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CALCULATION OF A VELOCITY DISTRIBUTION FROM PARTICLE 
TRAJECTOR Y END -POINTS 

By L. A. RASMUSSEN 

(U.S. Geological Survey, Tacoma, Washington 98402, U.S.A.) 

ABSTRACT. The longitudinal component of the velocity of a particle at or near a glacier surface is considered. 
its position as a function of time being termed its trajectory. Functional relationships are derived for obtaining the 
trajectory from the spatial distribution of velocity and for obtaining the velocity di stribution from the trajectory. It 
is established that the trajectory end-points impose only an integral condition on the velocity di stribution. and that 
no individual point on the velocity distribution can be determined if only the cnd-points arc known. An example is 
given of a deduced ve locity distribution that is consistent with (although not uniquely determined by) the cnd 
points of several trajectories on the lower reach of Columbia Gl ac ier. Alaska. It is shown that constructing a 
velocity distribution by assigning the average trajectory velocity to the trajectory mid-point can be subject to 
errors of several per cent for velocity distribution features that are typica l of actual glaciers. The error in this 
method is determined, and closed-form expressions for the trajectory are obtained. for linear velocity di stributions 
and for two elasses of second-degree distributions. The class of functions is identified to which the velocity 
distribution must belong for this error to be zero. 

RESUME. CalclIl de la distriblltioll des L'itesses a parlir de la pos itioll des extrelllites d'lIl1e trqjectoire de 

parlicllle. La composante lon gitudinale de la vitesse d'une particule a la surface ou pres de la surface d'un glacier 
est examinee. avec sa position en fonclion du temps qui limitc sa trajectoire. On en deduit les relation s qui 
permettent d'obtenir la trajectoire a partir de la di stribution dans l'espace de la vitesse et la di stribution des vitesses 
a partir de la trajectoire. On etablit que la connaissance des cxtremites de la trajectoire impose seulelllent une 
condition integralc que doit sa ti sfaire la distribution des vitesses si on ne connait que les extrcmitcs de la 
trajectoire. On donne un exemple de deduction d'une distribution de vitesses qui est co hcrente (bien que non 
dcterminee uniquelllent par ell es) avec les positions des extrcmitcs de plusieurs trajcctoires sur la languc du 
Columbia Glacier en Alaska. On montre que la construction d'une distribution des vitesses en attribuan t la 
vitesse moyenne le long d'une lrajectoire au point situ i: au milieu de cette trajectoi re peut entrainer des erreurs de 
plusieurs pour cent dans des modes de di stribution des vitesses qui sont courants sur glac iers reel s. On calcule 
l'erreur induite par une telle methode et on obt ient des expressions tres convenables pour la trajectoire. pour dc , 
di stributions lini:aires des vitesses et pour deux classes de distribution du second degrc. On idcntifie la classe des 
fon ction s auxquelles la distribution des vitesses doit appartcnir pou r que cettc erreur soit nulle . 

ZUSAMM ENFASSU NG. Ber ec/II11lllg eiller Gesc/l1I'illdigkeitsl 'erl eilllllg ails dell £lIdpllllktell /'011 
Partikelbahllell. Die Uingskomponente der Geschwindigkeit eines Partikcl s auf oder nahe der Oberfliiche cincs 
Gletschers wird betrachtet. wobei dessen Lage als Funktion der Zeit aus sei ner Bahn bestil1lmt wird. Zur 
Gewinnung der Bahn aus der riiumlichen Gesc hwindigkeitsverteilun g und ul1l gekehrt werden funktiona lc 
Beziehungen hcrgeleitet. Es wird nachgewiesen, Dass die Endpunkte der Bahnen nur eine Integrationsbedi ngung 
fur die Geschwindigkeitsverteilung li efern und dass kein spezicller Wert der Geschwindigkeitsverteilung bestil1lmt 
werden kann, wenn nur die Endpunkte bekannt sind . Ein Beispiel fiir eine abgcleitete Geschwindigkeit sverteilung 
wird gegeben . die mit den Endpunkten einiger Bahnen il1l untcren Bereich des Columbia Gl ac ier. Alaska. 
ubereinstil1lml. wenn sie auch durch diese nicht eindeutig bes til1lmt wi rd. Es zeigt sich, dass die Kon struktion ciner 
Gesc hwindigkeitsverteilung durch die Zuweisung der l1littleren Bahngesehwindigkeit an den Bahnl1littelpunkt 
infolge von Besonderheiten in der Geschwindigkeitsverteilung. die typi sc h fUr bestehende Gletscher si nd. Ulll einigc 
Prozent verfiilscht werden kann. Ocr Fehler dieses Verfahrens wird bestimmt: fur die Bah nen bci linearcn 
Geschwindigkeitsverteilungen und bei zwei Klassen von Verteilungen 2. Grades werden gesc hlossenc Ausdriickc 
hcrgeleitet. Die Klasse von Funktioncn, zu denen die Geschwindigkeitsverteilung gehorcn muss. wenn diescr 
Fchler verschwinden soiL wird festgestellt. 

