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I ntroduction

The geometric Langlands conjectures, as formulated by Beilinson and Drinfeld
in [2], aim at the construction of certain D-modules on the moduli space of G-
bundles over (punctured) curves (G a reductive group). Positive characteristic
versions of these conjectures had been solved earlier by Drinfeld in [3], in the case
G = GL».

In the paper [6], the D-modules arising from the construction of [2] were studied
in the specia case of arational curve with marked points, and identified with the
Gaudin model. Then, in[8], Drinfeld's construction of local systems on the moduli
space of rank two vector bundles on a curve in positive characteristic ([3]) was
adapted to the complex situation. The identification of these two constructions
amounts to Sklyanin's separation of variables ([11]), asit was noticed in [8]. This
computationisrecalled in the first part of this text.

The question has been raised in [8] to construct asimilar separation of variables
for the Gaudin—Calogero systems, which were computed in [4] and [10], and play
asimilar rolein the case of apunctured elliptic curve. Thisnote aims at solving this
guestion. In the present case Drinfeld’'s diagrams for Radon transformation haveto
be dightly modified.

It is also worth to note that the systems presented here, are the specialization
at the critical level, of the Knizhnik—Zamolodchikov—Bernard Equations on the
torus. According to the general viewpoint that the diagrams of [3] arerelated to the
Drinfeld-Sokolov reduction, the generalisation of the present work to noncritical
level should rel ate these equationsto the Virasoro correlatorsonthetorus. In[5], the
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2 B. ENRIQUEZ ET AL.

Bethe Equations were connected with the unitarity property of the KZB Equation
on the torus. It would be desirable to clarify further the connection between these
issues. Finally, among related works, let usquotethe paper [9], wherethe separation
of variablesfor classical elliptic Calogero systems was established.

1. Separation of variablesfor s, Gaudin systems

Let us begin with some reminders on the Gaudin system. Let X = CP1, z, be
marked pointson X, = 1,..., N, G be SL»(C), B C G be the upper triangular
subgroup. The moduli space M (X, z,) of G-bundles on CP?, with parabolic
structures at z,, is the digoint union of the M(G”) (X, 2za), n > 0, corresponding
to the parabolic structures on the sheaf O(noo) & O(—noo). We then identify

MU (X, zy) with
P\(G/B)N,Py=G, and

P = {(é ’f?) £ € CX,p(2) € C[2], deg(p) < 2n}

forn > 0, Py acting diagonally and P,, acting on the «-th factor by left translation,
after the replacement of z by z,. In what follows we will deal with M? (X, zq,).

Let usfix weights, Ao, =1,...,N.On Mg)) (X, za) livesthebundle L),
quotient of the bundle ®Y_, £, (L, istheline bundle on G/B, corresponding
to the weight \,). The natura action of Z(U_»8l2),. (the center of the local
completion of the enveloping algebra of the central extension of sl,(C((2))) at
level —2) is by differential operators L,,a = 1,..., N, which were identified
in [6] with the Gaudin hamiltonians

Lo=)

B

I, I being an orthogonal basis of sl;(C).

Following the conjectures of [2], the D-modules on Mg (X, z,) (twisted by
L(»,)) defined by Lo, — o should setisfy the Hecke eigenvalue property. In [3], a
construction of such moduleswas given in the case of acurve of genus > 0 without
punctures.

