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CALCULATION OF A VELOCITY DISTRIBUTION FROM PARTICLE
TRAJECTORY END-POINTS

By L. A. RASMUSSEN
(U.S. Geological Survey, Tacoma. Washington 98402, U.S.A.)

ABSTRACT. The longitudinal component of the velocity of a particle at or near a glacier surface is considered.
its position as a function of time being termed its trajectory. Functional relationships are derived for obtaining the
trajectory from the spatial distribution of velocity and for obtaining the velocity distribution from the trajectory. It
is established that the trajectory end-points impose only an integral condition on the velocity distribution. and that
no individual point on the velocity distribution can be determined if only the end-points are known. An example is
given of a deduced velocity distribution that is consistent with (although not uniquely determined by) the end
points of several trajectories on the lower reach of Columbia Glacier, Alaska. It is shown that constructing a
velocity distribution by assigning the average trajectory velocity to the trajectory mid-point can be subject to
errors of several per cent for velocity distribution features that are typical of actual glaciers. The error in this
method is determined, and closed-form expressions for the trajectory are obtained, for linear velocity distributions
and for two classes of second-degree distributions. The class of functions is identified to which the velogity
distribution must belong for this error to be zero.

RESUME. Calcul de la distribution des vitesses a partir de la position des extrémites dune trajecioire de
particule. La composante longitudinale de la vitesse d’une particule a la surface ou prés de la surface d'un glacier
est examinée. avec sa position en fonction du temps qui limite sa trajectoire. On en déduit les relations qui
permettent d'obtenir la trajectoire a partir de la distribution dans 'espace de la vitesse et la distribution des vitesses
a partir de la trajectoire. On établit que la connaissance des extrémités de la trajectoire impose seulement une
condition intégrale que doit satisfaire la distribution des vitesses si on ne connait que les extrémités de la
trajectoire. On donne un exemple de déduction d'une distribution des vitesses qui est cohérente (bien que non
determinée uniquement par elles) avec les positions des extrémités de plusieurs trajectoires sur la langue du
Columbia Glacier en Alaska. On montre que la construction d'une distribution des vitesses en attribuant la
vitesse moyenne le long d’une trajectoire au point situé au milieu de cette trajectoire peut entrainer des erreurs de
plusieurs pour cent dans des modes de distribution des vitesses qui sont courants sur glaciers reels. On calcule
lerreur induite par une telle méthode et on obtient des expressions trés convenables pour la trajectoire. pour des
distributions lincaires des vitesses et pour deux classes de distributions du second degré. On identifie la classe des
fonctions auxquelles la distribution des vitesses doit appartenir pour que cette erreur soit nulle.

ZUSAMMENFASSUNG. Berechnung  einer  Geschwindigkeitsverteilung  aus  den  Endpunkten  rvon
Partikelbahnen. Die Lingskomponente der Geschwindigkeit eines Partikels auf oder nahe der Oberfliche eines
Gletschers wird betrachtet, wobei dessen Lage als Funktion der Zeit aus seiner Bahn bestimmt wird. Zur
Gewinnung der Bahn aus der riumlichen Geschwindigkeitsverteilung und umgekehrt werden funktionale
Bezichungen hergeleitet. Es wird nachgewiesen, Dass die Endpunkte der Bahnen nur eine Integrationsbedingung
fir die Geschwindigkeitsverteilung liefern und dass kein spezieller Wert der Geschwindigkeitsverteilung bestimmt
werden kann, wenn nur die Endpunkte bekannt sind. Ein Beispiel fiir eine abgeleitete Geschwindigkeitsverteilung
wird gegeben, die mit den Endpunkten ciniger Bahnen im unteren Bereich des Columbia Glacier. Alaska.
ubereinstimmt. wenn sie auch durch diese nicht eindeutig bestimmt wird. Es zeigt sich, dass die Konstruktion einer
Geschwindigkeitsverteilung durch die Zuweisung der mittleren Bahngeschwindigkeit an den Bahnmittelpunkt
infolge von Besonderheiten in der Geschwindigkeitsverteilung. die typisch fiir bestehende Gletscher sind. um einige
Prozent verfélscht werden kann. Der Fehler dieses Verfahrens wird bestimmt: fiir die Bahnen bei linearen
Geschwindigkeitsverteilungen und bei zwei Klassen von Verteilungen 2. Grades werden geschlossene Ausdriicke
hergeleitet. Die Klasse von Funktionen. zu denen die Geschwindigkeitsverteilung gehdren muss. wenn dieser
Fehler verschwinden soll, wird festgestellt.