INTRODUCTION 

In glaciological field practice, surface motion is observed using standard surveying 
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techniques o r photogra mmetry to measure the di splacement of a survey sta ke or an identifi able 
surface fea ture. The expected errors in determining the initial a nd final positions are reported a nd 
are co mbined to give the expected error in the average velocity , which is computed by di viding 
the di stance between the two positions by the elapsed time, and which is usuall y assigned to the 
point midway between the initial and final positions. A spatial distribution of velocity is 
construc ted by interpreting the motion of several survey stakes or surface features in this way. 

Thi s meth od is susceptible to another source of error. The a verage veloc it y does not occur a t 
the mi d-point of its init ia l a nd fin a l positio ns unl ess the actu a l velocity di stributi o n belongs to a 
res tric ted c lass of mathem a ti cal fun cti o ns. Recogni zin g thi s source of e rro r m ay be helpful in 
reco nc ilin g observations of velocity and mass ba lance through the continuity equ ation. 

T he fo ll owing is an elementary analys is o f the case of stead y. one-dimensio na l Aow. O nly the 
hori zo nta l component of th e lo ngitudina l ve locity is considered . a nd th e transverse componen t is 
ass umed to be zero. It is no t necessa ry th a t th e glacier be in stead y state, th a t is with un changin g 
geometry. bu t onl y tha t th e ho rizontal velocity di st ri buti o n be un changing ove r th e time in terva l 
conside red. A ltern atively. if th e actual velocity d istrib ution is c ha nging. the average velocity may 
be considered instead; it is defin ed to be a ve locity distributio n th at. if it ex isted constantly over 
the time int erva l. wo ul d produce the observed di spl acements. 

US ING PA RT ICLE T RAJECTORI ES T O GET A V E L OCIT Y DI STRIB UTION 

Where x is a hori zonta l co ordinate tha t is positi ve in the direction of glacie r fl ow, the velocity 

dx 
V =-

dl 
( I ) 

01" a part ic le is ass umed to depend onl y o n x; tha t is. 

u = g(x) (2) 

where g(x) is a positi ve. continuous fun ction a nd cg(x)j(J I = O. If the trajectory 

x = j{t) (3) 

gives the POSition of a particle on or near the surface at time I, and /( /) is a differenti a ble, 

increasi ng fun c tion. then. from Eq uatio ns ( I ) a nd (3), 

v = /'(1) (4) 

where/,(B) = d/(B)jdl. F rom Equ ation (3) 

1 =/- I(.\') (5) 

where / - 1(8) is th e inverse o f /(B) ; tha t is. / - 11 /(B) 1=/ 1/ - 1 (B) I = B. N ow. fro m Eq ua ti o ns 
(2). (4). a nd (5), 

v =/'1 / - I(x)1 = g(x). 

Thus. if /(1) is known. g(x) is given by Equ a ti o n (6). 
A lso. from Eq ua ti o ns ( I) a nd (2). 

dx 
-=g(x) 
dl 

(6) 

(7) 
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whi ch is a first -order, ordinary differential eq uation easi ly integra ted by separating var iables 

rx ~= ,. , dl 

• xo g(x) " 0 

where Xo is the position of the particle at time 10. If 

.C!X 

I --= C(x) + r 
. g(x) 

in which r is the consta nt of integration, then , from Equations (8) and (9), 

C(x) = C(xo) + 1- 10 

or 

x = G - 11 G(xo) + 1- 10 1 

where G - 11 G(e) 1 = Cr G - I (B) 1 = e. Thus, if g(x) is known..f(t) is given by Equation ( 10). 