Following [8], let us show how Drinfeld’s construction in [3] can be adapted
for X = CP* with marked points z,. Consider the space

LSO‘) 72(8)

Za — 28

@

M (X, 2,) = {(parabolic structureon 02, & za,
class of morphisms Ocpr — 0%,,.)},

the morphisms being considered up to O p1-automorphisms; the cokernel of the
morphism considered inthis definitionis O¢p:. Itisnatural to consider Kcp1 , =
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Kcp1(2Y_1(24)) asthe canonical bundlein our punctured situation, and then the

space {classes of morphisms Kcél — Ocp1}, its mapping 7 to X V=2 (given

by the zeroes of a given section) and the d agram

7N

O cpt, z,) PHOM(K}: ., Ocpr) ) L X220 ()

{%\/

{Ocpr}
p being the projection on the first factor, and the correspondence Z being defined
to be the set of ((l4,7),4), la: line in the fiber of OZ,, at zq, i: morphism
Ocpt — Oépl, j: morphism Kcp1, — Ocp1, proportiona ¢, 5's being con-
sidered equivalent, such that denoting by &: (9(2: p1 — Ocp1, the cokernel mapping
of i, thereexistsalift j: Kop,, — O2p, 0f j (i.e, wehavej = koj), compatible
with the parabolic structure (i.e., theimage of ;' at 2z, should bethelinel,).

Let usfix weights \,, for each «; the D-moduleswe will consider will betwisted
by thefollowing linebundles: £,y on MY (X, z4), p* L5,y OV M (X, 24, and
pop* L), ) On Z. ForY avariety and £ alinebundleonY’, wedenote (Dy ) = L®
Dy ® L1, Let usfix now complex numbers yy, o = 1,..., N, st. BY_ 4, =0,
SN paza + 5N 1200 (A — 1) =0, BN 111022 + 2N 14>\ (Ao — 1)zo = 0; we
associateto them the operator on X,

N
22a(Ae — 1)
D ) =202 — Pa N~ Elalta — 2
(Reu):(pr) W — Zq az::l (w_za)z

and the D x-module E(Aa),(ua) = Dx/DxDx,),(4a)-
Consider on the other hand on M(C?) (X o) the twisted D-module
M(,ua) = (DM(O) X, %0 C(,\a) Z M(O) X,%a C(Aa)(LOé - :U’Oé)a

(the conditions on p,, correspond to the reI ations on the L,,,

N N N
> La=0, > Laza+ Y 2Aa(da—1) =ef + fe+ 3h?
a=1

a=1 a=1

N N
S LaZ2 + )" Ma(Aa — V2o = 2(esf + fre + 3hah)),
a=1 a=1
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e=3N_1e® e = BN 7.6, analogous relations for f, f1, h, h1). We would
like to show:

PROPOSITION 1 (cf. [8].). Thereis a homomorphism of D-modules
* _2 X %k
m 5&),(@) — R(qo)«p1p" M) [N,

whichisanisomorphismover 7= (X — {c0})(N 2 — A) (A isthediagonal part
of (X — {oo})(V-2)),

(Here we denote, for F asheaf onamanifold V, by F(™) the sheaf (py ). (F=")
onV(™ = vy"/8, py being the projection V™ — V(7))

Proof. Let usgive coordinates to the spaces of diagram (1).
MG (X, z) = G\(G/B)N = G\(CPYY,

choosing the identification

1 1 0 0 -1
CP*~G/B, t— B, 0 B;
=1 1 1 0

then G acts on (CPY)N by homographic transformations. Now MY (X, z,) =
B\(G/B)N; dfter fixing Ocpr — 02, tobe(1,0), thelinesi, areC(1,t,1), the
t- 1 being defined up to aglobal affinetransformation. Anelement of Hom( K c. IJD.l,za ,
Ocp1) isalform Y, (uadz/z — z,), With ©Y_ 4, = 0. The incidence rela-
tion defining Z is ¥Y_ju,t, = 0, since the first component of j' has to be
SN (uatadz/z — 2,), and should be regular at co. The map 7 associatesto (u,,),
the solutions (w;) of BY_; (ua /2 — 24) = 0 (counting & times oo, if this function
is~ c/2?tk for z — oo, ¢ # 0).
Let p; bethe natura projection of (G/B)Y on G\(G/B)", then

P1Mua)) = Diaypyv /Z Dy~ (Lo — pa) + Dig/pyn l2(C).