INTRODUCTION
In glaciological field practice, surface motion is observed using standard surveying
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techniques or photogrammetry to measure the displacement of a survey stake or an identifiable
surface feature. The expected errors in determining the initial and final positions are reported and
are combined to give the expected error in the average velocity, which is computed by dividing
the distance between the two positions by the elapsed time, and which is usually assigned to the
point midway between the initial and final positions. A spatial distribution of velocity is
constructed by interpreting the motion of several survey stakes or surface features in this way.

This method is susceptible to another source of error. The average velocity does not occur at
the mid-point of its initial and final positions unless the actual velocity distribution belongs to a
restricted class of mathematical functions. Recognizing this source of error may be helpful in
reconciling observations of velocity and mass balance through the continuity equation.

The following is an elementary analysis of the case of steady, one-dimensional flow. Only the
horizontal component of the longitudinal velocity is considered. and the transverse component is
assumed to be zero. It is not necessary that the glacier be in steady state. that is with unchanging
geometry. but only that the horizontal velocity distribution be unchanging over the time interval
considered. Alternatively. if the actual velocity distribution is changing. the average velocity may
be considered instead: it is defined to be a velocity distribution that. if it existed constantly over
the time interval, would produce the observed displacements.

USING PARTICLE TRAJECTORIES TO GET A VELOCITY DISTRIBUTION

Where x is a horizontal coordinate that is positive in the direction of glacier flow, the velocity

dx
D=— (1
dr
of a particle is assumed to depend only on x: that is,
v=p(x) (2)
where g(x) is a positive, continuous function and ég(x)/é1 = 0. If the trajectory
X=f{f) (3)

gives the position of a particle on or near the surface at time ¢, and f{(z) is a differentiable.
increasing function, then, from Equations (1) and (3),

v=S"0) (4)
where /(@) =d/(#)/dt. From Equation (3)
=% (5)
where /() is the inverse of f(0): that is, f/'| /1B)] =S| f~'(6)] =6. Now, from Equations
(2). (4), and (5),
v=["'[/~(x)]=glx). (6)

Thus. if f(¢) is known, g(x) is given by Equation (6).
Also. from Equations (1) and (2),
dx

N ety (7)
a W
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which is a first-order, ordinary differential equation easily integrated by separating variables

x dx 4
= dt (8)
oy SR iy
where x is the position of the particle at time 4. If
o i
| _)—c.(\)+r &)

in which I' is the constant of integration, then, from Equations (8) and (9).
G(x)= G(.\'O) Tl =1y
or (10)

=G [GOn)+i—iys]

where G ~'| G(A)] = G| G ~'(8)] =8. Thus, if g(x) is known. /(1) is given by Equation (10).

As shown by Equation (6). the function x = f(r) must be known if the velocity distribution is
to be determined: thus, knowing only the end-points (4. x,) and (1, . x;) of a particle trajectory is
insufficient for determining g(x). Moreover, as the trajectory end-points represent an integral of
dx/dt = g(x), they do not determine any particular point on £(x). but rather they impose only an
integral condition on it. Therefore, particular points on v = g(x) cannot be obtained from particle
trajectory end-points.

