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1. Introduction. The configuration formed by N points
N .
in general position in space, together with the (2) lines joining

them in pairs will be called an N-clique. The N-clique is
coloured by assigning to each edge exactly one colour from a
set of t possible colours. A theorem due to Ramsey [4] en-

sures the existence of a least integer M(qi, q . qt) such

2,
that if N > M, any such colouring of the N-clique must contain
either a q1-clique entirely of colour 1, or a qz-clique of colour

2, ..., ora qt—clique of colour t. Another proof of Ramsey's

theorem is given by Ryser [5].

Definition 1: A (q1, q . qt)-colouring of the

2’

N-clique is an assignment of colours to the edges of the

N-clique as above in which there are no q -cliques of colour
i

i(i=1, 2, ..., t).

Ramsey' s theorem then states that there exists a least
integer M(qi, Qo - qt) such that for N > M there is no

(q1, q - qt)-colouring of the N-clique. The evaluation of

2
these least integers M is a difficult combinatorial problem.
The results in section 2 establish upper bounds for the M's,
but except in the first few cases these upper bounds appear to
be loose. Furthermore, to establish that M is the least such

integer, a (q1, Ays - qt)—colouring of the (M-1)-clique must

be constructed.
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Greenwood and Gleason [3] have evaluated M(3, 3),

M(3,4), M(3,5), M(4,4) and M(3,3,3). For these numbers
the upper bounds of section 2 are tight, and colourings of the
(M-1)-cliques were constructed using finite field residue theory.
However, this method does not readily extend to higher numbers
because, for this construction to give a colouring of the N-clique
there must be a field on N elements in which (-1) is a residue
of the proper type.

In this paper, a new method for constructing (q1, qz, Ceey

qt)—colourings is described and illustrated. By means of it are

obtained a (3, 7)-colouring of the 21-clique, a (4,5)-colouring of
the 24-clique, and a (3, 8)-colouring of the 26-clique. These
colourings are not obtainable by the method of Greenwood and
Gleason. Thus lower bounds of 22 for M(3,7), 25 for M(4,5),
and 27 for M(3,8) are established. The method of "regular
colourings' is easily programmed for a high-speed electronic
computer, so that regular colourings may be found even when
the number of possibilities to be considered becomes very large.

2. Preliminary Results. Lemmas 1, 2 and 5 are given
by Greenwood and Gleason [3]. Lemma 5 was originally proved
in a paper by Erdds and Szekeres [2]. The result has been attri-
buted to Szekeres by Erdés [1]. Lemma 3 is implicit in [3], and
a weaker form of Lemma 4 is stated there.

LEMMA 1. M(qi, q . qt) is invariant under a

RS
permutation of the q's.

LEMMA 2. Since a 2-clique is a line, M(2, qz, Ce qt)
= M(qz, R qt), and in particular M(2Z, qZ) = M(qz) =q,-

LEMMA 3. Ina (q1, Ayr oo qt)-colouring of the
N-clique, there are at most M(q1—1, Qyr oo qt) - 1 lines of

colour 1 from any point.

Proof. Suppose there exists a point A which is joined
by colour 1 to M(qi-i, qz, ey qt) or more points. These

points must contain either a (qi-i)—clique of colour 1, or a
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qz—clique of colour 2, ..., or a qt—clique of colour t. Should
they contain a (qi-i)-clique of colour 1, it will be joined to A
entirely by edges of colour 1, giving a qi-clique of colour 1.
Hence there is a qi-clique of colour i for some i=1, 2, ...,

or t, and no (q1, qz, e qt)-colouring exists.

4. s Aoy ey <M(q. -1, q, ...,
LEMMA M(q,. q, qt)_ (q,1 q, qt)

-1, 9., -..,q)+Ma,, a, ..., -1) -t+ 2.
q q,) (q,, g 94 941

* Mg, q, 3 2 t

Proof. By lemma 3, for a (q1, q - qt)-colouring

I
there are at most [M(q1-1, q - qt) - 1]+ [M(q1, q2-1, q

3’

e
. VI ,d., ....q-1)-1]=N U
) qt) ]+ + [M(q1 q, 9, 1) - 1] =N lines from

3

any point; so the number of points for a (qi, qz, RN qt)-

colouring is at most N + 1. If there are N + 2 or more points,
there is no (qi, Ayr - qt)-colouring; so M(qi, Qys - - qt)

§N+2.