(8) 

(9) 

( 10) 

As shown by Equation (6), the function x = /(1) must be known if the veloci ty di stribution is 
to be determined; thus, knowing only the end-points ( /0, xo) and (t I , XI ) of a particle trajectory is 
in sufficient for determining g(x). Moreover, as the trajectory end-points represent an integral of 
dx/dl = g(x), they do not determine any particul ar point on g(x), but rather they impose onl y an 
integra l condition on it. Therefore, particular points on l' = g(x) cannot be ob ta ined fr om particle 
trajectory end-points. 

The integral condition imposed on the ve loci ty di stributio n by the trajectory end-points may 
be derived by introd ucing 

I / v = r(x) 

a nd substituting for L' in Equation (I) to get 

which is directl y integ rated to yield 

dx 
- = I / r(x) 
dl 

rX r(x)dx = r d/. 
.. Xo • to 

For the trajectory end-po ints (to, xo) and ( /1 , XI ). 

'XI I r(x) dX = /1 - /0 · 
• xo 

( I I ) 

( 12) 

( 13) 

( 14 ) 

Thus, in deducing a velocity di stribution from a set of particle trajectory end -points, a function 
r(x) must be devi sed so that it obeys Equation (14) for each trajectory in the set (which in genera l 
may a ll have 10 and 1I different from one another, provided the assumption r lg(x)/ ?I = 0 hold s 
througho ut the entire combined time interval ). Neither the time-averaged velocity nor th e 
di stance-averaged velocity is pertinent here; it is onl y the Equation ( 14) integral of the velocit y 
reciproca l that sati sfies the governing differenti al equation (7). The velocity distribution is no t 

https://doi.org/10.3189/S0022143000008261 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000008261


206 JOURNAL OF GLACIOLOGY 

uniquely determined by the da ta because, through Equation ( 14), they impose condition s onl y on 
the integra l of its reciproca l. 

No do ubt an optimizing algorithm could be developed that would construct an r(x) sa ti sfying 
all th e req uired integral s and also minimizing some measure of smoothness, such as the 
curvature-squared integral , so that the velocity di stribution would be free from spurious features 
not implicd by the data. A simple approach to constructing g(x) is fir st to fit a smooth curve to 
the (.i;. t') points from the several pairs of trajectory end-points used (see Equations (16) and 
(17». and then to revise it iteratively until its reciprocal r(x) obcys Equation (14) for each pair of 
end-po ints. 

After an r(x) has been constructed that is consistent with the end-point data. the velocity 
distribution is obtained easily from 

g(x) = I / r(x). ( 15) 

Table I lists the end-points of the trajectories of three survey stakes and twelve surface 
features observed on the lower reach of Columbia Glacier, Alaska. Only the longitudinal 
component of position is given. Shown in Figure 1 is a numerically constructed r(x) representing 
the average velocity distribution over the period considered, for during this period there existed a 
pronounced seasonal variation (personal communication from M. F. Meier and others). The 
constructed r(x) is consistent with all fifteen trajectories, each of which is indicated by a 
horizontal line segment from Xo to XI at r = Doll tu; each line segment has the integral required 
by Equation (14). It was constructed iteratively so that it agrees with the data of Table I and so 
that it is smooth, without any spurious features. The slight asynchronism of the fifteen time 
intervals is accommodated here by supposing that the same time-average velocity distribution 
exists throughout the entire combined intervals 25 August 1977 through 3 September 1978. The 
actual r(x) may have a deeper local minimum of r~ I al km at x~ 26.5 km. Shown in Figure 2 is 
the velocity di stribution v = g(x) = I / r(x). 

TABLE I. TRAJE CTO RY END-POINTS FOR THREE SURVEY STAKES AND TWELVE 

PHOTOGRAMM ETRI CALLY OBS ERV ED SURFACE FEATURES ON THE LOWER REACH OF 

COLUMB IA GLACIER 

10 I} 111 Xo x} 
a m m 

25 August 1977 1 September 1978 1.019 21 299 22 138 
25 August 1977 2 September 1978 1.02 1 26746 27524 
25 August 1977 3 September 1978 1.024 28976 29835 
29 August 1977 26 August 1978 0.99 1 2 1 502 22385 
29 August 1977 26 August 1978 0.99 1 22 095 2308 1 

29 August 1977 26 August 1978 0.99 1 23 125 24056 
29 August 1977 26 August 1978 0.991 23540 24449 
29 August 1977 26 August 1978 0.991 24589 255 10 
29 August 1977 26 August 1978 0.99 1 26583 27359 
29 August 1977 26 August 1978 0.991 27587 2833 1 
29 August 1977 26 August 1978 0.991 30290 3 1 204 
29 August 1977 26 August 1978 0.991 3 1 3 16 32347 
29 August 1977 26 August 1978 0.99 1 31 916 33006 
29 August 1977 26 August 1978 0.991 324 13 33557 
29 August 1977 26 August 1978 0.991 32944 34 176 
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Fig. I . R eciprocal velocity /ullction r(x) = I / v con­
structed lIulI1erical(l' to conform Ivith the fifteen 
trajetories listed in Table I. 