The integral condition imposed on the velocity distribution by the trajectory end-points may
be derived by introducing

1/v=nr(x) apy)
and substituting for v in Equation (1) to get
===l frta 12
P /rx) (12)
which is directly integrated to yield
X v
Ax)dy= | dr. (13)
*Xp 1

For the trajectory end-points (fy, xo) and (7, . x, ).

x|

Hx)dx=¢ — 4. (14)
s

Thus, in deducing a velocity distribution from a set of particle trajectory end-points, a function
rx) must be devised so that it obeys Equation (14) for each trajectory in the set (which in general
may all have ¢y and ¢, different from one another. provided the assumption ¢g(x)/¢1=0 holds
throughout the entire combined time interval). Neither the time-averaged velocity nor the
distance-averaged velocity is pertinent here: it is only the Equation (14) integral of the velocity
reciprocal that satisfies the governing differential equation (7). The velocity distribution is not
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uniquely determined by the data because, through Equation (14), they impose conditions only on
the integral of its reciprocal.

No doubt an optimizing algorithm could be developed that would construct an r(x) satisfying
all the required integrals and also minimizing some measure of smoothness, such as the
curvature-squared integral, so that the velocity distribution would be free from spurious features
not implied by the data. A simple approach to constructing g(x) is first to fit a smooth curve to
the (. ©) points from the several pairs of trajectory end-points used (see Equations (16) and
(17)). and then to revise it iteratively until its reciprocal r(x) obeys Equation (14) for each pair of
end-points.

After an {x) has been constructed that is consistent with the end-point data, the velocity
distribution is obtained easily from

g(x) = 1/r(x). (15)

Table I lists the end-points of the trajectories of three survey stakes and twelve surface
features observed on the lower reach of Columbia Glacier, Alaska. Only the longitudinal
component of position is given. Shown in Figure 1 is a numerically constructed #{x) representing
the average velocity distribution over the period considered, for during this period there existed a
pronounced seasonal variation (personal communication from M. F. Meier and others). The
constructed r(x) is consistent with all fifteen trajectories, each of which is indicated by a
horizontal line segment from x, to x, at r=At/Ax: each line segment has the integral required
by Equation (14), It was constructed iteratively so that it agrees with the data of Table I and so
that it is smooth, without any spurious features. The slight asynchronism of the fifteen time
intervals is accommodated here by supposing that the same time-average velocity distribution
exists throughout the entire combined intervals 25 August 1977 through 3 September 1978. The
actual r{(x) may have a deeper local minimum of r~ 1 a/km at x= 26.5 km. Shown in Figure 2 is
the velocity distribution v = g(x)= 1/r(x).

TaBLE |. TRAJECTORY END-POINTS FOR THREE SURVEY STAKES AND TWELVE
PHOTOGRAMMETRICALLY OBSERVED SURFACE FEATURES ON THE LOWER REACH OF
CoLuMBIA GLACIER

lo I8 At Xo Xy

a m m
25 August 1977 1 September 1978 1.019 21 299 22 138
25 August 1977 2 September 1978 1.021 26 746 27524
25 August 1977 3 September 1978 1.024 28976 29 835
29 August 1977 26 August 1978 0.991 21502 22 385
29 August 1977 26 August 1978 0.991 22095 23081
29 August 1977 26 August 1978 0.991 23125 24 056
29 August 1977 26 August 1978 0.991 23540 24 449
29 August 1977 26 August 1978 0.991 24 589 25510
29 August 1977 26 August 1978 0.991 26 583 27 359
29 August 1977 26 August 1978 0.991 27 587 28 331
29 August 1977 26 August 1978 0.991 30290 31204
29 August 1977 26 August 1978 0.991 31316 32 347
29 August 1977 26 August 1978 0.991 31916 33 006
29 August 1977 26 August 1978 0.991 32413 331557
29 August 1977 26 August 1978 0.991 32944 34 176
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Fig. 1. Reciprocal velocity function r(x)=1/v con- Fig. 2. Velocity distribution v=g(x), which is the
structed numerically to conform with the fifteen reciprocal of the function shown in Figure .
trajetories listed in Table I.