LEMMA 5. M(q,, qz)i M(q1—1, qz) + M(q1, q2-1) with

1
strict inequality if both terms on the right hand side are even.

3. Regular Colourings. Space the N vertices of the
N-clique equidistantly about the circumference of a circle so
that all edges of the graph become chords of the circle. An

s-line, or edge of length s, is an edge of the graph which
cuts off a minor arc of the circle containing s - 1 interior

N
vertices (s=1, 2, ..., [E])

In attempting to construct (qi, q s qt)-colourings

PUREE
of the N-clique, it is reasonable to look first for colourings of
a very regular type. Such colourings should be fairly easy to
find, and these may permit evaluation of some M's without a
detailed consideration of all possible configurations. Accord-
ingly a regular colouring is defined as follows:

Definition 2: A regular (q1, q . qt)-colouring is a

PURE
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(q1, Ay oo qt)-colouring in which, for each s, all edges of

length s have the same colour.

It follows by Ramsey' s theorem that there exists a
greatest integer L(q1, qz, A qt) such that there is a regular

(q1, qz, C, qt)-colouring of the L(qi, q . qt)—clique, but

A

there is no regular (q1, q . qt)-colouring of the N-clique

N
for any N > L. Lemmas 6, 7 and 8 follow immediately from
the definition of L.

LEMMA 6. L(q1, qz, Ce qt) is invariant under a

permutation of the q's.

LE 7. 2, s e = s e
MMA I q2 qt) L(q2 qt) and

2, = =q_-1.
L( qz) L(qz) q, 1

LEMMA 8. L(qi, q ., qt)_<_ M(q1, q . qt) - 1.

20 PO

If there exists a (qi, qz, RN qt)-colouring of the

N-clique, a (q1, q . qt)-col.ouring of the (N-1)-clique can

2
always be found by removing any point (and all lines from it)
from the colouring of the N-clique. It is interesting that there

may be a regular (qi, qz, . qt)-colouring of the N-clique,

yet none for the (N-1)-clique. For example, there is a regular
(4, 4)-colouring of the 17-clique, but there is no regular
(4, 4)-colouring of the 16-clique.

All colourings constructed by the method of Greenwood
and Gleason using a field on p elements (p prime) will
necessarily be regular colourings. In this construction,
vertices are named by field elements, and a line joining two
vertices is coloured red if the two vertices have a numerical
difference which is an nth power residue of p. In order that
the order of differencing shall not matter, -1 must be an nth
power residue of p. This insures that if s is an nth power
residue, so is p-s, and the resulting colouring will be regular.
This is not necessarily so for colourings constructed using
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fields on pn elements (n#1). For example, the (3, 3, 3)-

4
colouring obtained in [3] using the field on 2~ elements is not
a regular colouring.

Table 1 lists all L(q1,q2) values presently known. Some

of these are found in sections 4 and 5. Those marked with an
asterisk will be discussed in future papers, along with the
results 1.(3,3,3) =14 and L(3,3,4) =29. The author is
presently investigating L(4,6), L(5,5) and L(3,3,3,3) using
the University of Waterloo' s IBM 7040 computer.

&1
q2 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 8
3 2 5 8 13 16 21 26 35%
4 3 8 17 24 | >29x%
5 4 13 24
6 5 16 >29%
7 6 21
8 7 26
9 8 35%
Table 1

Known values of L(qi s qz)

Table 2 lists all M(q1,q2) values presently known,

together with upper bounds for some unknown M's. It is also
known [3] that M(3,3,3) =17. Results marked with one or two
asterisks are not proved in this paper, and will be considered
in future papers. Those results marked with two asterisks are
used in the proofs of theorems 6, 7 and 8.
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o]
[

3 4 5 6 7 8 9

6 9 14 18%% | <24%%k | <31%% | <38%

9 18 |<30%x |<47x

<30%% | <59%

18%% |<47%

O lo|~wlacolo|lw |wiin]®
O low |~ |loc|lu s |lw|n
[
»

Table 2

Known values of M(q1’q2)

4. Evaluation of 1(3,3), L(3,4), L(3,5), L(3,6) and L(4, 4).

The method of proof is illustrated for L(3,5) in theorem 3.
All other proofs in this section and in section 5 are essentially
the same, and so are omitted.

