-based methods is
the so-called statistical inefficiency in the sense that the higher order moments are used, the greater
likelihood of estimation bias occurs. However, it is possible to overcome this problem by making use of
relative low order moments and employing better computational techniques, for example, see [27–30].

In this paper, we consider the superposition of square-root diffusions and develop explicit MM esti-
mators for the parameters in such a model. We first derive the closed-form formulas for the moments
and auto-covariances, and then use them to develop our MM estimators. In fact, we only need relatively
low order moments and auto-covariances. We also prove the central limit theorem for our MM esti-
mators and derive the explicit formulas for the asymptotic covariance matrix. Additionally, numerical
experiments are conducted to test the efficiency of our method. One clear advantage of our estimators
is their simplicity and ease of implementation.

The rest of the paper is organized as follows. In Section 2, we present the model for the superposi-
tion of square-root diffusions and calculate the moments and auto-covariances. In Section 3, we derive
our MM estimators and establish the central limit theorem. In Section 4, we provide some numerical
experiments. Section 5 concludes this paper. The appendix contains some of the detailed calculations
omitted in the main body of the paper.

2. Preliminaries

For ease of exposition, we focus on the superposition of two square-root diffusions which is usually
used in most applications. The basic of our method can be extended to cases with multiple square-
root diffusions, though as the number of square-root diffusions increases, calculations become more
tedious and complex. The two-factor square-root diffusion can be described by the following stochastic
differential equations:

x(t) = x1(t) + x2(t), (2.1)

dx1(t) = k1(\1 − x1(t))dt + fx1
√

x1(t)dw1(t), (2.2)

dx2(t) = k2(\2 − x2(t))dt + fx2
√

x2(t)dw2(t), (2.3)

where the two square-root diffusions (also called CIR processes) x1(t) and x2(t) are independent of
each other, w1(t) and w2 (t) are two Wiener processes with independent initial values x1(0) > 0 and
x2(0) > 0, respectively. The parameters ki > 0, \i > 0,fxi > 0 satisfy the condition f2

xi ≤ 2ki\i for
i = 1, 2, which assures xi (t) > 0 for t > 0 (see [12]). The component processes x1(t), x2(t) and the
driving processes w1 (t), w2(t) are all latent, except that x(t) is observable.

The square-root diffusions in Eqs. (2.2) and (2.3) can be re-written as:

xi (t) = e−ki (t−s)xi (s) + \i

[
1 − e−ki (t−s)

]
+ fxie−kit

∫ t

s
ekiu

√
xi (u)dwi (u), (2.4)
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for i = 1, 2. The process xi (t) decays at an exponential rate e−kit , thus the parameter ki is called the
decay parameter. It is easy to see that xi (t) has a long-run mean \i and its instantaneous volatility is
determined by its current value and fxi. In fact, the process xi (t) is a Markov process and has a steady-
state gamma distribution with mean \i and variance \if

2
xi/(2ki) (see [12]). Since we are interested in

estimating the parameters based on a larger number of samples of the process, without loss of generality,
throughout this paper it is assumed that xi (0) is distributed according to the steady-state distribution of
xi (t), implying that xi (t) is strictly stationary and ergodic (see [22]). Therefore, the process x(t) is also
strictly stationary and ergodic. Actually, all the results we shall derive in the rest of this paper remain
the same for any non-negative x1(0) and x2(0) as long as the observation time t is sufficiently long.
Since xi (t) is stationary, it has a gamma distribution with mean \i and variance \if

2
xi/(2ki) and its mth

moment is given by

E [xm
i (t)] =

m−1∏
j=0

(
\i +

jf2
xi

2ki

)
, m = 1, 2, . . . . (2.5)

Though modeled as a continuous time process, x(t) is actually observed at discrete time points.
Assume x(t) is observed at equidistant time points t = nh, n = 0, 1, . . . , N and let xn , x(nh). Similarly,
let xin , xi (nh). We denote the mth central moment of xn by cmm [xn], that is, cmm [xn] , E [(xn −
E [xn])m]. Then, we have

cmm [xn] =
m∑

j=0
Cj

mE [(x1n − \1)j]E [(x2n − \2)m−j], (2.6)

due to the independence between x1n and x2n, where Cj
m is the combinatorial number. For notation

simplicity, we introduce f1 , f2
x1/(2k1) and f2 , f2

x2/(2k2).
With Eqs. (2.4)–(2.6), we have the following moment and auto-covariance formulas

E [xn] = \1 + \2, (2.7)

var(xn) = \1f1 + \2f2, (2.8)

cm3 [xn] = 2\1f
2
1 + 2\2f

2
2 , (2.9)

cov(xn, xn+1) = e−k1h\1f1 + e−k2h\2f2, (2.10)

cov(xn, xn+2) = e−2k1h\1f1 + e−2k2h\2f2, (2.11)

cov(xn, xn+3) = e−3k1h\1f1 + e−3k2h\2f2. (2.12)

The intermediate steps of the derivation are omitted because they are straightforward. We will use these
six moments/auto-covariances to construct our estimators of the parameters in the next section.
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3. Parameter estimation

In this section, we derive our MM estimators for the six parameters in Eqs. (2.2) and (2.3) based
on the moments/auto-covariances obtained in the previous section. We prove both the moment/auto-
covariance estimators and the MM estimators satisfy the central limit theorem and also compute the
explicit formulas for their asymptotic covariance matrices.

Assume that we are given a sample path of x(t), X1, . . . , XN , that is, samples of the stochastic process
x(t) observed at t = h, . . . , Nh, which will be used to calculate the sample moments and auto-covariances
of xn as the estimates for their population counterparts:

E [xn] ≈ X ,
1
N

N∑
n=1

Xn,

var(xn) ≈ S2 ,
1
N

N∑
n=1

(Xn − X)2,

cm3 [xn] ≈ ĉm3 [xn] ,
1
N

N∑
n=1

(Xn − X)3,

cov(xn, xn+1) ≈ ˆcov(xn, xn+1) ,
1

N − 1

N−1∑
n=1

(Xn − X) (Xn+1 − X),

cov(xn, xn+2) ≈ ˆcov(xn, xn+2) ,
1

N − 2

N−2∑
n=1

(Xn − X) (Xn+2 − X),

cov(xn, xn+3) ≈ ˆcov(xn, xn+3) ,
1

N − 3

N−3∑
n=1

(Xn − X) (Xn+3 − X).

Let

$ = (E [xn], var(xn), cm3 [xn], cov(xn, xn+1), cov(xn, xn+2), cov(xn, xn+3))T ,

$̂ = (X, S2, ĉm3 [xn], ˆcov(xn, xn+1), ˆcov(xn, xn+2), ˆcov(xn, xn+3))T ,

where T denotes the transpose of a vector or matrix. We also define

z1
n , (xn − E [xn])2, z2

n , (xn − E [xn])3,

z3
n , (xn − E [xn]) (xn+1 − E [xn]), z4

n , (xn − E [xn]) (xn+2 − E [xn]),
z5
n , (xn − E [xn]) (xn+3 − E [xn]), zn , (z1

n, z2
n, z3

n, z4
n, z5

n).