THE TRAJECTORY-AVERAGE METHOD

Although the use of Equation (14) does not uniquely determine the velocity distribution. it
does precisely express the entire influence that trajectory end-points have on it. Considered next
is the error resulting from using the trajectory-average method to construct it. In this method, the
average trajectory velocity

" X) —Xg X
=— =— (16)
th—t At
is assigned to g(x) at the trajectory mid-point
. Xg +tXx
X=—— 17)
5 (

The error in assuming g(¥)=0 depends on what the actual velocity distribution is, From
Equations (8) and (9)

Af:G(Xl )*G(.\'Q) (18)

and the relative error is

p_b—e®) _ Ax iy
g®)  g®[G(x;)—Glxo)]

This is the error at ¥; the error of the trajectory-average method as evaluated by Equation (14)
depends on the way a continuous curve might be fitted through (%, 7) points calculated by that
method from the end-points of several particle trajectories. In investigating the error at ¥, the
choice of functional forms for g(x) is restricted to those amenable here to manipulation through
equations (1) to (10). In each of the three special cases considered, a simple mathematical form
for g(x) is assumed, and closed-form expressions are obtained for the trajectory f(f) and the
relative error E. The complication that sometimes occurs for the coefficients of glx) and f(r)
arises from requiring f(/) to agree with the trajectory end-points.

First considered is the case in which g(x) is a linear function of x. It is parametrized by the

(19)
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ratio a of the velocities at x, and x,; that is, g(x;)/g(xo)=a. The relevant equations are, for

a1,
g(x)—(x:" *Tl_T) In a (20)
and
fh=x+ aAjl [a“ oA —1] (21)
and the relative error is
El(a)—ﬁz—a(zzi)—l (22)

which is negative for all non-zero gradients dv/dx=(In @)/At. In the trivial a=1 case:
g(x)=10. fi)=x +(t—1ty)0, and E, =0. Because E,(a) is an even function of In a. it depends
only on the magnitude of the gradient, not on its direction. It is shown as Figure 3: it approaches
—1 as a goes to infinity or zero, and it has an inflection point at E,(2.169)=—0.047 1. In Figure
4 are shown /(1) for selected a.

That E,(a) is independent of the direction of the velocity gradient is a special case of the
independence, for any g(x), of the relative error at X from the direction in which a particle
traverses a feature of g(x); that is, the relative error at X is unchanged if g(x) is reflected about
v = . This is easily established by setting &(x)=g(xo + x| —x), from which 2(x) = g(x) and. from
Equation (9)

# dx ¥ dx

Go)=G)= | 2= oim—w
(1) — Glxo) Jo 80 Ly glxg +x1 —X)

0 d(xo + X —X)_ & d(xo + X —X) (23)

Sy B+ —X) iy 2(xp +x, —x)

= G(x;)— Glxo)

so that, from Equation (19), E=E.

Second is considered the case of a velocity extremum in which g(x) is taken to be a quadratic
function of x. It is parameterized by the ratio b of the velocity at the mid-point to the velocity at
the end-points; that is, g(X)/g(xo) = g(x)/g(x; ) = b. The velocity distribution is

. {—&] #=R)*
g{x)—g(x)[l+( = )(AI/Z) ] (24)
Defining
B =\/(1—b)/b,
B, =/(b— 1)/b, (25)

By =(1 + B;)/(1 —By),
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Fig. 3. Refa{ive error  Ey(a) for linear velocity  Fig. 4. Particle trajectories x = f(t) from linear velocity
distribution v =g(x) where a =g(x, )/g(xy). distributions  v=g(x) for a=g(x)/g(xy) as
indicated.

the value of g(x) that is consistent with the trajectory end-points

. Jottan™" B, )/B, b<1 26)
| 2(n By)/(2B,) b> 1,
the trajectory is
A 2001
Fhs g ( )lan"B, b< 1l
2B, At
S)= . 27
X +—— [B-WA _ [/ BRe-DA 4 ] b>1,
2B,
and the relative error is
By ftan~! B )—1 b
E\(b)= (B, /tan 1) (28)
(2B,/In B;y)— | b 1.