Fig. 2. Velocity distribution u = g(x). which is the 
reciprocal o/the/unction shown in Figure I. 

THE TRAJECTORY-AVERAGE METHOD 

Although the use of Equation (14) does not uniquely determine the velocity di stribution, it 
does precisely express the entire influence that trajectory end-points have on it. Considered next 
is the error resulting from using the trajectory-average method to construct it. In this method , the 
average trajectory velocity 

_ X, - Xo tJ.x 
V = ---

I, - 10 - tJ.1 
( 16) 

is assigned to g(x) at the trajectory mid-point 

_ Xo + x, 
X = ---

2 
( 17) 

The error in assuming gC~) = v depends on what the actual velocity distribution is. From 
Equations (8) and (9) 

tJ.1 = G(x, ) - G(xo) ( 18) 

and the relative error is 

v - g(x) tJ.x 
E = - - I 

g<-~) - g(x)IG(xd - G(xo)] . 
( 19) 

This is the error at x; the error of the trajectory-average method as evaluated by Equation (14) 
depends on the way a continuous curve might be fitted through (J~' v) points calculated by that 
method from the end-points of several particle trajectories. In investigating the error at _\', the 
choice of functional forms for g(x) is restricted to those amenable here to manipulation through 
equations (I) to (10). In each of the three special cases considered, a simple mathematical form 
for g(x) is assumed, and closed-form expressions are obtained for the trajectory f(t) and the 
relative error E. The complication that sometimes occurs for the coefficients of g(x) and f{t) 

arises from requiring f(t) to agree with the trajectory end-points. 
First considered is the case in which g(x) is a linear function of x. It is parametrized by the 
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rat io a of the velocities at Xo and X I ; that is, g(xI )/g(xo) = a. The relevant equations are, for 
a =1= I , 

g(x)= --+-- In a (
x - xo U ) 

!':.t a - I 
(20) 

and 

!':.x 
J (t) =xo +-- [a(/ -/o)/6/ _ 1] a- I (2 1 ) 

and the relative error is 

2 (a - I) £ I (a)=- -- - I 
In a a + I 

(22) 

which is negative for all non-zero gradients dv/ dx = (In a)/ !':.l. In the trivial a = I case: 
g(x) = i\ J (t ) = xo +(t - 1o)u, and E l = 0. Because E l (a) is an even function of In a. it depends 
onl y on the magnitude of the gradient, not on its direction. It is shown as Figure 3; it approaches 
- I as a goes to infinity or zero, and it has an inflection point at E l (2.1 69) = - 0.04 7 I. I n Figure 
4 are shown J (t) for selected a. 

Th at E l (a) is independent of the direction of the veloci ty gradient is a speci al case of the 
independence, for any g(x), of the relative error at ~\" from the direction in which a particle 
traverses a feature of g(x); th at is, the relative error at x is unchanged if g(x) is refl ected about 
x = .\". Thi s is easil y established by setting k(x) = g(xo + X I - x), from which gex) = gC\") and , from 
Equati on (9) 

_ _ ' XI dx 'X I dx 
G(xd - G(xo)= I -, - = I 

. Ixo g(x) . Ixo g(xo+xl - x) 

= _ ro d(xo +XI - x) 

• X I g(xo + X I - x) 

= G(x l ) - G(xo) 

so that, fro m Equation (19), E = E. 

rXI d(xo+xl -~~) 
' xo g(xo + XI -~x) 

(23 ) 

Second is considered the case of a velocity extremum in which g(x) is taken to be a quadrati c 
fun ction of x . It is parameterized by the ratio b of the velocity at the mid-point to the velocity at 
the end-points; that is, g(x)/g(xo) = g(x )/g(xI ) = b. The velocity distribution is 

[ (I-b) ( X-X )2] g(x) = g(x) 1 + - b- !':.x/ 2 . (24) 

Definin g 

BI =v(l - b)/ b, 1 
B2 = V(b - i)/b, 

B3 = ( 1 + B 2 )/ ( I - B2 ), 

(25) 
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Fig. 3. Reiative error £I(a) for linear velocity 
distribution v = g(x) where a = g(xlJ/g(xoJ. 