Let

f11 = lim
N→∞

1
N

1T
N [cov(xr , xc)]N×N1N ,

f1m = lim
N→∞

1
N

1T
N [cov(xr , zm−1

c )]N×Nm1Nm , 2 ≤ m ≤ 6,

flm = lim
N→∞

1
N

1T
Nl
[cov(zl−1

r , zm−1
c )]Nl×Nm1Nm , 2 ≤ l ≤ m ≤ 6,
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where (N2, N3, N4, N5, N6) = (N , N , N − 1, N − 2, N − 3) and 1p = (1, · · · , 1)T with p elements.
We further introduce the following notations:

eij ,
e−jkih

1 − e−jkih
, i = 1, 2, j = 1, 2, . . . ,

ep,q ,
e−(pk1+qk2 )h

1 − e−(pk1+qk2 )h
, p = 0, 1, · · · , q = 0, 1, . . . ,

and x̄1n , x1n − \1 and x̄2n , x2n − \2. We are now ready to prove the following central limit theorem
for our moment/auto-covariance estimators.

Theorem 3.1
lim

N→∞

√
N ($̂ − $) d

= N (0,Σ), (3.1)

where d
= denotes equal in distribution and N (0,Σ) is a multivariate normal distribution with mean 0

and asymptotic covariance matrix Σ = [flm]6×6, with entries

flm = clm,1 + clm,2, l, m = 1, . . . , 6,

where clm,1, clm,2 are some constants which are provided in the Appendix.

Proof. The square-root diffusion xi (t) (i = 1, 2) is a Markov process, so is the discrete-time process
xin. {(x1n, x2n, xn)} is also a Markov process. Under the condition f2

xi ≤ 2ki\i, the strictly stationary
square-root diffusion xi (t) is d-mixing; see Proposition 2.8 in [15]. Hence, xi (t) is ergodic and strong
mixing (also known as U-mixing) with an exponential rate; see [6]. The discrete-time process {xin}
is also ergodic and inherits the exponentially fast strong mixing properties of xi (t). It can be verified
that {(x1n, x2n, xn)} is also ergodic and strong mixing with an exponential rate. Applying the central
limit theorem for strictly stationary strong mixing sequences (see Theorem 1.7 in [18]), we can prove
Eq. (3.1) as Corollary 3.1 in [15].

Next, we present the calculations for the diagonal entries of the asymptotic covariance matrix, how-
ever omit those for the off-diagonal entries since they are very similar. First, we point out the following
formulas ∑

1≤r<c≤N
e−(c−r)kh =

e−kh

1 − e−kh (N − 1) − e−2kh−e−(N+1)kh

(1 − e−kh)2 ,

which will be used frequently to calculate infinite series in these entries. We now calculate the six
diagonal entries.

• f11: We have

f11 = lim
N→∞

1
N

(
Nvar(xn) + 2

∑
1≤r<c≤N

cov(xr , xc)
)

= var(xn) + 2 lim
N→∞

1
N

∑
1≤r<c≤N

(cov(x1r , x1c) + cov(x2r , x2c))

= var(x1n) + var(x2n) +
2e−k1h

1 − e−k1h var(x1n) +
2e−k2h

1 − e−k2h var(x2n)

= (1 + 2e11)
\1f

2
x1

2k1
+ (1 + 2e21)

\2f
2
x2

2k2
,
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where we have used the results of cov(x1r , x1c) = e−(c−r)k1hvar(x1r) (r < c), var(x1r) = var(x1n),
∀r = 1, · · · , N (similarly for x2r).

• f22: We have

f22 = lim
N→∞

1
N

(
Nvar(z1

n) + 2
∑

1≤r<c≤N
cov(z1

r , z1
c )

)
= var(x̄2

1n) + var(x̄2
2n) + 4var(x1n)var(x2n)

+ lim
N→∞

2
N

∑
1≤r<c≤N

(cov(x̄2
1r , x̄

2
1c) + cov(x̄2

2r , x̄
2
2c) + 4cov(x̄1r x̄2r , x̄1cx̄2c))

= c22,1 + c22,2,

where cov(x̄2
1r , x̄

2
1c) (r < c) can be calculated as

cov(x̄2
1r , x̄

2
1c)

= e−2(c−r)k1hvar(x̄2
1r) +

f2
x1

k1
[e−(c−r)k1h − e−2(c−r)k1h]cov(x̄2

1r , x̄1r),

in which we have used the decay formula (A.2) for x̄2
1c in the Appendix, similarly for cov(x̄2

2r , x̄
2
2c)

(r < c), and cov(x̄1r x̄2r , x̄1cx̄2c) (r < c) as

cov(x̄1r x̄2r , x̄1cx̄2c) = e−(c−r) (k1+k2 )hvar(x1r)var(x2r).

• f33: We have

f33 = lim
N→∞

1
N

(
Nvar(z2

n) + 2
∑

1≤r<c≤N
cov(z2

r , z2
c )

)
= c33,1 + c33,2,

where cov(z2
r , z2

c ) can be expanded as

cov(z2
r , z2

c ) = (cov(x̄3
1r , x̄

3
1c) + cov(x̄3

2r , x̄
3
2c)) + 3(cov(x̄3

1r , x̄1cx̄2
2c) + cov(x̄3

2r , x̄
2
1cx̄2c))

+ 9(cov(x̄2
1r x̄2r , x̄2

1cx̄2c) + cov(x̄1r x̄2
2r , x̄1cx̄2

2c))
+ 9(cov(x̄2

1r x̄2r , x̄1cx̄2
2c) + cov(x̄1r x̄2

2r , x̄
2
1cx̄2c))

+ 3(cov(x̄2
1r x̄2r , x̄3

2c) + cov(x̄1r x̄2
2r , x̄

3
1c)).

• f44 : We have

f44 = lim
N→∞

1
N

[
(N − 1)var(z3

n) + 2
∑

1≤r<c≤N−1
cov(z3

r , z3
c )

]
= c44,1 + c44,2,

where cov(z3
r , z3

c ) is expanded as

cov(z3
r , z3

c ) = (cov(x̄1r x̄1(r+1) , x̄1cx̄1(c+1) ) + cov(x̄2r x̄2(r+1) , x̄2cx̄2(c+1) ))
+ (cov(x̄1r x̄2(r+1) , x̄1cx̄2(c+1) ) + cov(x̄2r x̄1(r+1) , x̄2cx̄1(c+1) ))
+ (cov(x̄1r x̄2(r+1) , x̄2cx̄1(c+1) ) + cov(x̄2r x̄1(r+1) , x̄1cx̄2(c+1) )).
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• f55 : We have

f55 = lim
N→∞

1
N

[
(N − 2)var(z4

n) + 2
∑

1≤r<c≤N−2
cov(z4

r , z4
c )

]
= c55,1 + c55,2,

where cov(z4
r , z4

c ) can be calculated through

cov(z4
r , z4

c ) = (cov(x̄1r x̄1(r+2) , x̄1cx̄1(c+2) ) + cov(x̄2r x̄2(r+2) , x̄2cx̄2(c+2) ))
+ (cov(x̄1r x̄2(r+2) , x̄1cx̄2(c+2) ) + cov(x̄2r x̄1(r+2) , x̄2cx̄1(c+2) ))
+ (cov(x̄1r x̄2(r+2) , x̄2cx̄1(c+2) ) + cov(x̄2r x̄1(r+2) , x̄1cx̄2(c+2) )).