Figure 5 shows g(x)/g(xy) for selected b, and Figure 6 gives the corresponding /(7). Figure 7
gives £, (b) as the solid curve.

Third is considered another form for a velocity extremum in which g(x) is taken to be a
segment of a conic section. This functional form is included because the form of Equation (24)
does not span all second-degree possibilities. It is parameterized by the ratio ¢ of the velocity at
the mid-point to the velocity at the end-points; that is, g(xX)/g(x,) = g(¥)/g(x,) = c. The velocity

distribution is
B 1-2\f x—x)\?
g(x):g(x)\/ | +( E )( Ax/?_) . (29)

Ci =/ 1/e,
Cs =5/ 1 —Ple; (30)
Cy =(1 +¢cCy)/(1 —cCy),

Defining
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Fig. 5. Quadratic velocity distributions v=g(x) for Fig. 6. Particle irajeclories x=/f(1) from quadratic
b=g(x)/g(xo) as indicated. velocity distributions v=g(x), for b=g(x)/g(xo) as
indicated.

the value of g(X) that is consistent with the trajectory end-points is

i o(sin~! C,)/C, c>1
R = 31
g( ) {ﬁ(ln C3 )/(2C2) o 1! ( )
the trajectory is
Ax Ayt
J-HEESiH[ (At )sinf‘C,} il
fO= Ao (32)
= (—1/Al __ (=D)AL |2
X+ 4C2 [CS C; ] e
and the relative error is
C,/sin~! C)—1 = 1
Bt e ) 3 (33)
(2C,/In C3)—1 c<l.

When ¢ > 1 the conic is an ellipse, and when ¢ < litis a hyperbola. Figure 8 shows g(x)/g(xg) for
selected ¢, and Figure 9 gives the corresponding /(7). Figure 7 gives E;(c¢) as the dashed curve.
Although it is difficult to determine the error in assigning (%, 0) to g(x) for arbitrary g(x), it is
easy to determine the class of functions to which g(x) must belong if g(X)=0. Equation (14) may
be written
-Ax/2
Hx —x) dlx—x)= At (34)
Joax
where #{x —%)=r(x). Since any function can be expressed as the sum of an odd function and an
even function, let

Hx—X)=F(x—X)+ F(x—%) (35)

where 7,(X—x)=—# (x—X), from which 7 (0)=0, and (% —x)=F(x—X). If g(x)=0, then
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1) = H0)=74(0)= 1 /0, and Equation (34) may be written

Ax/2 -Ax/2

-Ax/2
F(x— %) dx— %) + | [y (x— %) — 1/8] d(x— &) + (1/B)dx—%)=At  (36)
< Av2 < _Ax/2 < _Ax2
Because the first integral vanishes identically and the third integral is Ax/o = A¢, the second
integral must also vanish: this gives the other condition on the velocity distribution for it to
include (x. 2). The simplest form for such g(x) then is #, (x — X)=0 and 7 (x —xX)= /&, which
gives g(x)=r. This is the trivial case with zero gradient of the linear. quadratic, and conic
functions examined above for g(x). Increasing the degree of n(x) by one gives

g =1/[s(x—x)+ 1/v] 37)

where s is a constant. which is a hyperbola with gradient do/dx = —si?.
Equation (37) can be interpreted glaciologically if it is assumed that the glacier flux Q obeys

Q = Fg(x)h(x) (38)

where /1(x) is the glacier thickness and F is a constant, and if it is assumed that over some x-
interval Q is also constant and A(x) is linear, then over that interval g(x) has the same form as in