Fig. 4. Particle trajectories x = f(1) from linear velocity 
distributions v = g(x) for a = g(x I)/g(xo) as 
indicated. 

the value o f gU') th at is consistent with the traj ecto ry end-po int s 

th e trajecto ry is 

1(/) = 

and the re la ti ve error is 

x+-- tan --- tan- ' B, 
2B, /),, 1 

b < 1 

b > I, 

1 

fu [ 2(/ - 7) J 

x + fu [B }(t - t)/t. , _ 1111 B}(t - i)/t., + 11 
2B2 

b < 1 

b > I. 

(26) 

(27) 

b > I , 

(28) 

Figure 5 shows g(x)/g(xo) fo r selected b, a nd F igure 6 gives the corres po nd in g f(l). Figure 7 
gi ves E2 (b) a s the solid curve. 

Third is considered a no th er form for a velocity extremum in which g(x) is taken to be a 
segment of a conic sectio n. This fun ctional fo rm is incl uded because the for m of Eq ua tion (24) 
does not spa n a ll second-degree possibilities. It is parameteri zed by the ratio e o f the veloc ity a t 
the mid -po int to the velocity at the end -points ; that is, g(x)/g(xo) = g(x)/g(x, ) = e. The veloc ity 
distributio n is 

Defi nin g 

~ (l -e2)( x- x)2 g(x) = g(x) 1 + --2 - --
e /)"x/ 2 

c, = yIC2=I/c, 

C2 = Vi ~-c2/e, 

C3 = ( I + ee2 )I( I - eC2 ) , 

(29) 

(30) 
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Fig. 5. Quadratic velocit), distributions v=g(x) Jar 

b = g(Ji:)/g(xo} as indicated. 

Fig. 6. Particle trajectories x = J(t) from quadratic 

velocity distributions v = g(x), Jar b= g(xJig(xoJ as 

indicated. 

the value of g(.x-) that is consistent with the trajectory end-points is 

the trajectory is 

and the relati ve error is 

c > 1 

c < I , 

c > 1 

c < I. 

(31) 

c > 1 

(32) 

c< I , 

(33) 

When c > 1 the conic is an ellipse, and when c < 1 it is a hyperbola. Figure 8 shows g(x)jg(.xo) for 

selected c, and Figure 9 gives the corresponding J(t) . Figure 7 gives £3 (c) as the dashed curve. 

Although it is difficult to determine the error in assigning (x, v) to g(x) for arbitrary g(x). it is 

easy to determine the class of functions to which g(x) must belong if g(x) = ii. Equation (14) may 

be written 

·1lx/ 2 

i rex - x) d(x-x)= ~1 
• -1lx/ 2 

(34) 

where rex - .x-) = r(x). Since any function can be expressed as the sum of an odd function and an 

even function, let 

(35) 
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Fig. 7. Relative error, E 2(b) for quadratic velocity distribution 

-0 . 2~ . 5 06 0 . 7 0 .60. 1 1. 2 14 1.6 1.6 2 (solid curve) alld EJ(c)for conic velocity distributiOIl (dashed 
b 0' C curve), IIIhere v =g(>:) and b. c= g(i)!g(xo). 

r(.\-) = r(O) = /-2 (0) = I/ D, a nd Equation (34) may be written 

. /'u/ 2 ./'u/ 2 ·/'u/ 2 I j'I(X - ,\")d(x - .x-) + I [r2 (x - .x-) - I/iil d(x -,\") + j (I /u) d(x -.\") = ~l. (36) 
• -/'u/2 • -/'u/2 • - tu/2 

Beca use the first integral vanishes identicall y and the third integral is fj,x/v = ~" the second 
integral mu st also vanish; thi s gives the other condition on the velocity di stribution for it to 
includc U. L'). The simplest form for such g(x) then is i'l (x - .x-) = 0 and r2 (x - .() = I/ v, which 
gives g(.\") = L'. This is th e trivial case with zero gradien t o f the linear, quadratic, and conic 
function s examined above for g(x). Increas ing the degree of r(x) by one gives 

g(x) = I / Is(x - .()+ I/ v l (37) 

whcre s is a constant, which is a hyperbola with grad ien t dl..'/ dx = - sv2
• 

Eq ua ti on (37) can be interpreted glaciologically ifit is ass umed that the glac ier Aux Q obeys 

Q = Fg(x)h(x) (38) 

where hex) is the glacier thickness and F is a constant, and if it is assumed that over some x ­
interva l Q is also constant a nd hex) is linear, then over that interval g(x) has the same form as in 

Fig. 8. Conic velocity distriblllions v = g(x) for 
c= g(.'()/g(xo) as indicated. 