• f66 : We have

f66 = lim
N→∞

1
N

[
(N − 3)var(z5

n) + 2
∑

1≤r<c≤N−3
cov(z5

r , z5
c )

]
= c66,1 + c66,2,

where cov(z5
r , z5

c ) can be calculated through

cov(z5
r , z5

c ) = (cov(x̄1r x̄1(r+3) , x̄1cx̄1(c+3) ) + cov(x̄2r x̄2(r+3) , x̄2cx̄2(c+3) ))
+ (cov(x̄1r x̄2(r+3) , x̄1cx̄2(c+3) ) + cov(x̄2r x̄1(r+3) , x̄2cx̄1(c+3) ))
+ (cov(x̄1r x̄2(r+3) , x̄2cx̄1(c+3) ) + cov(x̄2r x̄1(r+3) , x̄1cx̄2(c+3) )).

The off-diagonal entries of Σ can be derived similarly. This completes our proof. �

With these moment and auto-covariance estimates, we are ready to construct our estimators for the
parameters. In theory, we can obtain our parameter estimates by solving the system of moment equa-
tions using any general nonlinear root-finding algorithms. However, based on our extensive numerical
experiments, we find that such an approach often leads to estimates with very large errors due to vari-
ous reasons. Fortunately, we can overcome this problem by exploring the special characteristics of the
equations of our interest and developing better numerical methods. In what follows, we first estimate the
decay parameters k1 and k2, and then estimate the parameters in the marginal distribution of the process,
that is, \1,fx1, \2 and fx2. Details of our analysis are presented in the following two subsections.

3.1. Estimation of the decay parameters

In order to estimate the decay rates e−k1h and e−k2h of the two component processes, we make use of
system of equations consisting of Eqs. (2.8) and (2.10)–(2.12). In principal, we can solve this system of
equations to obtain e−k1h, e−k2h, \1f1 and \2f2. However, it is difficult to find the true roots by using gen-
eral numerical algorithms, such as Newton–Raphson method. In what follows, we propose a numerical
procedure to solve the system of equations which can achieve very good precision.

For notational simplicity, we rewrite the above system of equations as following:

v1 + v2 = b,
d1v1 + d2v2 = b1,
d2

1v1 + d2
2v2 = b2,

d3
1v1 + d3

2v2 = b3,
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where v1 , \1f1, v2 , \2f2, b , var(xn), bj , cov(xn, xn+j), j = 1, 2, 3, d1 , e−k1h and d2 , e−k2h.
By using the first two equations, we have

v1 =
−d2b + b1

d1 − d2
, v2 =

d1b − b1

d1 − d2
.

Further,

d2
2 =

d1b2 − b3

d1b − b1
, d2 =

d2
1b1 − b3

d2
1b − b2

.

Thus,

d1b2 − b3

d1b − b1
=

(
d2

1b1 − b3

d2
1b − b2

)2

,

which leads to the following quintic equation with unknown variable d1

(bb2
1 − b2b2) · d5

1 + (b2b3 − b3
1) · d4

1 + 2(bb2
2 − bb1b3) · d3

1

+ 2(b2
1b3 − bb2b3) · d2

1 + (bb2
3 − b3

2) · d1 + (b2
2b3 − b1b2

3) = 0. (3.2)

The Jenkins–Traub algorithm for polynomial root-finding (see [19]) can be used to solve the quintic
equation, an implementation of which is a function named polyroot in R programming language (see
[25]). The roots returned by the algorithm are five complex numbers, among which we only need to
keep those real-number roots that are between 0 and 1. Because of the symmetry between d1 and d2
(due to the symmetry of k1 and k2) d2 must also be another root. Therefore, there should be at least two
real-number roots that satisfy d2 = (d2

1b1 − b3)/(d2
1b− b2). We will use this property to find the correct

roots for d1 and d2. In our extensive numerical experiments, we are able to find a pair of roots for d1
and d2 satisfying the required conditions.

We now are ready to derive the estimators for the decay parameters. Denote the sample version of
Eq. (3.2) by

(b̂b̂2
1 − b̂2b̂2) · x5 + (b̂2b̂3 − b̂3

1) · x4 + 2(b̂b̂2
2 − b̂b̂1b̂3) · x3

+ 2(b̂2
1b̂3 − b̂b̂2b̂3) · x2 + (b̂b̂2

3 − b̂3
2) · x + (b̂2

2b̂3 − b̂1b̂2
3) = 0, (3.3)

where b̂, b̂1, b̂2, b̂3 are S2, ˆcov(xn, xn+1), ˆcov(xn, xn+2), ˆcov(xn, xn+3), respectively. Let us denote the root
obtained based on Eq. (3.3) for the estimate of d1 by x∗, that is, d̂1 = x∗, then our estimators for d2, v1
(= \1f1), v2 (= \2f2) are given by

d̂2 =
d̂2

1 b̂1 − b̂3

d̂2
1 b̂ − b̂2

, (3.4)

v̂1 =
−d̂2b̂ + b̂1

d̂1 − d̂2
, (3.5)

v̂2 =
d̂1b̂ − b̂1

d̂1 − d̂2
. (3.6)
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Before closing this subsection, we point out that there may exist further improvement as stated
in what follows. In estimating of the decay rates, we have just used the first four auto-covariances
cov(xn, xn), . . . , cov(xn, xn+3). Actually, ∀j ≥ 1, we have

cov(xn, xn+j) = e−jk1h\1f1 + e−jk2h\2f2.

One possible improvement is to make use of more these lagged auto-covariances. For instance, we
can use cov(xn, xn+1), cov(xn, xn+2), cov(xn, xn+3), cov(xn, xn+4) to construct another system of equa-
tions based on which we can produce another estimate of (d1, d2). Then we average this estimate with
the previous one, produced by the first four auto-covariances cov(xn, xn), . . . , cov(xn, xn+3), to obtain
the final estimate, which should be more accurate. We can use more auto-covariances to improve the
accuracy of our estimates.