2B B =t

(o 1 S I S0 A S |

Xo x Xy

Fig. 8. Conic velocity distributions v=g(x) for Fig. 9. Particle trajectories x = [(t) from conic velocity
c=g(x)/g(xy) as indicated. distributions  v=g(x), for c=g(x)/g(xy) as
indicated.
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Equation (37) and g(x)=2. In fact, the conditions on O and F can be relaxed slightly; Q and F
can both vary with x as long as the ratio Q(x)/F(x) is constant. This special case, however,
should not be embraced as a basis for neglecting the error to which the trajectory-average
method is susceptible; in spite of this effect, the curves of Figures 3 and 7 still exhibit errors of
several per cent, and so does the actual glacier velocity distribution discussed next. It is
mentioned only to put Equation (37) into a glaciological context, not to suggest that the
conditions occur in actual glaciers with any particular frequency.

An actual glacier velocity distribution provides another example of the error in the
trajectory-average method. The velocity distribution for the ice-fall reach of Columbia Glacier
(from unpublished data taken in 1982 by M. F. Meier and others) is shown as the solid curve in
Figure 10; it is much more complex than the one for the lower reach shown in Figure 2. If the
velocity distribution is assumed to be unchanging from time 7 until time 1, =ty + Al then for a
survey stake initially at some position xp, its final position x; is given by Equation (14): the
average trajectory velocity, given by equation (16), is assigned to the trajectory mid-point, given
by Equation (17). If a dense array of hypothetical survey stakes were assumed to exist at time /g .
and if the solid curve in Figure 10 is assumed to be the actual velocity distribution, then the
velocity distribution that would be produced by the trajectory-average method can be developed:
the dashed curve in Figure 10 is the distribution so developed for one year At The relative error
E. which is given by Equation (19), can also be computed at the mid-point of the trajectory of
cach hypothetical stake; the E(x) for the dashed curve in Figure 10 is shown as the dashed curve
in Figure 11, which also gives the E(x) for At= 2.0, 0.5, and 0.25 a.

Several conclusions can be drawn from this actual case. First. the velocity distribution
arising from the trajectory-average method is one that yields a subdued curve, especially in its
understatement of the extrema; however, the extreme values of the associated error distribution
are displaced from those extrema (compare the dashed curves in Figures 10 and 11). Second. at
any x. the error is roughly proportional to As. Third, the error cannot be avoided or reduced by
some stake placement technique, because this case has been analyzed by assuming a continuum
of hypothetical stakes, although a very sparse stake spacing could fail entirely to detect features
in the velocity distribution. Therefore, if a field program is to be designed to reduce the error in
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1200 ozE fl
“. \‘\ %
E . LE E o |
1000 i . i 1
/ U N
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(m/a) ¢ 4 Elx) 1 N
600 f 4 01 E \
1 e 1y, A \ | i
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Fig. 10. Velocity distribution for the ice-fall reach of the  Fig. 11, Relative error E(x) in applving the trajectory-

Columbia Glacier. both the actual (solid curve) and average method to the veloeity distribution shown as
that which would be produced by the trajectory- the solid curve in Figure 10 for At=2.0a (solid
average method (dashed curve). curve). 1.0a (dashed curve), 0.5a (dotted curve).

and 0.25a (crossed curve).
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using the trajectory-average method, only shortening the period between position measurements
will have any effect, not the stake placement pattern. The error depends only on the actual
velocity distribution a stake traverses in a particular time A¢, not on the position of some other

stake. Easier than shortening the measurement period would be using Equation (14) in the

construction of the velocity distribution, rather than using the trajectory-average method.

SuMMARY

The trajectory end-points customarily observed in glacier field programs impose only an
integral condition on the velocity distribution. Therefore, they do not uniquely determine it. or
any individual points on it.

The trajectory-average method. in which the average trajectory velocity © is assigned to the
trajectory mid-point ¥, has an inherent error. For a one-year interval Ar between position
measurements, this error can reach several per cent for velocity distribution features that are
typical of actual glaciers. The case of the ice-fall reach of Columbia Glacier suggests that this
error is roughly proportional to Ar.

The only field program tactic that can be used to reduce this error is to shorten Ar. Although
spatially enriching a stake array will give more information about the velocity distribution, it
cannot reduce this error.