THEOREM 1. 1(3,3) =5.

Proof. By lemma 5, M(3,3) < M(2,3) + M(3,2) =6 ;
1(3,3) < 5 by lemma 8. A regular (3, 3)-colouring of the
5-cliqu; may be constructed by making 1-lines red and 2-lines
blue. Hence 1.,(3,3)=5, and M(3,3) =6.

THEOREM 2. 1(3,4) =8.

Proof. By lemma 5, M(3,4) < M(2,4) + M(3,3) =10 ;
1(3,4) < 8 by lemma 8. Colour 1-lines and 4-lines red,
2-lines and 3-lines blue to get a regular (3,4)-colouring of the
8-clique. Thus 1.(3,4) =8 and M(3,4) =9.

THEOREM 3. 1(3,5) =13.
Proof. By lemmas 5 and 8, M(3,5) <14 and

L(3,5) <13. By lemma 3, for a (3,5)-colouring there are at
most M(2,5) - 1 =4 red lines and M(3,4) - 1 = 8 blue lines
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from any point. Hence, for a (3,5)-colouring of the 13-clique
there are exactly 4 red and 8 blue lines from each point. For a
regular (3, 5)-colouring of the 13-clique there must be two types
of lines red, and four types blue.

The following are all possibilities for choices of red
classes: 12, 13, 14, 15, 16, 23, 24, 25, 26, 34, 35, 36, 45, 46,
56. One of these pairs xy is required such that no triangle is
made up of lines of lengths x and y only, but every 5-clique
contains a line of length x or vy.

As a triangle is a closed figure, the lengths of its sides
(measured in the same direction about the circle) add up to N.
For the purpose of regular colourings, any triangle may be
represented by the lengths of its sides, and all possible triangles
may be listed by writing down all partitions of 13 into three
positive parts. To check for red triangles, it is then necessary
to identify 13-s with s. (An edge must have the same length
whether measured in a clockwise or counterclockwise direction. )
All possible triangles are:

1-1-114=1-1-2; 1-2-10=1-2-3; 1-3-9=1-3-4;
1-4-8 =1-4-5; 1-5-7 =1-5-6; 1-6-6;

2-2-9 =2-2-4; 2-3-8 z2-3-5; 2-4-T7=z2-4-6;
2-5-6 ; 3-3-7 =3-3-6; 3-4-6 ;
3-5-5; 4-4-5 .

Colourings 12, 16, 24, 36, 35, 45 may now be ruled out as
these give red triangles. The remaining colourings do not.

In the same way all possible pentagons (for the purpose
of regular colourings) may be listed by writing down all parti-
tions of 13 into five positive parts, and identifying 13-s with s.

1-1-1-1-9 =1-1-1-1-4 ; 1-1-1-2-8=1-1-1-2-5;
1-1-1-3-7=z1-1-1-3-6 ; 1-1-1-4-6 ;

1-1-1-5-5 ; 1-1-2-2-7 =1-1-2-2-6 ;
1-1-2-3-6 ; 1-1-2-4-5 ;

1-1-3-3-5 ; 1-1-3-4-4 ;

1-2-2-2-6 ; 1-2-2-3-5 ;

1-2-2-4-4 ; 1-2-3-3-4 ;

1-3-3-3-3 ; 2-2-2-2-5 ;

2-2-2-3-4 ; 2-2-3-3-3
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Now consider, for example, the colouring 15. This gives no
red triangles, and it will be shown that every 5-clique has a
side of length 1 or 5. Every 5-clique has an "outer'" pentagon,
and the lengths of sides of this pentagon will be given by a
permutation of the numbers in one of the above partitions.
Every such partition contains 1 or 5 except 2-2-2-3-4 and
2-2-3-3-3, so the only possible blue 5-cliques are ones with
"outer' pentagons of these types. But for any ordering of
2-2-2-3-4 there is a side of length 2 adjacent to the side of
length 3, and thus there is a diagonal of length 5. Similarly
2-2-3-3-3 gives a diagonal of length 5, so there are no blue
5-cliques.