3.2. Estimation of the marginal distribution parameters

In order to estimate the marginal distribution parameters, we make use of Eqs. (2.7) and (2.9). Since
\1f1 (= v1) and \2f2 (= v2) can be estimated by Eqs. (3.5) and (3.6) respectively, we rewrite cm3 [xn]
as cm3 [xn] = 2v2

1/\1 + 2v2
2/\2. Then we have the following quadratic equation

a1\
2
1 + a2\1 + a3 = 0, (3.7)

with coefficiencies

a1 , cm3 [xn], a2 , 2v2
2 − 2v2

1 − cm3 [xn]E [xn], a3 , 2v2
1E [xn] .

Eq. (3.7) has two solutions

x1 =
−a2 +

√
Δ

2a1
, x2 =

−a2 −
√
Δ

2a1
,

where Δ = a2
2 − 4a1a3 = 4(\1\2)2(f2

1 − f2
2 )

2. We can show that only one equals \1. If f1 > f2, we
have

x1 =
(\1f1)2 + \1\2f

2
1

\1f
2
1 + \2f2

, x2 = \1.

Otherwise, we have

x1 = \1, x2 =
(\1f1)2 + \1\2f

2
1

\1f
2
1 + \2f2

.

In determining whether f1 > f2, we only need to verify if v1/x2 < v2/\2. Assuming f1 > f2, then
x2 = \1 and

\2 = E [xn] − x2, f1 = v1/x2, f2 = v2/\2.

Denote the sample version of Eq. (3.7) as

â1x2 + â2x + â3 = 0, (3.8)
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with â1, â2, â3 being the sample estimates of a1, a2, a3, respectively. Let us denote the root obtained
based on Eq. (3.8) for \1 by x∗, that is, \̂1 = x∗, then the other estimators are given by

\̂2 = X − \̂1, f̂1 = v̂1/\̂1, f̂2 = v̂2/\̂2.

Finally, we have

k̂1 = − log d̂1/h, k̂2 = − log d̂2/h, f̂x1 =

√
2f̂1k̂1, f̂x2 =

√
2f̂2k̂2.

We can define moment Eqs. (2.7)–(2.12) as a mapping f : R6 → R6, that is,

f (\1, \2,f1,f2, d1, d2) = $,

where $, by definition, represents the vector of the first moment, the second central moment and the
third central moment and the first three auto-covariances of the process xn.

Let Jf be the Jacobian of f, which is a 6 × 6 matrix of partial derivatives of f with respect to
the entries of f. Taking the first row of Jf as an example, it is the gradient of E [xn] with respect to
(\1, \2,f1,f2, d1, d2)T , that is, (

mE [xn]
m\1

, . . . ,
mE [xn]
md2

)
.

With some calculations, we have

Jf =



1 1 0 0 0 0
f1 f2 \1 \2 0 0

2f2
1 2f2

2 4\1f1 4\2f2 0 0
d1f1 d2f2 d1\1 d2f2 \1f1 \2f2

d2
1f1 d2

2f2 d2
1\1 d2

2f2 2d1\1f1 2d2\2f2

d3
1f1 d3

2f2 d3
1\1 d3

2f2 3d2
1\1f1 3d2

2\2f2


.

Though the inverse function f −1($) does not have an explicit expression, we will show that the Jacobian
Jf is invertible, thus f −1($) exists by the inverse function theorem.

We further define our final parameter estimators as another mapping g : R6 → R6, that is,

g(\̂1, \̂2, f̂1, f̂2, d̂1, d̂2) = (\̂1, \̂2, f̂x1, f̂x2, k̂1, k̂2)T ,

whose Jacobian, denoted by Jg, is given as the following

Jg =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 − log d1/h√

−2f1 log d1/h
0 −f1/(d1h)√

−2f1 log d1/h
0

0 0 0 − log d2/h√
−2f2 log d2/h

0 −f2/(d2h)√
−2f2 log d2/h

0 0 0 0 − 1
d1h 0

0 0 0 0 0 − 1
d2h


.

We first present the following central limit theorem for the parameter estimators
(\̂1, \̂2, f̂1, f̂2, d̂1, d̂2)T .
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Theorem 3.2 Suppose the superposition of two square-root diffusions described by Eqs. (2.1)–(2.3)
does not degenerate into a one square-root diffusion, that is, d1 ≠ d2, \1 ≠ \2, and f1 ≠ f2. Then the
parameter estimators (\̂1, \̂2, f̂1, f̂2, d̂1, d̂2)T exist with probability tending to one and satisfy

lim
N→∞

√
N ((\̂1, \̂2, f̂1, f̂2, d̂1, d̂2)T − (\1, \2,f1,f2, d1, d2)T ) d

= N (0, J−1
f Σ(J−1

f )T ). (3.9)

Proof. We first prove the Jacobian Jf is invertible. With some elementary row operations, Jf is equivalent
to the following matrix

J1 ,



1 1 0 0 0 0
0 1 \1

f2−f1

\2
f2−f1

0 0
0 0 1 − \2

\1
0 0

0 0 0 a44 \1f1 \2f2

0 0 0 a54 2d1\1f1 2d2\2f2

0 0 0 a64 3d2
1\1f1 3d2

2\2f2


,

where

a44 , (d1 + d2)\2 −
2\2

f2 − f1
(d2f2 − d1f1),

a54 , (d2
1 + d2

2)\2 −
2\2

f2 − f1
(d2

2f2 − d2
1f1),

a64 , (d3
1 + d3

2)\2 −
2\2

f2 − f1
(d3

2f2 − d3
1f1).

Therefore, the invertibility of Jf depends on that of the bottom right submatrix in J1, that is,

J2 ,


a44 \1f1 \2f2

a54 2d1\1f1 2d2\2f2

a64 3d2
1\1f1 3d2

2\2f2

 .
With elementary row operations, J2 is equivalent to the following matrix

J3 ,


a11 3(d2

2 − d2
1)\1f1 0

a21(d1 + d2)/d1 − a11 0 0
a64 3d2

1\1f1 3d2
2\2f2

 ,

where

a11 , (3d1d2
2 + 2d3

2 − d3
1)\2 −

2\2

f2 − f1
(2d3

2f2 − 3d1d2
2f1 + d3

1f1),

a21 ,

(
3
2

d2
1d2 +

1
2

d3
2 − d3

1

)
\2 −

2\2

f2 − f1

(
1
2

d3
2f2 −

3
2

d2
1d2f1 + d3

1f1

)
.
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Thus, the invertibility of Jf reduces to whether the term a21(d1 + d2)/d1 − a11 equals zero or not.
After some calculations, we have

a21(d1 + d2)/d1 − a11 = \2
f1 + f2

f2 − f1

d4
2

2d1

[(
d1

d2

)3
− 3

(
d1

d2

)2
+ 3

(
d1

d2

)
− 1

]
= \2

f1 + f2

f2 − f1

d4
2

2d1

(
d1

d2
− 1

)3
.

Note that d1 ≠ d2. Therefore, a21(d1 + d2)/d1 − a11 does not equal zero, consequently the Jacobian Jf
is invertible.