Fig. 9. Particle trajectories x = f(r) frOIl1 cOllie velocity 
dis tributions v=g(x), for c = g(i)!g(xo) as 
illdicated. 
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Equation (37) and g(x)=u. In fact, the conditions on Q and F can be relaxed sl ig htl y; Q and F 
can both vary with x as long as the ratio Q(x)/ F(x) is constant. This special case. however. 
should not be embraced as a basis for neglecting the error to which the trajectory-average 
method is susceptible; in spite of this effect, the curves of Figures 3 and 7 still ex hibit errors of 
several per cent, and so does the actual glacier velocity distribution discussed next. It is 
mentioned only to put Equation (37) into a glaciological context, not to s uggest that the 
conditions occur in actual glaciers with any particular frequency. 

An actual glacier velocity distribution provides another example of the error in the 
trajectory-average method. The velocity distribution for the ice-fall reach of Columbia Glacier 
(from unpublished data taken in 1982 by M. F. Meier and others) is shown as the solid curve in 
Figure 10; it is much more complex than the one for the lower reach shown in Figure 2. If the 
velocity distribution is assumed to be unchanging from time 10 until time 1I = 10 + fj,/, then for a 
survey stake initially at some position xo, its final position XI is given by Equation (14); the 
average trajectory velocity, given by equation (16), is assigned to the trajectory mid-point. given 
by Equation (17). If a dense array of hypothetical survey stakes were assumed to exist at time 10 • 

and if the solid curve in Figure IQ is assumed to be the actual velocity distribution. then the 
velocity distribution that would be produced by the trajectory-average method can be developed: 
the dashed curve in Figure 10 is the distribution so developed for one yea r fj,/. The relative error 
E. which is given by Equation (19), can also be computed at the mid-point of the trajectory or 
each hypothetical stake; the E(x) for the dashed curve in Figure 10 is shown as the dashed curve 
in Figure I I, which also gives the E(x) for fj,1 = 2.0, 0.5, and 0.25 a. 

Scveral conclusions can be drawn from this actual case. First. the velocity distribution 
arising from the trajectory -average method is o-ne that yields a subdued curve, especially in its 
understatement of the extrema; however, the extreme values of the associated error distribution 
are displaced from those extrema (compare the dashed curves in Figures 10 and 11). Second. at 
any x, the error is roughly proportional to fj,/. Third, the error cannot be avoided or reduced by 
some stake placement technique, because this case has been analyzed by assuming a continuum 
of hypothetical stakes, although a very sparse stake spacing could fail entirely to detect features 
in the velocity distribution. Therefore, if a field program is to be designed to reduce the error in 
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using the trajectory-average method, onl y shortening the period between position measurements will have any effec t, not the stake placement pattern. The erro r depends onl y on the ac tual ve loci ty distrib ution a stake traverses in a particular time /'-,.1, no t on the position of some other stake . Easier than shortening the measurement peri od would be using Equation (14) in the cons tructi on of the ve loci ty distribution, rat her th a n usi ng the trajec tory-average method . 

SUMMARY 

The trajectory end-points c ustomari ly observed in glacier field programs impose onl y an integra l cond ition on the velocity di stribution. Therefore, they do no t uniquely determine it. or a ny indi vid ua l points on it. 
The trajecto ry -average method, in which the ave rage trajectory veloc ity u is assigned to th e trajectory mid-point .X", has a n inherent error. For a one-yea r interval/'-,.I between position 

measurements, thi s error can reach several per cent for velocity di stribution features that arc typica l of actual glaciers. The case of the ice-fa ll reach of Columbia Glacier suggests that thi s er ror is roughl y proportional to /'-,.t. 
The onl y fie ld program tactic that can be used to red uce thi erro r is to shorten /'-,.1. Although spati all y enric hing a stake array wi ll give more information about the velocit y di stribution. it ca nn ot reeluce thi s error. 
The C\·. i") points are useful in making a fir st approximation to the ve locity di stribution. The rec i procal of a smooth curve through them should be revised as necessa ry to make it obey Eq lI a ti on ( 14) fo r a ll trajectory end-points used. The reciprocal of thi s revised reciprocal curve is then the ve loc ity di stribution . 