Thus colouring 1- and 5- lines red and others blue gives
a regular (3, 5)-colouring of the 13-clique. I1,(3,5) =13 and
M(3,5) =14. Other regular colourings are 23 and 46. All
remaining colourings give blue 5-cliques. For example,
2-2-2-2-5 has no edges or diagonals of length 1 or 3; so 13
is not a regular (3,5)-colouring of the 13-clique.

THEOREM 4. 1,(4,4)=17.

Proof. By lemmas 5 and 8, M(4,4) < 18 and 1.(4,4) < 17.
Colour 1-, 2-, 4-, and 8- lines red in the 17-clique, and all
other lines blue. This gives a regular (4, 4)-colouring;

L(4,4) =17 and M(4,4) =18.

THEOREM 5. 1,(3,6) =16.

Proof. By lemma 5, M(3,6) < M(2,6) + M(3,5) = 6+14.
Thus M(3,6) < 19 and L(3,6) < 18. A regular (3, 6)-colouring
of the 16-clique is obtained by making 1-, 3-, and 8- lines red.
By checking all possible regular colourings it is easily verified
that there are no regular (3, 6)-colourings of the 17-clique or
18-clique. Therefore L(3,6) =16.

The author has proved elsewhere that there are no
(3, 6)-colourings of the 18-clique, and that there are (3, 6)-
colourings of the 17-clique, but that these colourings contain
two different types of points - some 4-valent and some 5-valent
in red. Therefore M(3,6) =18 [Table 2]. This is the first
case in which the lower bound obtained using regular colourings
is not tight, since IL(3,6) =16 and M(3,6) =18.
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5. Further Results. For all cases considered in section
4, colourings were constructed by Greenwood and Gleason [3].
In this section, regular colourings are used to obtain some con-
figurations not obtainable by their methods, and thus some new
lower bounds for unknown M's are obtained.

THEOREM 6. L(3,7) =21, M(3,7) > 22.

Proof. By lemma 5, M(3,7) < M(2,7) + M(3,6) =25, so
1(3,7) < 24. A regular (3, 7)—coIourTng of the 21-clique is
obtained by making 1-, 3-, and 8- lines red, and all others blue.
It can be shown that there are no (3, 7)-colourings of the
24-clique, so that M(3,7) < 24 [see Table 2]. An exhaustive
check of all possibilities shows that there are no regular
(3, 7)-colourings of the 22-clique or 23-clique. Thus I(3,7)=21
and M(3,7) > 22.

THEOREM 7. L(3,8) =26, M(3,8) > 27.

Proof. Using the result that M(3,7) < 24, lemma 5 gives
M(3,8) < 31 sothat L(3,8) < 30. A check of all possible regular
colourings shows that there are none for the 27, 28, 29, or 30-clique.
Making 1-, 3-, 8-, and 13- lines red gives a regular (3, 8)-
colouring of the 26-clique. Thus L(3,8) =26 and M(3,8) > 27.

THEOREM 8. 1.(4,5) =24, M(4,5) > 25.

Proof. By lemma 5,- M(4,5) < M(3,5) + M(4,4) =14 + 18,
and IL.(4,5) < 30. It can be shown that there are no (4, 5)-
colourings of the 30-clique, and in fac: M(4,5) < 30 [see table 2].
It is easily verified that colouring 1-, 2-, 4-, 8-, and 9- lines
red gives a regular (4, 5)-colouring of the 24-clique. Further-
more, by checking all the possibilities it can be seen that there
are no regular (4, 5)-colourings of the 25-, 26-, 27-, 28-, or
29- cliques. 1.(4,5) =24. This check was carried out by means
of the IBM 7040 computer at the University of Waterloo with a
programme written in Fortran IV. Total computer time was
about 20 minutes.

6. Summary and Conclusion. A special type of colouring
was defined for edge chromatic graphs. By means of the con-
struction method described, lower bounds may be obtained for
unknown Ramsey numbers, and this was done for M(3,7),
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M(3,8) and M(4,5). It is possible to obtain lower bounds for
further numbers by this method, although this requires the use
of computers because of the large numbers of possibilities.

I would like to thank Professor R. G. Stanton and

Professor D. A. Sprott for many helpful criticisms and
suggestions.
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