The (v, ) points are useful in making a first approximation to the velocity distribution. The
reciprocal of a smooth curve through them should be revised as necessary to make it obey
Equation (14) for all trajectory end-points used. The reciprocal of this revised reciprocal curve is
then the velocity distribution.

MS. received 1 September 1982 and in revised Jorm 29 November 1982

APPENDIX

THE development of Equations (20)—(22). (26)—(28), and (31)—(33) requires considerable algebraic manipulation,
Because detailing all the steps would be voluminous, only the principal intermediate quantities are given here.

(A) Beginning with a general linear equation in x, and requiring that both the a-ratio and Equation (14) be
satisfied. the coefficients are determined to be those of Equation (20). Defining 4| = Ax/(a— 1) and 4 2 = At/In a. they
may also be written

B(x)=(x—xg +A4,)/A43. (A-1)
so that, from Equation (9),
G(x)=4; In(x—xg+4,), (A-2)
from which
Glxg)=A,In A, (A-3)
and
G @) =xg—A, +a¥, (A-4)

From Equation (10). along with equations (A—3) and (A—4),

SO =xq +A4,[q"—10VA_ 1] (A-5)
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which is equivalent to Equation (21), and from which

)= %:, Y (A—6)
and

[ x)=tg+ Az In[1 +(x—x0)/d,]. (A=7)

(B) Equation (24) is a quadratic in x that already satisfies the h-ratio. When b < 1,

g(x)=0i(tan "' B)/B, (A-8)

supplies the coefficient in Equation (24) so that it satisfies Equation (14). From Equation (9)

At 2Bi(x—X
G(x)=7 tan l =) ]/tan’lﬂl, (A-9)
from which G(xp)=—Ax/2 and
A . Ax 20tan~'B,
Gl @=x+——tan|———— |. (A—-10)
2B, At

From Equation (10), f(!):G“(r—I). which is equivalent to Equation (27) for b< 1, and from which
f Y x) =T+ G(x)and
tan B
1= ‘/cosz

When b > 1, the value of the inverse tangent for complex argument gives By /tan ' By = 2B2/In Bi. Then

= -1p
2(t—1) tan 1 ] (A-11)

At

g(x)=10(In B3)/(282), (A-12)
At [Ax+2x—3B
G(x)=7|nlzx%3—2]/ln Bs, (A-13)
G—: = Ax 28/Ar 26/At
@)=+ (BN D/BP 1), (A-14)
2
21n B
f’{:):-——U; ) p-y g R ), (A-15)
2

(C) Equation (29) is a conic in ¢ and x that already satisfies the c-ratio. When ¢ > I,
g(X)=0(sin "' C)/C4 (A—16)

supplies the coefficient in Equation (29) so that it satisfies Equation (14). From Equation (9)

At 2 c
CF(X)=—— sin~ l b=k ]/sm"cl, (A-17)
from which G(x¢)=—At/2 and
Ax 20sin~'C,
G Y)=x+—sin|[——|. -
()] x+2C1 sm( B ) (A-18)

From Equation (10), f(r):G“(r-?). which is equivalent to Egquation (32) for ¢> 1. and from which
fYx)=1+G(x) and

f=

p sin'Cy 24— sin~' Cy
cos[ } (A-19)

Cy At

https://doi.org/10.3189/50022143000008261 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000008261

VELOCITY DISTRIBUTION CALCULATION

When ¢ < 1, the value of the inverse sine for complex argument gives C,/sin~!' C;=2C,/In C;. Then

},

g(X)=(In C3)/(2C;),

At 2(x—x)Ca 2x—%C; |
G(x)= o s . S
s lnc]]“{ Ax TN Be J

Ax
G O=x+ o (Y& — 3o,
2

tln Cy

1 —1)/At —(t—n/A
ac, [ +C3 ]

S0)=
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(A-20)

(A-21)

(A-22)

(A-23)
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