With the covariance matrix Σ in Theorem 3.1, it is apparently

E [x2
n + x̄4

n + x̄6
n + x̄2

n x̄2
n+1 + x̄2

n x̄2
n+2 + x̄2

n x̄2
n+3] < ∞, (3.10)

where x̄n+j , xn+j − E [xn], j = 0, 1, 2, 3.
In summary, we have verified: (1) the mapping f from parameters (\1, \2,f1,f2, d1, d2)T to moments

$, are continuously differentiable with nonsingular Jacobian Jf, and (2) the summation of the double
order moments is finite, that is, Eq. (3.10). Therefore, by applying Theorem 4.1 in [26], we have Theorem
3.2. This completes the proof. �

We now present the central limit theorem for our parameter estimators (\̂1, \̂2, f̂x1, f̂x2, k̂1, k̂2)T .

Theorem 3.3 Suppose the same assumption as in Theorem 3.2 holds. Then,

lim
N→∞

√
N ((\̂1, \̂2, f̂x1, f̂x2, k̂1, k̂2)T − (\1, \2,fx1,fx2, k1, k2)T ) d

= N (0, JgJ−1
f Σ(J−1

f )TJT
g ). (3.11)

Proof. Note that the mapping g(\1, \2,f1,f2, d1, d2) takes the following expression

\1

\2

fx1

fx2

k1

k2


=



\1

\2√
−2f1 log d1/h√
−2f2 log d2/h
− log d1/h
− log d2/h


≡ g(\1, \2,f1,f2, d1, d2),

which is differentiable and has the Jacobian Jg. Meanwhile, we have verified the convergence of the
estimators (\̂1, \̂2, f̂1, f̂2, d̂1, d̂2)T in Theorem 3.2. Therefore, by applying the delta method (Theorem
3.1 in [26]), we have the convergence in Eq. (3.11). This completes the proof. �

4. Numerical experiments

In this section, we conduct numerical experiments to test the estimators derived in the previous section.
First, we validate the accuracy of our estimators under different parameter value settings. Then, we
analyze the asymptotic performances of our estimators as the sample length increases.

In the first set of experiments, we consider four different combinations of parameter values, with S0
as the base combination in which k1 = 2, \1 = 1.5, fx1 = 1.6, k2 = 0.2, \2 = 0.5, fx2 = 0.2. Each of the
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Table 1. Numerical results under different parameter settings.
Setting k1 \1 fx1 k2 \2 fx2

S0 2 1.5 1.6 0.2 0.5 0.2
2.00± 0.03 1.50± 0.03 1.60± 0.02 0.20± 0.07 0.50± 0.03 0.20± 0.05

S1 3 1.5 1.6 0.2 0.5 0.2
3.00± 0.07 1.50± 0.02 1.60± 0.02 0.20± 0.04 0.50± 0.02 0.20± 0.02

S2 2 3 1.6 0.2 1 0.2
2.00± 0.03 3.00± 0.05 1.60± 0.02 0.20± 0.06 1.00± 0.05 0.20± 0.04

S3 2 1.5 0.8 0.2 0.5 0.1
2.00± 0.03 1.50± 0.03 0.80± 0.01 0.20± 0.06 0.50± 0.03 0.10± 0.02

Table 2. Asymptotic behavior as N increases.
k1 \1 fx1 k2 \2 fx2

N 2 1.5 1.6 0.2 0.5 0.2

100K 2.04± 0.09 1.47± 0.08 1.62± 0.06 0.24± 0.16 0.53± 0.08 0.23± 0.12
400K 2.01± 0.05 1.49± 0.04 1.61± 0.03 0.21± 0.10 0.51± 0.04 0.21± 0.07
1600K 2.00± 0.02 1.50± 0.02 1.60± 0.01 0.19± 0.05 0.50± 0.02 0.20± 0.04
6400K 2.00± 0.01 1.50± 0.01 1.60± 0.01 0.20± 0.03 0.50± 0.01 0.20± 0.02

other three combinations differs from S0 in only one pair of parameter values: S1 increases (k1, k2)’s
values to (3,0.2), S2 increases (\1, \2)’s values to (3,1), S3 decreases (fx1,fx2)’s values to (0.8,0.1).

The transition distribution of xi (t) given xi (s) (i = 1, 2) for s< t is a noncentral chi-squared
distribution multiplied with a scale factor (see [7, 12]), that is,

xi (t) =
f2

xi [1 − e−ki (t−s) ]
4ki

j′2
d

(
4kie−ki (t−s)

f2
xi [1 − e−ki (t−s) ]

xi (s)
)

, s < t,

where j′2
d (_) represents the noncentral chi-squared random variable with d degrees of freedom and non-

centrality parameter _, and d = 4ki\i/f2
xi. Therefore, we use this transition function to generate sample

observations of x(t) and set the time interval, between any two points, h= 1. For each parameter setting,
we run 400 replications with 1000K samples for each replication. The numerical results are presented
in Table 1 with the format “mean ± standard deviation” based on these 400 replications (the format
remains the same for all numerical results). The results illustrate our estimators are fairly accurate.

To test the effect of N on the performance of our estimators, we run the second set of experiments
in which we increase N from 100K to 6400K for S0, while all other settings remain the same. The
results are given in Table 2, which demonstrates as N increases the accuracy of our estimators improve
approximately at the rate of 1/

√
N .

5. Conclusion

In this paper, we consider the problem of parameter estimation for the superposition of two square-root
diffusions. We first derive their moments and auto-covariances based on which we develop our MM
estimators. A major contribution of our method is that we only employ low order moments and auto-
covariances and find an efficient way to solve the system of moment equations which produces very
good estimates. Our MM estimators are accurate and easy to implement. We also establish the central
limit theorem for our estimators in which the explicit formulas for the asymptotic covariance matrix are
given. Finally, we conduct numerical experiments to test and validate our method. The MM proposed
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in this paper can be potentially applied to other extensions, such as including jumps in the component
process or the superposed process. This is a possible future research direction.
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Appendix.

Asymptotic covariance matrix entries calculation

With slight abuse of notation, we use xn to denote either x1n or x2n and x̄n for either x̄1n or x̄1n to
simplify the notations, and similarly, use k, \,f for either k1, \1,fx1 or k2, \2,fx2. In order to calculate
the asymptotic variances and covariances, we need the following approximate equations (we also call
them as the decay equations), ∀n ≥ 0:

x̄n ≈ e−nkhx̄0, (A.1)

x̄2
n ≈ e−2nkhx̄2

0 + (e−nkh − e−2nkh)x̄0
f2

k
+ c2, (A.2)

x̄3
n ≈ e−3nkhx̄3

0 + (e−2nkh − e−3nkh)x̄2
0
3f2

k
+ (e−nkh − e−3nkh)x̄0

3f2\

2k

+ (e−nkh − 2e−2nkh + e−3nkh)x̄0
3f4

2k2 + c3, (A.3)

by eliminating the martingale parts, where

c2 , (1 − e−2nkh)f
2\

2k
, c3 , (1 − 3e−2nkh + 2e−3nkh)f

4\

2k2 .