Introduce the formal variable z, then

220(Aa — 1)

a=1 (z = za)Z
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with e(z) = BV (e /2 — z,), etc., e® = 12(9/dty) + 2ata, f@ =
—(0/0ta), B = 2(t4(0/0ta) + Aa). The Radon transform of the D-module
generated by the L, — i, isthe D-module generated by the L, — 1, Where

i\’: Lo — fta N i\’: 2Aa(Aa — 1)
= 7 Za = (2 — 24)2
_ _ — Yoo
=2(2)f(2) + F(2)e(2) + 3h(2)* = > - _az ,
a=1 @
e(z) = BN (/2 — 2,), andogous formulae for f(z), h(z), & =
— (4 (0/Oua)2+2(Ma+1)0/0ua), T = ta, i = —2(ua(0/0us) +Aa+1).
Consider the operator
N 1 o

L(w) ="

Ww; — z
a=1 """ «

(Lo — pta)

and let é(w;) = BN_; (1/w; — 2, )&, analogousformulaefor f (w;), h(w;). Then

N N
e 2a(Aa — 1)
L(w;) + +
( Z) (;_ W; — Z¢ az::l (wz - Za)z

_ { lé(a)’ 1 l 7O | |7 1 l ()
1cagen Wi~ Za w; — 23 w; — 23
Ll 1 ] E(B)}
2 w; — 23

oy [0 0 »
B Wi — 2 | Oug Oug \wi — 2 N g

N 2 0 1 i
W; — Zg ta Oug \ w; — 23 e Jugp

{lZ(Aaqtl)i ! ]uﬁ

Qua’ wi — 2z

2 0 1
B w; —za““aua <wi —25> (Aﬂ—i_l)}

w; — 2
Ia,fKN - T T
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with [a, b]+ = ab + ba. Now,

(o) (525w =2 (25)
:ua Oug, w; — 28 u= uaﬁua Ww; — 2o )’

N ) 1 N 0 1
-2 uaa . + 2 U 3 < : )
a1 Wi ~ Za Ug Wi — Ug a1 Wi ~ 2a Uag \Wi — Ug
N
1 0
~- 2 " —
(;. (w; — za)zu Oug

(the dot denotes the product of differential operators). Then we deduce from

cIE'G—w) gt

ngl(z - Za) a=1 Z = Za,

(dc/C + Ei]i_lz(dwi/wi — z))EflV:l(ua/z —2a) = Eé\f:l(dua/z —2a), S0dug =
e (dC/C + BN 12 (dw; Jw; — z,)) and

0 N, 0
8wz~:Z

a=1

Wi — Zo Oy

sotheremainingtermgives —2% 1 1(9/0w;) (1/wi—zp) (up(/dug)) 41 (2/ (wi—

25)?) (up(0/Oug)).
Finally,

Now, f(w;) = 0, and h(w;) = —2[0/dw; + A(w;)], with A(w;) = BN_ ( Ay +
1)/(w; — 2q), SO

i 0 2 S Ba w=2a(Ma—?)
L(wi)—2<awi +A(wi)> —;wi_za _az::l (s =202

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000264321722

SEPARATION OF VARIABLES FOR GAUDIN-CALOGERO SYSTEMS 7

In this way, we have constructed an epimorphism from the (N — 2)th symmetric
power of £y, (u.) (restricted to the complement of diagonals) to the D-module
generated by theL — 1o’ S (restricted to the complement of the discriminant), and
so to the D-module generated by the L, — j1,,’S and the action of sl(C).