!If S. /"('('('il '('d 1 Seplember 1982 and in rev ised/arm 29 NOl 'ember 1982 

APPENDIX 
THE development of Eq uations (20) - (22). (26)- (28). and (3 1)- (33) requires considerable algebra ic manipulation. Because detailing a ll the steps would be volum inous. only the principal intermedi a te quantities are given here. (A) Begi nning with a general linear equat ion in x. and requiring that both the a-ratio and Equation ( 14) be sa ti sfied. the coeffi cients are determined to be those of Equation (20). Defini ng A 1 = x/ Ca - I) and A 2 = 61/ ln a. they may also be written 

(A- I ) 
so that . from Eq uation (9). 

G(x) = A 2 In(x - xo +A I)' (A- 2) 
from wh ich 

G(xo) = A 2 In A 1 (A- 3) 
a nd 

G - 1(8) = xo - A 1 + aO!t". (A- 4) 

From Equation ( 10). along with equation s (A- 3) and (A--4). 

j{l) = xo + A d a(t - lo>l61 - 11 (A- 5) 
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which is equivalent to Equation (21), and from which 

and 

A 
!'(I) =~ a(I - lo)/61 

A2 

(B) Equation (24) is a quadratic in x that already satisfies the b-ratio. When b < I. 

g(x) =v(tan - I Bd/ B I 

supplies the coefficient in Equation (24) so that it satisfies Equation ( 14). From Equation (9) 

from which G(xo)=-/I;x/ 2 and 

G - I(B) =~\" +--tan . /l;x (2Btan -
I
B I ) 

2BI /1;1 

(A- 6) 

(A- 7) 

(A- 8) 

(A- 9) 

(A- IQ) 

From Equation (10), !(I) = G - I(I - l), which is equivalent to Equation (27) for b < I. and from whi ch 

r I (x) = I + G(x) and 

_ tan B I / 2 [2(1 -1) tan - I B I ] 
/'(t) = v -- cos . 

BI /1;1 
(A- I I ) 

When b > I , the value of the inverse tangent for complex argument gives B I/ tan - I B 1= 2B2/ ln Bl. Then 

g(x)=v(ln B l )/ (2B2), (A- I 2) 

x--In InBl, G( ) _/1;1 [/I,.x +2(X-X)B2]/ 

2 /I,.x-2(x-x)B 2 
(A- 13) 

/I;~ 
G - I(B) = x+ 2~2 (B}8/61 _ I )/(B}8/61 + I), (A- 14) 

2ii In Bl 
/'(1) = B}U- 1)/61/ fB}(I - l)/61 + 11. 

B2 
(A- IS) 

(C) Equation (29) is a conic in v and x that a lready satisfies the c-ratio. When c > I, 

(A- 16) 

supplies the coefficient in Equation (29) so that it satisfies Equation (14). From Equation (9) 

G( ) _/1;/ . - I [2(X- X)CI ]/ . _ I 
x - 2 S1l1 /I,.x S1l1 Cl , (A- 17) 

from which G(xo) =-/1;1/ 2 and 

G - I() - /I,.x. (28Sin -
1 
Cl) 

8 = x+-- sm . 
2C I /I;{ 

(A- 18) 

From Equation (10), !(I) = G - I(I - l), which is equivalent to Equation (32) for c> I , and from which 

! - I(X) = 1 + G(x) and 

(A- 19) 
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When c < I, the value of the inverse sine for complex a rgument gives Cl / sin - I C l = 2C 2/ 111 C 3. Then 

(A- 20) 

G(X)=~ ln{2(X - X)C2 + Q[2(X-_X-)C2 ]l}, 
In C 3 lix Y 1 + I lix 

(A-21) 

~.x 
G - '(B) =_x- + 4 C

2 

(C~/Il./ _ C.J811l.~, (A- 22) 

V In C 3 i) 1'(1)= ----;;;:;;- , C~ - 1 11l.1 + C .J(/ - I)/ ll./j. (A- 23) 
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