The derivation of above equations is given later.
Let us use

dx(t) = k(\ − x(t))dt + f
√

x(t)dw(t)

to denote the component process either Eq. (2.2) or (2.3), for notation simplification. Then, by
introducing the following notation

IEt ,

∫ t

0
eks

√
x(s)dw(s), IEn , IEnh,

we have

x(t) = e−ktx(0) + \
[
1 − e−kt] + fe−ktIEt , ∀t ≥ 0,

x̄n = e−knhx̄0 + fe−knhIEn, ∀n = 0, 1, 2, . . . .

Therefore,

x̄m
n =

m∑
j=0

Cj
m

(
e−knhx̄0

) j (
fe−knhIEn

)m−j
, m = 1, 2, 3, 4.
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Taking x̄2
n as an example, we show how to obtain its approximation. By Itô calculus,

dIE2
t = 2IEtekt

√
x(t)dw(t) + e2ktx(t)dt,

IE2
t = 2

∫ t

0
IEseks

√
x(s)dw(s) +

∫ t

0
e2ksx(s)ds.

Note that

E
[∫ t

0
IEseks

√
x(s)dw(s)

]
= 0,

thus, by deleting this term, we have following approximation

IE2
t ≈

∫ t

0
e2ksx(s)ds.

Furthermore, ∫ t

0
e2ksx(s)ds =

ekt − 1
k

x̄0 +
e2kt − 1

2k
\ +

∫ t

0
feksIEsds

≈ ekt − 1
k

x̄0 +
e2kt − 1

2k
\,

by deleting the third term in the right hand of the first equation because its expectation is also zero,
that is,

E
[∫ t

0
feksIEsds

]
= 0.

Letting t = nh, we have

IE2
n ≈ eknh − 1

k
x̄0 +

e2knh − 1
2k

\.

Therefore,

x̄2
n ≈ e−2nkhx̄2

0 +
(
e−nkh − e−2nkh

)
x̄0
f2

k
+

(
1 − e−2nkh

) f2\

2k

by deleting all those terms having expectation 0. The results for all other cases can be derived similarly.
With these approximation formulas, we can easily compute the following auto-covariances

cov(xr , zm
c ), cov(zm1

r , zm2
c ), m, m1, m2 = 1, 2, 3, 4,

for example, ∀c ≥ r,

cov(xr , z1
c ) = e−2(c−r)khcov(xr , x̄2

r ) + (e−(c−r)kh − e−2(c−r)kh)f
2

k
cov(xr , x̄r),

noting that z1
c = x̄2

c by definition.
By omitting the tedious intermediate steps, we present the results in following two subsections.
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On-diagonal entries

c11,1 , (1 + 2e11)var(x1n) = (1 + 2e11)
\1f

2
x1

2k1
,

c22,1 , (1 + 2e12)var(x̄2
1n) + 2(e11 − e12)

f2
x1

k1
cm3 [x1n]

+ 2(1 + 2e1,1)var(x1n)var(x2n),

c33,1 , (1 + 2e13)var(x̄3
1n) + 2(e12 − e13)

3f2
x1

k1
cov(x̄3

1n, x̄2
1n)

+ 2

[
(e11 − e13)

3f2
x1\1

2k1
+ (e11 − 2e12 + e13)

3f4
x1

2k2
1

]
cm4 [x1n]

+ 3(5 + 2e11 + 6e2,1)cm4 [x1n]var(x2n) + 18(1 + e1,2)cm3 [x1n]cm3 [x2n]

+ 18

[
(e1,1 − e2,1)

f2
x1

k1
+ (e1,1 − e1,2)

]
cm3 [x1n]var(x2n)

+ 18(e21 − e2,1)var2(x1n)var(x2n)

+ 6e23var(x1n)cm4 [x2n] + 6(e22 − e23)
3f2

x2
k2

var(xn1)cm3 [x2n]

+ 6

[
(e21 − e23)

3f2
x2\2

2k2
+ (e21 − 2e22 + e23)

3f4
x2

2k2
2

]
var(x1n)var(x2n),

c44,1 , var(x̄1nx̄1(n+1) ) + 2e12ek1hcov(x̄1nx̄1(n+1) , x̄2
1(n+1) )

+ 2(e11 − e12ek1h)
f2

x1
k1

cov(x̄1nx̄1(n+1) , x̄1(n+1) )

+
[
1 + 2e1,1 + e−(k1+k2 )h

]
var(x1n)var(x2n)

+
[(

e−2k1h + e−2k1he1,1

)
+

(
e−2k2h + e−2k2he1,1

)]
var(x1n)var(x2n),

c55,1 , var(x̄1nx̄1(n+2) ) + 2cov(x̄1nx̄1(n+2) , x̄1(n+1) x̄1(n+3) )
+ 2e12cov(x̄1nx̄1(n+2) , x̄2

1(n+2) )

+ 2(e11e−k1h − e12)
f2

x1
k1

cov(x̄1nx̄1(n+2) , x̄1(n+2) )

+
[
1 + 2e1,1 + e−2(k1+k2 )h

]
var(x1n)var(x2n)

+
[
e−(3k1+k2 )h + e−4k1h + e−4k1he1,1

]
var(x1n)var(x2n)

+
[
e−(k1+3k2 )h + e−4k2h + e−4k2he1,1

]
var(x1n)var(x2n),

c66,1 , var(x̄1nx̄1(n+3) ) + 2cov(x̄1nx̄1(n+3) , x̄1(n+1) x̄1(n+4) )
+ 2cov(x̄1nx̄1(n+3) , x̄1(n+2) x̄1(n+5) ) + 2e12e−k1hcov(x̄1nx̄1(n+3) , x̄2

1(n+3) )

+ 2(e11e−2k1h − e12e−k1h)
f2

x1
k1

cov(x̄1nx̄1(n+3) , x̄1(n+3) )

+
[
1 + 2e1,1 + e−3(k1+k2 )h

]
var(x1n)var(x2n)

+
[
e−(4k1+2k2 )h + e−(5k1+k2 )h + e−6k1h + e−6k1he1,1

]
var(x1n)var(x2n)

+
[
e−(2k1+4k2 )h + e−(k1+5k2 )h + e−6k2h + e−6k2he1,1

]
var(x1n)var(x2n).
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The terms cm3 [x1n], cm4 [x1n], var(x̄3
1n) and so on are easy to compute with Eq. (2.5). It is also

straightforward to compute terms like cov(x̄1nx̄1(n+3) , x̄1(n+1) x̄1(n+4) ) by employing Eqs. (A.1)–(A.3).
We omit their explicit formulas here.