Let us now show that it induces an isomorphism of the sheaves of local
analytic solutions. Let us start with a loca homomorphism of the first sheaf
to the (analytic) structure sheaf. It is some function (1) (w;))1<i<n—2, such that
(93, + q(w;))4p(w;) = O, for all j. We deduce from that relation, using our previ-
ous computatl ons,

.
y o tt)b o g N-2 )

i=1 Wi %a

We will consider qp as a distribution on the space of al (u;)1<i<~, Supported on
the hyperplane =¥ ,u; = 0, and analytic on this hyperplane. We obtain from (3)

(Za - Hoz)¢ = UaP + ZaUap, (4)

¢ and p being distributions of the same nature as+); indeed, ¢ and p can be obtained
solving a Cramer system (since everywhere on the support of 4, we can find
two indices & # 3 such that u,ug # 0), and L,’s commute with Z}a 1ua
From the relation ©Y_ L, = O follows that p = O; from XY L,z +

SN 1200 — 1) = &f + fe + 1A% and BV, 022 + SN 140 (Ag — D)zo =
2(e1f + fi€ + 3hib), follows that (EN wa)ey = (BN 1z0uq)¢, and
(BN zquq)e = (B0 178 2uq)¢. S0, onthecomplementof{(ua)ma 1Zatlq =0
or BV _122u, = 0 0r (20 120ua)% — (BN 1ua) (EN_122u4)}, ¢ and & will
vanlsh So these distributi ons would haveto be supported on a subvariety of the set
of al (u,) of codimension > 2, which isimpossible. So we will have

(Za - Ua)z/) =0, ep=0. )

Since fy» = hiyp = 0 by construction, we have shown that + can be considered as
alocal homomorphism of the D-module generated by the L, — p,, (restricted to
the complement of the discriminant) to the structure sheaf.

These two morphisms are clearly inverse to each other; if we show that both
D-modules have their characteristic varieties supported on the zero section, this
will prove the proposition.

For Eéﬁ;aa) it is clear, since it is true for &y, ), (u,)- On the other hand, the

characteristic variety of R(qo).pip* M, )[N]istheset of (u;,&;), with B ju; =
0 and up to equivalence (u;, &) ~ (u, & + A), and

>t () (p ). ®

" Z5 " Z — Zj N Zz— Z
i=1 t i=1 t i=1 t
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This equation gives
év: ui  RA%(z) g: ui§ RAB(2)
Sr-as [z —a) Se—a IG-2z)

g: u;? RB?(z)

=17~ B Hfil(z - zi),

R, A, B polynomials. The set {w;,1 < i < N — 2} isthe union of the set of zeros
of RA?, and of oo counted N — 2 — deg RA? times. Since the w;’s are pairwise
distinct, we have A = const.,anddeg R = N — 2 or N — 3. Since ho w; coincides
with oo, deg R = N — 2; so, B isalso constant, and the ¢;’s are all equal; but this
isequivalentto &; = 0. O

2. Separation of variablesfor the 9, Gaudin—Caloger o system

Let X betheelliptic curve C* /¢4, with marked points z,¢%, @ = 1,..., N.Inthe
dl, case, the Gaudin—Calogero system (which plays the role of the Gaudin system
in the present situation, cf. [4], [10]) takes place in the space

MY )(X za) = {(,-1), parabolic structure at z,, givenby ¢, € cprl)}/
(t,ta) ~ (gt; 2ata), (t ta) ~ (t,uta),u € C*];t € C*]
= C* x (CPHN/C* x ZN.

Here &y, ..., isthebundle on X defined by C* x C"/[(z,£) ~ (gz, diag(t;))],
forty, ..., t, € C*.
We consider then the space

MP(X, 24)

= {(Es-1), J: E — Ey g1, par. str. givenby t, € CPY),t € C*}/

[1 ~ Aj, A € C*,(t,ta) ~ (qt, zata), (t, ta) ~ (t,uty),u € C*J;
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it has anatural projection p to Mg;)) (X, z). Consider now the diagram

MP(X,za)  {€€P(X),wePHmM(KL ©&7L8)) ()

MG (X 70) Pic?(X) X

where

N
KX;Za = Q%( (Z(za)> )

po IS the projection
CIaS(g(t’t—l),j: (‘i‘t — g(t,t_l)7 pal’ ﬁr) —> gt—l,

(po associates to j its cokernel), gp associates € to (£, w), w associatesto (€, w)
the set of zeros of w, and Z isthe incidence variety, defined by the conditions that
w lifts to amorphism ;' K;(}Za ® &1 — &1y, compatible with the parabolic
structure. Writing

N 0(t722271) dz
w = Z ua&(t—z)H(zz_l) ?7
a=1 @

the first component of ;' hasto be

N A _
Z Ul e(zzij-_) %7
] O(zza™) #

so that the incidence condition is E{X‘leuata =0.

(Fix our conventions for #- and g-functions: §(z) = Il;>0(1 — ¢*2)1L;50(1 —
¢z 1Y), p(nz) = —(0/6)(2), 0 p(¢) ~ ¢ 2+ --- for ¢ — O; wedenote f(z) =
z(df /dz).)
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The lifts to C* x (CPY)N of the Gaudin—-Calogero operators ([4], [10]) are
defined asfollows: let z be aformal variable, belonging to X — {z,}. We have

L(z) = e(2)f(2) + f(2)e(2) + 3h(2)?

N ) N
0
= Lo+ Z Laa(zzgl) + Z 200 (Ao — 1)p(|nzzgl)
= a=1

(B (5) (3e).

where e(z) = ZN_(0(t7222;1)/0(t72)0 (zz D)@, h(z) = 2t3(0/0t?) +
2k(6/0) ()21 (0/0) (22, ) 1) = (e(tzzz*)/e(ﬁ) (22a ),
and e® =12 (0/0ty) + 2Xata, f(¥ (B/Bta) h(®) = 2(ta(8/8ta) + Aa).
Let us fix now complex numbers Ma a=0,...,N,with 22 4, = 0 (this
condition correspondsto the fact that X3, L, belongs to the |eft ideal generated

by ©N_, n(®); consider on M 9 (X, z4), the D-module (twisted by the quotient
Ly )ofz—l(£'2)®®N 1Ly i Ker(s) = X@ 51 X — X thesum mapping,
Ly abundle of degree k& on X),

M) = (DMSD(X,z Lk () Z MO (X 20 Pk ey L = o) -

Consider then the operator on X — {z,},
0
D(xa) () = 2(w—) —Ho~ Z”a Wo

—l-ZZ)\ p(nwz, b

and the D x-module
Exalina) = Px/DxDiag) (pa)-

The fibration 7 has fibers C*; we will twist inverse images under 7 by the func-
tion CZa=1%a+1) (C coordinate on the fiber). Also, we will work with k& = 0
(multiplication by 6(¢?)* taking us back to this case). We will show that:

PROPOSITION. Thereis a homomor phism of D-modules from the twisted inverse
image 71'*58\;)) () 1O R(q1)«pip* M(,,)[IN], which is an isomorphism over a1
(X(N) — A) (A isthe diagonal part of X (M),
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Proof. Let
p1:C* x (CPHN = C* x (CPHN/C* x 2V
be the natural projection, then

Pi(M(ua)) = Dcx (CPLH)N /z:DcX (CPLH)N (Lo — pa)

+DC>< Cpl <Z h )
Because of the factor Dex , (cpyv (Zh!®), the D-module is constant along

the fibers of the action of C*. Its Radon transform is the D-module generated by
Ly — pio and B0 1h( ) where

LO+ZL 25 +22>\ Jp(Inzz;t)

N
1=
-
—
>
—~
I
N
N
N
Q|
i
N
~
>
—
I
N
N—
>
—
N
N
i
N—
N
al

(@) analogous formulae for f(z) and

@) _ 9 ]
h™' =-2 [ua Dun + (Ao +1)
Consider the operator

L(wz) = LO — Mo+ Z 71)(304 - Na)

a:l

. 2
+ 3 (Buwen) 5 ()
1 g 2 '