Terms cnn,2 (n = 1, . . . , 6) are defined similarly by replacing e1j ( j = 1, . . . , 4) in cnn,1 with e2j, x1n
with x2n, and k1, \1,fx1 with k2, \2,fx2, respectively, and vice versa.

Off-diagonal entries

Definitions of c12,1, c13,1, c14,1, c15,1, c16,1 are given as following:

c12,1 , (1 + e11 + e12)cm3 [x1n] + (e11 − e12)
f2

x1
k1

var(x1n),

c13,1 , (1 + e11 + e13)cm4 [x1n] + (e12 − e13)
3f2

x1
k1

cm3 [x1n]

+
[
(e11 − e13)

3f2
x1\1

2k1
+ (e11 − 2e12 + e13)

3f4
x1

2k2
1

]
var(x1n)

+ 3(1 + 2e11)var(x1n)var(x2n),

c14,1 , (1 + e11 + e12)e−k1hcm3 [x1n] + (e11 − e12)e−k1hvar(x1n)

+ e11(1 − e−k1h)
f2

x1
k1

var(x1n),

c15,1 ,
[
1 + e12 + (1 + e11)e−k1h] e−2k1hcm3 [x1n] + (e11 − e12)e−2k1hvar(x1n)

+
[
e11(e−k1h − e−3k1h) + e−2k1h − e−3k1h)

f2
x1

k1

]
var(x1n),

c16,1 , (1 + e12)e−3k1hcov(x̄1n, x̄2
1n) + (e11 − e12)e−3k1h f

2
x1

k1
var(x̄1n)

+ cov(x̄1(n+1) , x̄1nx̄1(n+3) ) + cov(x̄1(n+2) , x̄1nx̄1(n+3) )
+ (1 + e11)cov(x̄1(n+3) , x̄1nx̄1(n+3) ).

Again, terms c1n,2 (n = 2, . . . , 6) are defined similarly by substituting e1j ( j = 1, . . . , 4) in c1n,1 with e2j,
x1n with x2n, x2n with x1n, and k1, \1,fv1 with k2, \2,fv2, respectively, and vice versa. The other terms
clm,2 (l ≠ 1, l ≠ m) are defined similarly according to clm,1 in the following formulas.

c23,1 , (1 + e12 + e13)cov(x̄2
1n, x̄3

1n) + (e11 − e12)
f2

x1
k1

cm4 [x1n]

+ (e12 − e13)
3f2

x1
k1

cov(x̄2
1n, x̄2

1n)

+
[
(e11 − e13)

3f2
x1\1

2k1
+ (e11 − 2e12 + e13)

3f4
x1

2k2
1

]
cm3 [x1n]

+ (9 + 3e11 + 3e12 + 6e1,1 + 6e2,1)cm3 [x1n]var(x2n)

+ (3e11 − 3e12 + 6e1,1 − 6e2,1)
f2

x1
k1

var(x1n)var(x2n),

https://doi.org/10.1017/S0269964824000147 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000147


Probability in the Engineering and Informational Sciences 41

c24,1 , (1 + e12)e−k1hvar(x̄2
1n) + (e11 − e12)

f2
x1

k1
e−k1hcm3 [x1n]

+ e11ek1hcov(x̄2
1(n+1) , x̄1nx̄1(n+1) )

+ (e11ek1h − e12e2k1h)
f2

x1
k1

E [x̄1nx̄2
1(n+1) ]

+ 2(e1,1e−k2h + e−k2h + e1,1ek2h)var(x1n)var(x2n),

c25,1 , (1 + e12)e−2k1hvar(x̄2
1n) + (e11 − e12)e−2k1h f

2
x1

k1
cm3 [x1n]

+ e−k1hcov(x̄2
1(n+1) , x̄1nx̄1(n+1) )

+ e11ek1hcov(x̄2
1(n+2) , x̄1nx̄1(n+2) ) + (e11ek1h − e12e2k1h)

f2
x1

k1
E [x̄1nx̄2

1(n+2) ]

+ 2(e1,1e−2k2h + e−2k2h + e−(k1+k2 )h + e1,1e2k2h)var(x1n)var(x2n),

c26,1 , (1 + e12)e−3k1hvar(x̄2
1n) + (e11 − e12)e−3k1h f

2
x1

k1
cm3 [x1n]

+ cov(x̄2
1(n+1) , x̄1nx̄1(n+3) ) + cov(x̄2

1(n+2) , x̄1nx̄1(n+3) )

+ e12e2k1hcov(x̄2
1(n+3) , x̄1nx̄1(n+3) ) + (e11ek1h − e12e2k1h)

f2
x1

k1
E [x̄1nx̄2

1(n+3) ]

+ 2
[
(1 + e1,1)e−3k2h + e−(k1+2k2 )h + e−(2k1+k2 )h

]
var(x1n)var(x2n)

+ 2e1,1e(k2−2k1 )hvar(x1n)var(x2n),

f34,1 , (1 + e12)e−k1hcov(x̄3
1n, x̄2

1n) + (e11 − e12)e−k1h f
2
x1

k1
cm4 [x1n]

+ e13e3k1hcov(x̄3
1(n+1) , x̄1nx̄1(n+1) )

+ (e12e2k1h − e13e3k1h)
3f2

x1
k1

cov(x̄2
1(n+1) , x̄1nx̄1(n+1) )

+ (e11ek1h − e13e3k1h)
3f2

x1\1

2k1
E [x̄1nx̄2

1(n+1) ]

+ (e11ek1h − 2e12e2k1h + e13e3k1h)
3f4

x1

2k2
1

E [x̄1nx̄2
1(n+1) ]

+ 3
[
(1 + e1,1)e−k2h + (1 + e1,1)e−k1h + e2,1(ek2h + e2k1h)

]
cm3 [x1n]var(x2n)

+ 3
[
(e1,1 − e2,1)ek2h + (e1,1ek1h − e2,1e2k1h)

] f2
x1

k1
var(x1n)var(x2n)

+ 3(1 + e22)e−k2hvar(x1n)cm3 [x2n] + 3(e21 − e22)e−k2h f
2
x2

k2
var(x1n)var(x2n)

+ 3e21ek2hvar(x1n)E [x̄2nx̄2
2(n+1) ],

c35,1 , (1 + e12)e−2k1hcov(x̄3
1n, x̄2

1n) + (e11 − e12)e−2k1h f
2
x1

k1
cm4 [x1n]

+ e−k1hcov(x̄3
1(n+1) , x̄1nx̄1(n+1) ) + e13e6k1hcov(x̄3

1(n+2) , x̄1nx̄1(n+2) )

+ (e12 − e13)
3f2

x1
k1

cov(x̄2
1(n+2) , x̄1nx̄1(n+2) )
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+
[
(e11 − e13)

3f2
x1\1

2k1
+ (e11 − 2e12 + e13)

3f4
x1

2k2
1

]
E [x̄1nx̄2

1(n+2) ]