Let é(w;) = B34 (0(t 2wiz, 1) /0(t2)0(wiz,t))el,
difference

—L(w;) + (e(w;) f(wi) + f(wi)é(ws) + 3h(wi)? — po

3L
Q
o
”
Q
c
w
Q
o
3
©
C
g2
@D
°
>
@D

o, _ _
_ Z ,uaé(wiza 1) + 220 (Aa — Dp(Inw;z, l));
a=1
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itisegual to

D0t Pwizg ) [@W 0(tPwiz;") ]7(5)
0

a%:l ot~ 2)H(wzzal) (tZ)H(wizgl)
Z g(wizgl)[ﬁ(a), g(wlzgl)]ﬁ(ﬂ) (8)
The first term of (8) isthe sum of (9) and (10), where
X e o [ 0(tPwizzh) \ 0
®) = _a%:10 2)0(w;za *) lZU“aua (9(t2)0(wizﬂl)> Oug,

9 \2 H(tzwizgl) ]
o (auo) <H(t2)0(wizﬂ1)>_ e

X et [ e (0w \ | o
o 2 e P <e(t2)e(wizﬂ1)>“ﬂ Dua

wzza l) =1 Ouq Oy,

N9t 2w;zY) o [ 0(twizzh) \ o
- Z 1y 2la -1
0(t=2)0(wizat)  Oua 0(t2)0(wizz") ) ua

N0t 2wz Y N or9\? e(tzwizg_l)
_;9@ DD le <aua> (0(t2)0(wzzﬂ 1)) ue

and

) N 0t 2wizt) P H(tzwizﬂ_l)
19 = 3 G20+ o (e

_ 0t 2wizgh)  0(FPwizg™)
- azj;l 2 ) B e 1) 0(t2)0(wizg ")

Zu + 1D [p(nt?) — p(nwz, ).

We have
i o [ 0(twizgh) 0(t2w; )
up = — — 8 ——
= 0ua \O(0(wizg D)) T 620 (wiza )
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and

N oo N2 O(tPwizz?) 0 [ 0(PwiznY)
ﬁzl<aua> (0(t2)0(wizﬂl)> u = _Zaua (9(t2)9(w,zal)>

So
iv: 0(tPw;z;t) Ot 2wizt) 0
- (2)0(wiza L) O(t2)0(wiza L) Oua
N
Z_: p(lnw;z 1)—p(|nt2)]ua%.

The second term of (8) isthe sum of (11) and (12), with
N - .
B P o (0 1 0
(11) = 2a%10(wzza )ua_8ua (0(wlzﬂ )) u5—8uﬂ

and

= 3" 2(Aa + Dp(In(w;z3 ).

To compute (11), we express the relation between the 9/0w; and the 9/0u,:
we have

Z tzzz ) I 0w Y
a=1 " 0(t2)0(2za ") ) 10(2za ")’

W icrio R DO LA St e B ey
2 du —+—“a[5(ml)“(”lm
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by inspection of the pole at z,,, and because of

Hi]ilo(zawfl)

= U y
H5¢a0(zazﬂ_l) *

it follows that

8=1
al 9
=2 p(lnwiz; )ug—.
ﬁz::l g ﬂ8u5
Finally
(9) + (11) = 2p(Int?) Zu |msz)0i
* Oy oC
and
N
(10) + (12) = > 2(Aa + Dp(Int?).
a=1

The sum of these terms is 2p(lnt2)( (8/80) + YN (Aa + 1)); the term
C(9/9C) + =N_1(Aa + 1) (equal to —3 S ™) is set to zero in the twisted
inverseimage W*E((i?) (10)" It follows that

- 0

0 2 é
= 2|2 +wis— + A(w; —§ o
L(w;) = Z{t et Wigy (wz)} THo = 2 Mg (wizy,)

N
+3" 20 (e — Dp(inwz3b),
a=1
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sinceé(w;) = 0, and h(w;) = 2[t3(0/t2) + kS(t2) + w; (0/0w;) + A(w;)], with
A(w;) = =2N_ (Ao +1)0/0(w;z;1). The addition of theterm A(w;) corresponds
to the twisting by a G L(1)-connection and does not change the PG L(2)-oper, as
in [8] . The addition of the term #20/9(t?) corresponds to the fact that we are
working herewith thevariables (w;, t), which arelinked by therelation 211 ;w; =
I1Y_, 2, (mod. ¢%). Our statement follows as before. O

Remark. Asin therational case, one may remark that the conditionson the .,,’s
to satisfy the Bethe ansatz equations, that can be found in[7], can betranslated into
the condition on the projective connection defined by them, to have asingle-valued
solution ¢(z) = I10(za;)/1I7_,0(zz;1) =, Thanks to the Leray formulae for
Radon transformation [1], one could expect the Bethe eigenvectorsto be expressed

intheform
O~ ama D) -l
\IJ(tL...,tN):/ - ' .
r (X a=1Uata)
N ~
. Z(—l)auadul A Ndug A+ ANduy,
a=1

1< k-3 1(MAa+1) < N —1, theintegration being on asuitablecyclein CPY.
In the general case, thisformula should lead to the computation of the monodromy
of the Gaudin—Calogero system (by deformation of the cycle of integration). It
might be interesting to express this monodromy representation directly in terms of
the one of the projective connection associated to the 'S

Acknowledgement

We express our thanksto A. Stoyanovsky and A. Varchenko for having discussed
with usthe content of this paper, and to C. Sabbah for consultations on D-modules.
V.R. was supported by the INTAS grants 93-2494 and 1010-CT93-0023, and by
the CNRS; he expresses his thanks to these institutions.

References

1. d'Agnolo, A. and Schapira, P: Quantification de Leray de ladualité projective, C. R. Acad. ci.
Paris, t .139, série | (1994) 595-8.

2. Beilinson, A. A. and Drinfeld, V. G.: Quantization of Hitchin’sfibration and Langlands program,
Preprint.

3. Drinfeld, V. G.: Two-dimensional representations of the fundamental group of a curve over a
finite field and automorphic forms on GL(2), Amer. J. Math. 105 (1983) 85-114.

4. Enriquez, B. and Rubtsov, V.: Hitchin systems, higher Gaudin operators and r-matrices, Math.
Res. Lett. 3 (1996) 343-57 (alg-geom/9503010).

5. Faceto, F. and Gawedzki, K.: Unitarity of the Knizhnik—Zamolodchikov—Bernard connection
and the Bethe Ansatz for the elliptic Hitchin system, Commun. Math. Phys. 183 (1997) 267—90
(hep-th/9604094).

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000264321722

16 B. ENRIQUEZ ET AL.

6. Feigin, B. L., Frenkel, E. V. and Reshetikhin, N.: Gaudin model, Bethe ansatz and correlation
functions at the critical level, Commun. Math. Phys. 166 (1), (1995) 27-62.
7. Felder, G. and Varchenko, A.: Integral representation of solutions of the elliptic Knizhnik—
Zamol odchikov—Bernard equations, Int. Math. Res. Notices 5 (1995) 221-33 (hep-th/9502165).
8. Frenkd, E. V.: Affine algebras, Langlands duality and Bethe ansatz, Proc. ICMP-94, 606-42,
Internationa Press (1995), (g-alg/9506003).
9. Kuznetsov, V. B., Nijhoff, F. W. and Sklyanin, E. K.: Separation of variables for the Ruijsenaars
system, Preprint solv-int/9701004.
10. Nekrasov, N.: Holomorphic bundles and many-body systems, Commun. Math. Phys. 180 (1996)
587-603 (hep-th/9503157).
11. Sklyanin, E. K.: Separation of variables in the Gaudin model, J. Sov. Math. 47 (1989) 2473-88.

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000264321722