+ 3(1 + e1,1)e−2k2hcm3 [x1n]var(x2n) + 3E [x̄1nx̄2
1(n+1) ]e

−k2hvar(x2n)

+ 3e2,1e−2k1hek2hcm3 [x1n]var(x2n)
+ 3

[
(1 + e1,1)e−2k1h + (e−k1h + e2,1e2k1h)e−k2h] cm3 [x1n]var(x2n)

+ 3(1 + e22 + e−k2h + e21e−k2h)e−2k2hvar(x1n)cm3 [x2n]

+ 3(e1,1e−k1hek2h − e2,1e−2k1hek2h)
f2

x1
k1

var(x1n)var(x2n)

+ 3(e1,1 − e2,1ek1h)ek1he−k2h f
2
x1

k1
var(x1n)var(x2n)

+ 3
[
e21 − e22 + 1 − e−k2h + e21(ek2h − e−k2h)

]
e−2k2h f

2
x2

k2
var(x1n)var(x2n),

c36,1 , (1 + e12)e−3k1hcov(x̄3
1n, x̄2

1n) + (e11 − e12)e−3k1h f
2
x1

k1
cm4 [x1n]

+ cov(x̄3
1(n+1) , x̄1nx̄1(n+3) ) + cov(x̄3

1(n+2) , x̄1nx̄1(n+3) )

+ e13e3k1hcov(x̄3
1(n+3) , x̄1nx̄1(n+3) )

+ (e12e2k1h − e13e3k1h)cov(x̄2
1(n+3) , x̄1nx̄1(n+3) )

+ (e11ek1h − e13e3k1h)cov(x̄1(n+1) , x̄1nx̄1(n+3) )

+ (e11ek1h − 2e12e2k1h + e13e3k1h)cov(x̄1(n+1) , x̄1nx̄1(n+3) )

+ 3(1 + e1,1)e−3k2hcm3 [x1n]var(x2n)
+ 3cov(x̄2

1(n+1) x̄2(n+1) , x̄1nx̄2(n+3) ) + 3cov(x̄2
1(n+2) x̄2(n+2) , x̄1nx̄2(n+3) )

+ 3e2,1e−4k1hcm3 [x1n]var(x2n)

+ 3(e1,1e−2k1h − e2,1e−4k1h)
f2

x1
k1

var(x1n)var(x2n)

+ 3(1 + e1,1)e−3k1hcm3 [x1n]var(x2n)
+ 3cov(x̄2

1(n+1) x̄2(n+1) , x̄2nx̄1(n+3) ) + 3cov(x̄2
1(n+2) x̄2(n+2) , x̄2nx̄1(n+3) )

+ 3e2,1e2k1he−2k2hcm3 [x1n]var(x2n)

+ 3(e1,1ek1he−2k2h − e2,1e2k1he−2k2h)
f2

x1
k1

var(x1n)var(x2n)

+ 3(1 + e22)e−3k2hvar(x1n)cm3 [x2n]

+ 3(e21 − e22)e−3k2h f
2
x2

k2
var(x1n)var(x2n)

+ 3var(x1n)cov(x̄2(n+1) , x̄2nx̄2(n+3) ) + 3var(x1n)cov(x̄2(n+2) , x̄2nx̄2(n+3) )

+ 3e21ek2hvar(x1n)cov(x̄2(n+3) , x̄2nx̄2(n+3) ),

c45,1 , e−3k1hcm4 [x1n] + (e−2k1h − e−3k1h)
f2

x1
k1

cm3 [x1n] + (e−k1h − e−3k1h)var(x1n)

+ E [x̄1nx̄1(n+1) x̄2
1(n+2) ] − e−3k1hvar2(x1n) + e12cov(x̄1nx̄1(n+1) , x̄2

1(n+1) )
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+ (e11e−k1h − e12)
f2

x1
k1

E [x̄1nx̄2
1(n+1) ] + e12ek1hcov(x̄2

1(n+2) , x̄1nx̄1(n+2) )

+ (e11 − e12ek1h)
f2

x1
k1

E [x̄1nx̄2
1(n+2) ]

+
[
(1 + e1,1)e−k2h + (1 + e1,1)e−k1h] var(x1n)var(x2n)

+
[
e−(2k1+k2 )h + e−(k1+2k2 )h

]
var(x1n)var(x2n)

+ e1,1

[
e(−2k1+k2 )h + e(k1−2k2 )h

]
var(x1n)var(x2n),

c46,1 , e−2k1hvar(x̄1nx̄1(n+1) ) + e12e−k1hcov(x̄1nx̄1(n+1) , x̄2
1(n+1) )

+ (e11ek1h − e12e2k1h)e−3k1h f
2
x1

k1
cov(x̄1nx̄1(n+1) , x̄1(n+1) )

+ cov(x̄1(n+1) x̄1(n+2) , x̄1nx̄1(n+3) ) + cov(x̄1(n+2) x̄1(n+3) , x̄1nx̄1(n+3) )
+ e12ek1hcov(x̄2

1(n+3) , x̄1nx̄1(n+3) )

+ (e11ek1h − e12e2k1h)e−k1h f
2
x1

k1
cov(x̄1(n+3) , x̄1nx̄1(n+3) )

+ (1 + e1,1)e−2k2hvar(x1n)var(x2n) + e−k1he−k2hvar(x1n)var(x2n)
+ e1,1e−k1hek2hvar(x1n)var(x2n)
+ e−3k1he−k2hvar(x1n)var(x2n) + e1,1e−3k1hek2hvar(x1n)var(x2n)

+
[
e−2(k1+k2 )h + e−(k1+3k2 )h + e1,1e(k1−3k2 )h

]
var(x1n)var(x2n),

c56,1 , e−k1hvar(x̄1nx̄1(n+2) ) + cov(x̄1nx̄1(n+2) , x̄1(n+1) x̄1(n+4) )
+ e12e−k1hcov(x̄1nx̄1(n+2) , x̄2

1(n+2) )

+ (e11ek1h − e12e2k1h)e−3k1h f
2
x1

k1
cov(x̄1nx̄1(n+2) , x̄1(n+2) )

+ cov(x̄1(n+1) x̄1(n+3) , x̄1nx̄1(n+3) ) + cov(x̄1(n+2) x̄1(n+4) , x̄1nx̄1(n+3) )
+ e12cov(x̄2

1(n+3) , x̄1nx̄1(n+3) )

+ (e11ek1h − e12e2k2h)e−2k1h f
2
x1

k1
cov(x̄1(n+3) , x̄1nx̄1(n+3) )

+ (1 + e1,1)e−k2hvar(x1n)var(x2n) + e1,1ek2hvar(x1n)var(x2n)

+
[
e−3k1he−2k1h + e−(3k1+k2 )h + e1,1e−4k1hek2h

]
var(x1n)var(x2n)

+
[
e−2k1he−3k2h + e−k1he−4k2h + e1,1ek1he−4k2h] var(x1n)var(x2n).
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